平均海平面上升对东中国海潮汐、风暴潮影响的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动对海洋、大气系统的影响迅速扩大,全球变暖与海平面上升日益成为人类关注的焦点问题。海平面上升会给沿海地区带来诸多不良影响,酿成灾害,如海岸侵蚀、海水入侵强度加大等。天文潮位、风暴潮位是海岸工程设计水位、警戒水位等的主要设计依据。因此,研究海平面上升对潮汐、风暴潮的影响规律具有重要的科学价值和应用价值。本文采用数值模拟方法研究东中国海潮汐、风暴潮在海平面上升情况下的变化规律。
     采用ECOM模式模拟了东中国海的潮波,与实测资料的对比表明:M_2、S_2、O_1、K_1四分潮振幅的绝对平均误差分别为6.89cm,6.28cm,3.26cm和4.29cm,迟角的绝对平均误差分别为6.95°,8.25°,13.13°和10.45°。模拟结果较好的反映了该海区的潮汐特征。
     结合Jelesnianski圆形台风风场模型和ECOM模型建立了东中国海的台风风暴潮数值模型。选取三个台风过程(TC0012, TC0209, TC0314)的模拟结果与实测结果进行对比,证明了ECOM模型用于模拟东中国海台风风暴潮的可靠性。
     潮汐敏感性试验表明,海平面上升1m,各分潮振幅、迟角在近岸浅水海域变化幅度较大;半日分潮较全日分潮受影响大;大部分海区分潮振幅增加,如江华湾M2分潮振幅增加20cm,部分海区减小,如长江口外M2分潮振幅减小2cm;各分潮无潮点均不同程度的向海区中央移动。
     风暴潮敏感性试验表明,随海平面上升,风暴增、减水极值的改变在空间上不是统一的,海平面上升对风暴潮造成的影响主要为近岸海域;随海平面上升幅度的增加,增、减水效应的改变量也随之增加;选取中国近岸特征站位风暴潮增水极值进行比较可以看出,对于大部分站位而言,增水极值随海平面上升而减小,但量值较小。如海平面上升1m,增水极值改变量最大的为吕泗站(TC0012),仅减小13cm,减幅8.84%;海平面上升5m,增水极值改变量最大的为塘沽站(强风条件),该站增水极值减小33cm,减幅仅4.59%。总体来说,海平面上升对风暴潮影响较小。
Global warming and mean sea level rise have come to be a focused problem now. Mean sea level (MSL for short) rise may significantly aggravate the disaster of coast erosion. Astronomic tide and storm surge are two important factors taken into consideration in designing coastal engineering. Thus, it’s meaningful for study of effect of sea level rise on tide and storm surge. In this paper numerical simulation method is employed to study this issue.
     ECOM is used to simulate astronomic tide of the East China Sea (ECS for short). The mean absolute error between simulation and observation of M_2, S_2, O_1 and K_1 are 6.89cm, 6.28cm, 3.26cm and 4.29cm in amplitudes and 8.9°, 9.0°, 6.7°and 22.0°in phase-lag specifically. The result shows that numerical model could near-really describe the tidal character of the ECS.
     Coupled with Jelesnianski circle wind model, ECOM is applied to simulate typhoon storm surge in the ECS. Process of TC0012, TC0209 and TC0314 are selected, calculated extreme surge elevation and its occurring time show good consistency with that of observed which confirms validation of ECOM to simulate typhoon storm surge in the ECS.
     Tidal sensitivity experiment shows that when MSL is of 1.0 m higher than normal: a) Coastal zones are affected more than that of deeper ocean. b) Semidiurnal tidal constituent varies more than that of diurnal tidal constituents. c) Amplitude of tidal component increases in most region while decreases in some region, for example, the amplitude of M2 co-tidal in Ganghaw-man is of 20 cm larger, while that of the mouth of Yangtze River is of 2 cm smaller. d) Most amphidromic points of tidal component move to deeper ocean direction.
     Sensitivity experiments for storm surge shows that as MSL rises: a) Variation of extreme surge elevation is non-uniform spatially, coastal regions are affected more than that of deeper ocean. b) Variation of storm surge grows in phase with argument of MSL rising. c) For most coastal stations, extreme high surge elevation decreases. d) Compared to variation of MSL the effect of MSL rise on storm surge is considerably finite. Whole speaking, numerical simulation shows that MSL rise makes little effect on storm surge.
引文
[1]李加林,张殿发,杨晓平,等.海平面上升的灾害效应及其研究现状.灾害学, 2005, 20(2):49~53
    [2]杨桂山.中国沿海风暴潮灾害的历史变化及未来趋向.自然灾害学报, 2000, 9(3):23~30
    [3]施雅风.全球变暖影响下中国自然灾害的发展趋势.自然灾害学报, 1996, 5(2):106~116
    [4]刘杜鹃.相对海平面上升对中国沿海地区的可能影响.海洋预报, 2004, 21(2):21~28
    [5]朱季文,季子修,蒋自巽,等.海平面上升对长江三角洲及邻近地区的影响.地理科学, 1994, 14(2): 109~117
    [6] Douglas, B. C.. Global sea rise: a redetermination. Surveys in Geophysics. 1997, 18: 279~292
    [7] Tushingham, A.M. and W.R. Peltier. Ice-3G: a new global model of late Pleistocene degloaciation based upon geophysical predictions of postglacial sea level change. Journal of geophysical research, 1991, 96: 4497~4523
    [8] Peltier W.R.. Global sea level rise and glalcial isostatic adjustment. Global and planetary change, 1999. 20: 93 ~ 123
    [9] Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D.,Woodworth, P.L.. Changes in sea level. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, K., Johnson, C.I.(Eds.), Clinate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel On Clinate Change. Cambridge, UK, Cambridge Univ. Press, 2001:639~693
    [10]左军成,陈宗镛,周天华.海平面变化的一种本征分析与随机动态的联合模型,青岛海洋大学学报,1996,18(2): 7~14
    [11] Nerem, R S, Measuring global mean sea level variations using TOPEX/POSEIDON altimeter data. Journal of geophysical research, 1995, 100(c12): 25135~25151
    [12] Minster J. F., B. Claude, R. Philippe. Variation of the mean sea level from TOPEX/POSEIDON data. Journal of geophysical research, 1995, 100(12): 25152~25161
    [13] Leuliette, E. W., R. S. Nerem, G. T. Mitchum. Calibration of TOPEX/Poseidon. and Jason altimeter data to construct a continuous record of mean sea level change. Marine Geodesy. 2004, 27(1–2): 79~94
    [14]马金,周永宏,廖德春,廖新浩. 1992-2007全球海平面变化.中国科学院上海天文台年刊,2007,28:37~41
    [15] Jansen, E., J. Overpeck, K.R. Briffa, J.-C. Duplessy, F. Joos, V. Masson-Delmotte, D. Olago, B. Otto-Bliesner, W.R. Peltier, S. Rahmstorf, R. Ramesh, D. Raynaud, D. Rind, O. Solomina, R. Villalba and D. Zhang, Palaeoclimate. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007, 410~417
    [16] Jelesnianski, J. Chen and A. Wilson. SLOSH:Sea,Lake and Overland Surges from Hurricanes. NOAA Technical Report, 1992: 48~71
    [17]王喜年,尹庆江,张保明.中国海台风风暴潮预报模式的研究与应用.水科学进展,1991,2(1): 2~9
    [18]罗义勇,孙文心.北部湾风暴潮的数值模拟——三维流速分解模型的一个应用.青岛海洋大学学报,1995,25(1):7~16
    [19]于福江,王喜年,宋珊,马毓倩.渤海“9612”特大风暴潮过程的数值模拟.海洋预报, 2000,17(4): 9~15
    [20]端义宏,朱建荣,秦曾灏,龚茂珣.一个高分辨率的长江口台风风暴潮数值预报模式及其应用.海洋学报,2005,27(3):12~19
    [21]黄华,朱建荣,吴辉.长江口与杭州湾风暴潮三维数值模拟.华东师范大学学报(自然科学版), 2007, 4: 9~19
    [22]于福江,张占海.一个东海嵌套网格台风暴潮数值预报模式的研制与应用.海洋学报,2002,24(4): 23~33
    [23]江文胜,孙文心,地形变化对青岛地区风暴潮灾影响的一次模拟.海洋预报,2002,19(1):97~103
    [24]莎日娜,尹宝树,杨德周,徐振华,程明华.天津近岸台风暴潮漫滩数值模式研究.海洋科学,2007,31(7): 63~67
    [25]王秀芹,钱成春,王伟.计算域的选取对风暴潮数值模拟的影响.青岛海洋大学学报. 2001,31(3): 319~324
    [26]张锦文,杜碧兰.中国黄海沿岸潮差的显著增大趋势.海洋通报. 2000, 19(1): 1~9
    [27] Yu, Y.F., Y. X. Yu, J. C. Zuo etc.. Effect of sea level variation on tidal characteristic values for the East China Sea. China Ocean Engineering , 2003, 17(3): 369~382
    [28]杜凌.中国海典型海域潮波研究与全球海平面变化规律研究.[中国海洋大学学位论文],青岛:中国海洋大学,2005
    [29]于宜法,郭名克,刘兰.海平面上升导致渤、黄、东海潮波变化的数值研究Ⅰ——现有的渤、黄、东海潮波的数值模拟.中国海洋大学学报,2006,36(6): 859~867
    [30]于宜法,刘兰,郭明克.海平面上升导致渤、黄、东海潮波变化的数值研究Ⅱ——海平面上升后渤、黄、东海潮波的数值模拟.中国海洋大学学报,2007,37(1): 7~14
    [31] Blumberg A. F. and G. L. Mellor, A Description of A Three-Dimensional Coastal Ocean Circulation Model, in Three-dimensional Coastal Ocean Models, Vol.4, edited by N.Heaps, American Geophysical Union,Washington,D.C., 1983: 2~16
    [32] Blumberg, A. F.. An estuarine and coastal ocean version of POM. Proceedings of the Princeton Ocean Model Users Meeting (POM96), Princeton, NJ, 1996
    [33] Mellor, G. L. and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982, 20: 852~875
    [34] Simons, T. J..Verification of numerical models of lake Ontario. Part I. Circulation in Spring and Early Summer. J. Phys. Oceanogr, 1974, 4: 507~523
    [35] Madala, R.V., and S.A. Piacsek. A semi-implicit numerical model for baroclinic oceans. J. Compute Phys., 1977, 23: 167~178
    [36] Lick, W., J. Lick and C. K., Ziegler. The resuspension and transport of fine-grained sediments In lake Erie. Great Lakes Res., 1994, 20(4): 599~612
    [37]李磊.渤黄东海潮波系统的有限元模拟. [中国海洋大学学位论文],青岛:中国海洋大学,2003
    [38]林俊.风暴作用下的近岸悬浮泥沙数值模拟. [中国海洋大学学位论文],青岛:中国海洋大学,2007
    [39]赵保仁,方国洪,曹德明。渤、黄、东海潮汐潮流的数值模拟.海洋学报,1994,16(5):1~10
    [40]林珲,闾国年,宋志尧.东中国海潮波系统与海岸演变模拟研究.北京:科学出版社,2000,1~266
    [41]陈达熙等.渤海、黄海、东海海洋图集(水文).北京:海洋出版社,1987
    [42]郑文振.全球和我国近海验潮站地点(和地区)的21世纪海平面预测.见冯浩鉴编.中国东部沿海地区海平面与陆地垂直运动.北京:海洋出版社,1999: 75~82
    [43] Tayler, G. L.. Tidal oscillation in gulfs and rectangular basins. Proceeding of the Londan Mathematical Society, 1921, 2: 148~181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700