浪流共同作用下的三维悬沙数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸、河口区属于海洋与陆地相互作用的区域,潮汐、淡水径流、波浪的变形、折绕射、破碎等各种动力因素共同产生作用,构成了海岸、河口区域复杂的动力系统,控制着海岸、河口区的泥沙输运。由于海岸、河口区域水深较浅,波浪影响显著,因此同时考虑波浪和潮流这两个因素共同作用对研究海岸、河口区的悬浮泥沙输运是十分必要的。在有风浪的情况下,悬沙浓度分布情况会存在显著改变,为研究波浪尤其是风暴浪对悬浮泥沙的影响,本文主要进行以下工作:
     首先,运用改进的椭圆形台风风场模型,结合9711号天气过程的移动路径、中心气压等台风要素,成功模拟了台风所经地带风场、气压场的变化过程。经与实测资料对比验证了模式的精度;
     其次,将椭圆形风场模型计算的风场条件输入到SWAN波浪模型,采用三级嵌套的方法成功模拟了日照海区的波浪场,得出9711天气过程中的有效波高和周期等波浪要素的发展变化过程,并与实测资料进行验证;
     再次,运用COHERENS三维水动力模式,采用三级嵌套模型计算了日照近海的潮汐、潮流、风暴潮过程并与实测资料进行对比,验证了模式的可靠性。最后,为探求波浪作用对悬沙运动规律的影响,以经过验证的水动力场作为背景场,运用COHERENS-SED三维水动力悬沙模式,对日照海域的悬沙浓度分以下三种情况进行了模拟:1)考虑潮流和风暴浪过程;2)仅考虑潮流;3)考虑累年平均波要素和一般天气情况(累年平均风场、标准大气压)。得到以下结论:
     与单纯潮流作用相比,在有风浪的情况下,悬沙浓度分布情况会存在显著改变,整个海区总体含沙量大幅提高,在近岸区域尤为显著。考虑潮流、一般波浪和天气因素共同作用下的水体悬沙浓度比仅潮流作用下增大40%~100%。考虑9711号天气过程产生的台风浪作用下的水体悬沙浓度则比一般波浪和天气因素作用条件下增大约4倍。可见波浪是掀沙的重要动力过程,其对模拟结果影响很大,在悬沙输运数值模拟中为不可忽略的动力因素。
Coastal and estuary regions are such regions where the interaction between land and sea is obvious and sediment is an important factor in coastal engineering research. Coastal and estuary regions are characterized by intensive interaction among wave, current, river runoff and so on. Its dynamic conditions which control the transport of suspended sediment are complicated and variable. The effect of wave (refraction, break up et al.) is very distinct in shallow water, such as the coastal and estuary zone. Therefore, the simulation of sediment with wave and current as well as their mutual interaction in coastal and continental shelf is necessary. The concentration of suspended sediment will be changed remarkably under the wind wave. A lot of effort has been made to study the impact of the wind wave on the suspended sediment, especially the one of storm wave.
     The major contents of this dissertation are shown as follows:
     1. The wind field and air pressure are simulated successfully with elements (path, center air pressure et al.) of No.9711 tropic storm using the improved elliptic wind model, and it’s proved that the model works well by comparing the wind speed and air pressure of simulated ones with the observed ones.
     2. Using the wind speed obtained in last process as input data, the wave field of considering area is simulated by SWAN (Simulating WAves Nearshore) model employing third class nesting. And the wave elements (Hs, T et al.) of No.9711 tropic storm can be computed.
     3. The hydrodynamic elements are simulated by the 3-D COHERENS model, and the modeled results of water surface elevation and current in offshore area of Rizhao are compared with the measured ones by Ocean University of China in August, 2005. The COHERENS model simulated the elements over the offshore region of Rizhao realistically.
     4. To check degree of impact on the concentration of suspended sediment caused by wind wave, a 3-D COHERENS-SED model is established based on the validated COHERENS model. The suspended sediment is simulated under the following three conditions: 1) driven by the No.9711 tropical storm; 2) driven only by astronomic tides; 3) driven by normal condition (year by year averaged wind elements and the standard air pressure).
     The major conclusions of this dissertation are shown as follows:
     When the model is driven by both wind and tide, the concentration is much bigger than that only driven by astronomic tides (the increase is about 40%~100%), especially along the coast. When No.9711 tropical storm is taken into account, the concentration is 4 times thicker than that under the normal condition. So wind wave plays an important part in changing the suspended sediment concentration.
引文
[1] Qing-Chao Guo and Yee-Chung Jin. Modeling Sediment Transport Using Depth-Averaged and Moment Equations.Journal of Hydraulic Engineering, 1999, 125(12):1262~1269
    [2]时钟,周洪强.长江口北槽口外悬沙浓度垂线分布的数学模拟.海洋工程,2000,18(3),57~62
    [3] Galappatti, G, Vreugdenhil, CB. Depth-integrated Model for Suspended Sediment Transport. Journal of Hydraulic Research JHYRAF, 1985, 23(4):359~377
    [4]夏军强,王光谦.剖面二维悬移质泥沙输移方程的分步解法.长江科学院院报,2000,17 (2): 14~17
    [5]张耀新,吴卫民.剖面二维非恒定悬移质泥沙扩散方程的数值方法.泥沙研究,1999, (2):40~45
    [6]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟.海洋学报,1993,15(1):107~118
    [7]丁平兴,贺松林,等.湛江湾沿岸工程冲淤影响的预测分析II.冲淤的数模计算.海洋学报,1997,19 (1):64~72
    [8]辛文杰.潮流、波浪综合作用下河口二维悬沙数学模型.海洋工程,1997,15 (1):30~47
    [9]陆永军,左利钦,王红川,李浩麟.波浪与潮流共同作用下二维泥沙数学模型.泥沙研究,2005,(6):1~12
    [10]李瑞杰,孙效功.潮流作用下河口悬沙运动二维数学模型.海洋湖沼通报,1999,(3):10~15
    [11]李东风,张红武,许雨新,等.黄河下游平面二维水沙运动模拟的有限元方法.泥沙研究, 1999, (4), 59~63
    [12]马福喜,李文新.河口水流、波浪、潮流、泥沙、河床变形二维数学模型.水利学报,1999, (5), 39~43
    [13]窦希萍,李褆来,窦国仁.长江口全沙数学模型研究.水利水运科学研究, 1999, (2): 136~145
    [14]李大鸣,白志刚,朱志夏.波流联合作用下海床演变的长期预报泥沙数学模型.中国港湾建设, 1999,(5):33~40
    [15]白玉川,顾元棪,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟.海洋与湖沼, 2000,31(2):186~196
    [16]曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型.水利学报,2001,(1):42~48
    [17]李孟国.伶仃洋三维潮流盐度泥沙数学模型.交通部天津水运工程科学研究所,1995.
    [18]陈虹,李大鸣.三维潮流泥沙运动的一种数值模拟.天津大学学报,1999,32 (5):573~579
    [19]董文军,李世森,白玉川.三维潮流和潮流输沙问题的一种混合数值模拟及其应用.海洋学报,1999,21(2):108~114
    [20]董文军.河口近岸区三维潮流及悬沙扩散的一种分步模型.天津大学学报,1999,32(3): 346~349
    [21]李孟国.海岸河口水动力数值模拟研究及对泥沙运动研究的应用.博士学位论文.青岛:青岛海洋大学,2002
    [22] Li Mengguo, Cai Dongming, et al. Three-dimensional flow-salinity-sediment simulations of the Pearl River Estuary. Proc.of XXIX IAHR Congress,Theme E, Beijing,2001,265~273
    [23]朱志夏,韩其为,白玉川.不恒定流非均匀流场中随机波的折绕射联合数学模型.水利学报,2001,(7):22~29
    [24]张东生,蒋勤.江苏北部灌河口悬沙输送数学模型.海洋学报,1991,13 (1):125~136
    [25]窦国仁,董凤舞,窦希萍.河口海岸泥沙数学模型.中国科学(A辑), 1995, 25(9):994~1007
    [26]胡克林.波流共同作用下长江口二维悬沙数值模拟,博士学位论文.上海:华东师范大学,2002,
    [27] Blumberg A.F. A primer for Ecomsed. Technical Report of Hydroqual,Inc.,Mahwah N.J. 2002
    [28]梁丙臣.海岸、河口区波-流联合作用下三维悬沙数值模拟及其在黄河三角洲的应用.博士论文.青岛:中国海洋大学, 2005
    [29]林俊.风暴作用下的近岸悬浮泥沙数值模拟.硕士学位论文.青岛:中国海洋大学, 2007
    [30] Janssen, P.A.E.M., Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr., 1991a ,21:1631~1642
    [31] G.D. Roy. Estimation of expected maximum possible water level along the Meghna Estuary using a tide surge interaction model. Environment International,1995, 21(5): 671~ 677.
    [32]冯士筰.风暴潮导论(海洋与湖沼理论丛书) .北京:科学出版社,1982
    [33]秦曾灏,端义宏.热带气旋影响下上海港水位数值模拟和预报方法研究.海洋湖沼通报.1994(02):41~47
    [34]端义宏,秦曾灏.上海沿岸天文潮与风暴潮非线性相互作用的数值研究.海洋与湖沼.1987,28 (1):80~87
    [35]陈长胜,秦曾灏.江浙沿海台风暴潮的动力分析.海洋学报,1985,7(3):265~275
    [36]张延廷,王以娇.渤海风场的模拟和风暴潮的数值计算.海洋学报,1983, (3):261~272
    [37]吴培木,等.台湾海峡台风暴潮的非线性数值计算.海洋学报,1981,3(1):29~43
    [38]李树华,等.广西沿海台风暴潮的数值模拟试验.海洋学报,1992,14(5):
    [39]江毓武,吴培木,等.2000.厦门港潮汐、风暴潮耦合模型.海洋学报,22(3):1~6
    [40]王喜年,尹庆江,张保明.中国海台风风暴潮预报模式的研究与应用.水科学进展, 1991,2(1):1~9
    [41]罗义勇,孙文心.北部湾风暴潮的数值模拟-三维流速分解模型的一个应用.青岛海洋大学学报, 1995,25 (1) :7~16
    [42]于福江,王喜年,宋珊,马毓倩.渤海“9612”特大风暴潮过程的数值模拟.海洋预报, 2000,17 (4) :9~15
    [43]江文胜,孙文心.地形变化对青岛地区风暴潮灾影响的一次模拟.海洋预报, 2002, 19 (1): 97~103
    [44]于福江,张占海.一个东海嵌套网格台风暴潮数值预报模式的研制与应用.海洋学报, 2002,24(4) : 23-33
    [45]夏华永,詹华平,朱鹏利,于斌,夏综万.潮流、风暴潮耦合模型推算珠江口海域极值流速.海洋工程, 2005,23(2):32~41
    [46]王秀芹,钱成春,王伟.计算域的选取对风暴潮数值模拟的影响.青岛海洋大学学报, 2001,31 (3):319~324
    [47]端义宏,朱建荣,秦曾灏,龚茂珣.一个高分辨率的长江口台风风暴潮数值预报模式及其应用.海洋学报, 2005,27 (3):11~19
    [48]葛建忠.风暴潮数值预报及可视化.硕士学位论文.上海:华东师范大学,2007
    [49] Neumann G., On ocean wave spectra and a new method of forecasting wind-generated sea. Beach Erosion Board, U.S. Army Corps of Engineers, Tech. Mem., 1953, (43):42pp
    [50] Pierson W.J. and L. Moskowitz, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res., 1964, 69(24): 5181~5190
    [51]Selmann K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, et al., Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr, Z. Suppl. 1973, A 8(12): 95pp
    [52] Wen S.C. et al., Theoretical wind wave frequency spectra in deep water– Form of spectrum. Acta Oceanol Sinica, 1988, 7(1):1~16
    [53] Wen S. et al., Theoretical wind wave frequency spectra in deep water– Comparison and verification of spectra. Acta Oceanol Sinica, 1988, 7(2):159~169
    [54] Wen S. et al., Form of deep-water wind-wave frequency spectrum - Derivation of spectrum. Progress in Natural Science, 1994, 4(4): 407~427.
    [55] Wen S. et al., Form of deep-water wind-wave frequency spectrum - Comparison with existing spectra and observations. Progress in Natural Science, 1994, 4(5):586~596.
    [56] Phillips O.M., The equilibrium range in the spectrum of wind-generated ocean waves. Journal of Fluid Mechanics, 1958, 4: 426~434
    [57] Mitsuyasu H., A note on the nonlinear energy transfer in the spectrum of wind-generated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ., 1968a, 16: 251~264
    [58] Mitsuyasu H., On the growth of the spectrum of wind-generated waves (I). Rept. Res. Inst. Appl. Mech., Kyushu Univ., 1968b, 16: 459~465
    [59] Snyder R.L., F.W. Dobson, J.A. Elliott and R.B. Long, Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 1981, 102: 1~59
    [60] Hasselmann S., K. Hasselmann, J.H. Allender and T.P. Barnett, Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum, part 2: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 1985, 15, 1378~1391
    [61] Hasselmann S. and K. Hasselmann, Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, part 1: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceangr., 1985, 15, 1369~1377
    [62] Eldeberky Y., Nonlinear transformation of wave spectra in the nearshore zone. Ph.D. thesis, Delft University of Technology, Department o f Civil Engineering,The Netherlands, 1996.
    [63]蒋德才,台伟涛,缓坡非均匀流场中随机波传播的折绕射联合模型,海洋学报,1993,15(6):37~46
    [64]蒋德才,台伟涛,楼顺里,海浪能量谱的折绕射研究Ⅰ——缓坡上的联合模型,海洋学报,1993,15(2):84~96
    [65]蒋德才,台伟涛,楼顺里,海浪能量谱的折绕射研究Ⅱ——缓坡破碎带联合模型,海洋学报,1993,15(5):120~129
    [66]蒋德才,叶安东,考虑底摩擦的波动折绕射联合模式的应用,海洋学报,1987,9(6):690~697
    [67]Kriebel D., R. Pratt D A, et a1. A shoreline risk index for northeasters. Proc.ConI. Natural Disaster Reduction.ASCE.l997:25l~252
    [68]丰爱平,夏东兴,等.莱州湾南岸海岸侵蚀过程与原因研究.海洋科学进展,2006,24 (1): 83~90
    [69]侯一筠,陈沫沫,尹宝树.波浪、潮流和风暴潮耦合模式及悬沙输移规律的研究.海洋科学集刊, 2003, 45(45):1-9
    [70]李陆平,孔祥德,廖启煜.风暴浪对埕岛油田海域海底冲刷得影响.海岸工程, 1996,15(2):1~8
    [71]罗肇森.波、流共同作用下的近底泥沙输移及航道骤淤预报.泥沙研究, 2004,(6):1~9
    [72]丁平兴,胡克林,孔亚珍,胡德宝.风暴对长江河口北槽冲淤影响的数值模拟—以“杰拉华”台风为例.泥沙研究, 2003,(6):18~24
    [73]王秀芹,钱成春,王伟.黄、渤海中椭圆形台风风场模型.第九届全国海岸工程学术讨论会论文集. [C ]北京:海洋出版社, 1999.533~544
    [74]陈希,闵锦忠,沙文钰,周芦燕.近岸海浪模式在中国东海台风浪模拟中的应用.海洋通报, 2003, 22 (2):10~16
    [75]胡克林,丁平兴,朱首贤,孔亚珍.长江口附近海域台风浪的数值模拟.海洋学报, 2004, 26 (5):23~32
    [76] Cavaleri,L.and P. Malanotte-Rizzoli, Wind wave prediction in shallow water: Theory and application. J. Geophys. Res., 1981, 86, (C11): 10,961~10,973
    [77]Hasselmann, K., On the spectral dissipation of ocean waves due to whitecapping, Bound.-layer Meteor. 1974, 6:1~2,107~127
    [78]Alkyon and Delft Hydraulics, SWAN fysica plus report H3937/A8322002 (by order of RIKZ/RWS as a part of the project HROntwikkeling).
    [79]Bertotti, L and L. Cavaleri, Accuracy of wind and wave evaluation in coastal regions, Proc. 24th Int. Conf. Coastal Engineering, ASCE, 1994, 57~67.
    [80]Hasselmann, K. and J.I. Collins, Spectral dissipation of finite-depth gravity waves due to turbulent bottom friction, J. Mar. Res. 1968, 26:1~12.
    [81]Collins, J.L., Prediction of shallow water spectra, J. Geophysics. Res. 1972, 77, (15):2693-2707.
    [82]Madsen, O.S., Y.-K. Poon and H.C. Graber, Spectral wave attenuation by bottom friction: Theory. Proc. 21th Int. Conf. Coastal Engineering, ASCE, 1988, 492-504.
    [83]Hashimoto, N., H. Ts. Iruya and Y. Nakagawa, Numerical computations of the nonlinear energy transfer of gravity-wave spectra in finite water depths, Coastal Engineering. 1998, 40,(1):23~40
    [84]Luyten P.J., An analytical and numerical study of surface and bottom boundary layers with variable forcing and application to the North Sea. Journal of Marine Systems, 1996, 8:171~189.
    [85]Luyten, P. J., J. E. Jones, R. Proctor, A. Tabor, and K. Wild-Allen, 1999: COHERENS- A coupled hydrodynamical-ecological model for regional and shelf seas, user documentation. MUMM [Available on CD-ROM at http: www.mumm.ac.be/coherens.].
    [86]Mellor G.L. and Yamada T., Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 1982, 20: 851~875.
    [87]Galperin B., Kantha L.H., Hassid S. and Rosati A., A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the Atmospheric Sciences, 1988.45:55~62.
    [88]Steinhorn I., 1991.Salt flux and evaporation. Journal of Physical Oceanography, 21, 1681~1683.
    [89]Deleershijder E., Norro A., Wolanski E., A three-dimensional model of the water circulation around an island in shallow water. Continental Shelf Research, 1992, 12(7-8):891~906.
    [90]Patankar S.V., Numerical heat transfer and fluid flow. Hemisphere. 1980.210p.
    [91]张修忠,王光谦.浅水流动及输运三维数学模型研究进展.水利学报,2002,(7):1~7。
    [92]Krone, R.B., Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes, Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley, California, 1962.110p
    [93]Owen, M.W., The Effect of Turbulence on the Settling Velocities of Silt Flocs, Proceedings of the Fourteenth Congress of I.A.H.R., 1971, 19(4) : 27~32
    [95]Van Leussen, W., Estuarine macroflocs and their role in fine-gained sediment transport. PhD Thesis, University of Utrecht, The Netherlands, 1994.
    [96]Van Rijn, L.C. Sediment transport, part II: Suspended load transport, ASCE, J. Hydro. Engr., 1984, 110(11):1613~1638.
    [97]Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Aqua Publications, Amsterdam, the Netherlands, 1993.
    [98]Cheng, N.S., Simplified Settling Velocity Formula for Sediment Particle, ASCE J. Hydr. Engr., 1997.123(2): 149~152.
    [99]Partheniades, E. Erosion and deposition of cohesive soils. Journal of the Hydaulics Division, ASCE, 1965,91:105~139.
    [100]Ariathurai, R., and K. Arulanandan, Erosion Rates of Cohesive Soils, Journal of the Hydraulics Division, ASCE, 1978, 104(HY2): 279~283.
    [101]Mehta, A.J., T.M. Parchure, J.G. Dixit, and R. Ariathurai, Resuspension Potential of Deposited Cohesive Sediment Beds, Estuarine Comparisons, V.S. Kennedy, Editor, Academic Press, New York, 1982,591~609.
    [102]Mehta, A.J., E. Partheniades, J. Dixit, W.H.McAnally. Properties of Deposited Kaolinite in a Long Flume, Proceedings of the Hydraulics Division Conference on: Applying Research to Hydraulic Practice, ASCE, Jackson, Mississippi, 1982, 594~603
    [103]韩树宗,蒋德才等.华能日照电厂二期扩建工程水文特征值报告,中国海洋大学,2006
    [104]韩树宗,蒋德才等.华能日照电厂二期扩建工程循环水取水泥沙数模试验,中国海洋大学2006
    [105]李磊.渤黄东海潮波系统的有限元模拟.硕士论文.青岛:中国海洋大学,2003
    [106]周朦,方国洪.|U|U的Fourier展开和渤海海底拖曳系数Cp.海洋与湖沼,1987,18(1):1~11
    [107]王钟裙,刘赞沛,山广林,徐洪达,雷光耀.渤海潮混合数值模拟,II.渤海主要半日分潮数值模拟中有关问题的处理.海洋与湖沼,1981,15(1):58~66
    [108]崔秀平,许同禄.9711号台风对日照港影响过程分析.海洋预报, 1998,15(1):68~72
    [109]李艳芸.风暴潮预报模式理论及应用研究.硕士论文.天津:天津大学,2005
    [110]吴培木,许金殿,李少英,张经汉.港湾台风暴潮嵌套模型的初步研究.海洋学报, 1996,18(4):35-42
    [111]王秀芹,钱成春,王伟.风应力拖曳系数选取对风暴潮数值模拟的影响.青岛海洋大学学报,2001,31(5):640~646

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700