风暴作用下的近岸悬浮泥沙数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口、海岸地区资源丰富,交通便利,与人类经济、生活等各个方面息息相关,是当代人类生活、生产、贸易和旅游的主要场所。然而,河口、海岸区位于陆海交汇地带,动力条件多变,人们对海岸、河口地区开发利用的效果,取决于对其中的各种海洋动力要素以及这些动力条件控制下的物质运动规律的深入了解。其中非常重要的一种物质运动是泥沙运动,泥沙运动引发岸滩演变、港口航道淤积等现象,而风暴被认为是影响泥沙运动,塑造海岸海底地形的重要因素,风暴浪和风暴潮与天文潮流一起,极易引起岸滩侵蚀,掀动底部泥沙,剧烈地改变受灾地区的海岸及海底地貌,严重时会影响海岸工程及航道航运的安全。
     本文首次在胶南近海使用COHERENS-SED三维悬沙模式建立了该海域在一般波浪及单纯潮流条件下的悬沙运动模型,并将计算结果与实测资料进行了比对验证,在验证的基础上,本文将COHERENS-SED三维悬沙模型结合风暴条件下的水文动力模型,计算了胶南近海水域在9711号天气过程中的悬浮泥沙运动情况。并将计算结果与一般波浪及单纯潮流条件下该海域的水文动力及悬沙运动情况进行了比较,进一步分析了风暴对近岸悬沙运动的部分影响机制。
     结果表明:COHERENS-SED模式适用于胶南近岸海域的流场及泥沙的三维数值模拟;对比分析得出,风暴过程增强了床面的剪切应力,改变了流场及余流场结构,对近岸海域水体的悬沙含量增加、岸滩地貌改变起到了重要作用。
The estuary and coastal areas with rich resources and convenient traffic are greatly related with human’s economy, life and so on, and it’s the main place people live, product, trade and travel. Otherwise, the estuary and coastal areas locate in connection region of land and sea where the dynamic conditions are changeable, so that the effect people make use of these areas depends on the thorough knowledge of various marine dynamic elements and the material movement rules under these dynamic conditions’control. Among these movements one of great importance is sediment movement which causes phenomena as evolvement of beach, silting of harbor and sea-route. Whereas the storm is considered the important factor that affects the sediment movement and shapes the landform of seacoast and seabed, the storm wave together with storm tide and astronomy tide can easily cause the corrosion of beach, agitate bottom sediment, fiercely change the landform of seacoast and seabed in disaster area, and even affect the security of coastal engineering and shipping.
     In this dissertation, a 3D suspended sediment model called COHERENS-SED was first used in offshore area of Jiaonan to set up the sediment movement model under the condition of common wave and simple tidal current. On the base of comparing and checking up the results of simulation with the in-situ data, the 3D suspended sediment model was combined with the storm hydrodynamic model to simulate the sediment movement in the No.9711 tropics storm, then the result was compared with the area’s hydrodynamic and sediment movement under the condition of common wave and simple tidal current, which farther analyzed the partial mechanism that storm influences the sediment movement in shore.
     The results indicate that COHERENS-SED is applicable in the 3D simulation of Jiaonan offshore area’s current field and sediment. Through the compare and analysis, it is known that the storm has enhanced the bottom stress, changed the current field, and has strongly influenced the sediment’s increasing and beach landform’s change.
引文
曹祖德,王桂芬, 1993,波浪掀沙、潮流输沙的数值模拟,[J].海洋学报,15(1),107-118.
    陈希,闵锦忠,沙文钰,周芦燕, 2003,近岸海浪模式在中国东海台风浪模拟中的应用,海洋通报, vol.22 no.2, 10-16
    崔秀平,许同禄, 1998,9711号台风对日照港影响过程分析,海洋预报,Vol.15 No.1,68-72
    丁平兴,孔亚珍,朱首贤,朱建荣, 2002,波流共同作用下的三维悬沙输运数值模型[J]。自然科学进展, 11(2),147-152.
    丁平兴,胡克林,孔亚珍,胡德宝,2003风暴对长江河口北槽冲淤影响的数值模拟,泥沙研究, No.6,18-24
    窦国仁,1995,窦凤舞,潮流和波浪的挟沙能力[J],科学通报, 40(5):443-446
    端义宏,朱建荣,秦曾灏,龚茂珣,2005,一个高分辨率的长江口台风风暴潮数值预报模式及其应用.海洋学报, 27 (3), 11-19.
    丰爱平,夏东兴,谷东起,吴桑云,李朝新, 2006,莱州湾南岸海岸侵蚀过程与原因研究,海洋科学进展VoI.24 No.1, 83-90
    冯士筰,1998,风暴潮的研究进展[J],世界科技研究与发展, 20 (4):44-47
    韩树宗,蒋德才, 2006,胶南市水城项目初步可行性研究海洋水文专题研究报告,中国海洋大学。
    胡克林,2002,波流共同作用下长江口二维悬沙数值模拟,博士学位论文,华东师范大学.
    胡克林,丁平兴,朱首贤,孔亚珍, 2004,长江口附近海域台风浪的数值模拟,海洋学报, Vol.26 No.5,23-32
    江文胜,孙文心,2002,地形变化对青岛地区风暴潮灾影响的一次模拟.海洋预报,19(1):97-103.
    李磊, 2003,渤黄东海潮波系统的有限元模拟,硕士论文,中国海洋大学
    李陆平,孔祥德,廖启煜,1996,风暴浪对埕岛油田海域海底冲刷得影响,海岸工程, 15(2)
    李艳芸, 2005,风暴潮预报模式理论及应用研究,硕士论文,天津大学
    练继建,1993,波浪、水流与淤泥质底床的相互作用[D],天津,天津大学
    梁丙臣, 2005,海岸、河口区波—流联合作用下三维悬沙数值模拟及其在黄河三角洲的应用。博士论文,中国海洋大学。
    罗义勇,孙文心,1995,北部湾风暴潮的数值模拟-三维流速分解模型的一个应用.青岛海洋大学学报, 25 (1) :7-16.
    罗肇森,2004:波、流共同作用下的近底泥沙输移及航道骤淤预报,泥沙研究, No.6,1-9
    王喜年,2001,风暴潮预报知识讲座[J],海洋预报, Vol18,No2,70-77
    王喜年,尹庆江,张保明,1991,中国海台风风暴潮预报模式的研究与应用.水科学进展, 2(1):1-9.
    王秀芹,钱成春,王伟. 1999.黄、渤海中椭圆形台风风场模型. [A]第九届全国海岸工程学术讨论会论文集. [C ]北京:海洋出版社, 533~544
    王秀芹、钱成春、王伟,2001,计算域的选取对风暴潮数值模拟的影响,青岛海洋大学学报,31 (3), 319-324
    王秀芹,钱成春,王伟,2001,风应力拖曳系数选取对风暴潮数值模拟的影响,青岛海洋大学学报, 31(5):640-646
    吴培木,许金殿,李少英,张经汉,1996,港湾台风暴潮嵌套模型的初步研究,海洋学报,Vol.18 No.4,35-42
    夏华永詹华平,朱鹏利,于斌,夏综万, 2005,潮流、风暴潮耦合模型推算珠江口海域极值流速,海洋工程, Vol23No2,32-41
    尹庆江、吴少华、王喜年,1997,美国SLOSH模式在我国的应用,海洋预报, 14(1):71-74
    于福江,王喜年,宋珊,马毓倩,2000,渤海“9612”特大风暴潮过程的数值模拟.海洋预报, 17 (4) :9-15.
    于福江,张占海,2002,一个东海嵌套网格台风暴潮数值预报模式的研制与应用.海洋学报, 24(4) : 23-33.
    张修忠王光谦, 2002,浅水流动及输运三维数学模型研究进展。水利学报,(7), 1-7。
    张学庆,孙英兰, 2005,胶南近岸海域三维潮流数值模拟,中国海洋大学学报, 35(4),579-582
    赵鑫,黄世昌, 2006,浙东沿海“9711"台风波浪场数值模拟研究,浙江水利科学, No.3 total No.145,24-27
    Alkyon and Delft Hydraulics, Swan fysica plus, report H3937/A832 (by order of RIKZ/RWS as a part of the project HR-Ontwikkeling).
    Ariathurai, R., and K. Arulanandan, 1978, Erosion Rates of Cohesive Soils, Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY2, February, pp. 279-283.
    Bertotti, L and L. Cavaleri, 1994, Accuracy of wind and wave evaluation in coastal regions, Proc. 24th Int. Conf. Coastal Engineering, ASCE, 57-67.
    Blumberg A.F., 2002,A primer for Ecomsed. Technical Report of Hydroqual, Inc., Mahwah N.J.
    Cavaleri,L.and P. Malanotte-Rizzoli, 1981,Wind wave prediction in shallow water: Theory and application. J. Geophys. Res., 86, No. C11, 10,961-10,973.
    Cheng, N.S., 1997.Simplified Settling Velocity Formula for Sediment Particle, ASCE J. Hydr. Engr., 123, 149-152.
    Collins, J.L., 1972,Prediction of shallow water spectra, J. Geophys. Res. 77, No. 15, 2693-2707.
    Jelesnianski, Jye Chen and Wilson A.Shffer, 1992. SLOSH:Sea,Lake and Overland Surges from Hurricanes, NOAA Technical Report 48,71.
    Davies A.M. and Lawrence J., 1994. Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave-current interaction. Journal of Physical Oceanography, 24, 2441-2460
    Deleershijder E., Norro A. and Wolanski E., 1992. A three-dimensional model of the water circulation around an island in shallow water. Continental Shelf Research, 12, 891-906.
    Galperin B., Kantha L.H., Hassid S. and Rosati A., 1988. A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the Atmospheric Sciences, 45, 55-62.
    G.D. Roy, 1995. Estimation of expected maximum possible water level along the Meghna Estuary using a tide surge interaction model. Environment International, 21(5):.671~ 677.
    Hashimoto, N., H. Ts.Iruya and Y. Nakagawa, 1998, Numerical computations of the nonlinear energy transfer of gravity-wave spectra in finite water depths, Coastal Engng. J. 40, 23-40.
    Hasselmann, K., 1974, On the spectral dissipation of ocean waves due to whitecapping, Bound.-layer Meteor. 6, 1-2, 107-127.
    Hasselmann, K., Bamett, T.P., Bouws, E., Carlson, H. Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. 12, A8.
    Hasselmann, K. and J.I. Collins, 1968, Spectral dissipation of finite-depth gravity waves due to turbulent bottom friction, J. Mar. Res. 26, 1-12.
    Janssen, P.A.E.M.,1991a ,Quasi-linear theory of wind-wave generation applied to wave forecasting, J.Phys. Oceanogr., ,21, 1631-1642.
    KRIEBEL D R,PRATT D A,et a1.l997:A shoreline risk index for northeasters[C]∥Proc.ConI.Natural Disaster Reduction.ASCE。25l-252.
    Krone, R.B., 1962. Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes, Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley, California, June.
    Luyten P.J., 1996, An analytical and numerical study of surface and bottom boundary layers with variable forcing and application to the North Sea. Journal of Marine Systems, 8, 171-189.
    Luyten, P. J., J. E. Jones, R. Proctor, A. Tabor, and K. Wild-Allen, 1999: COHERENS- A coupled hydrodynamical-ecological model for regional and shelf seas, user documentation. MUMM [Available on CD-ROM at http:www.mumm.ac.be/coherens.].
    Luyten, P. J..Modeling ,1997,physical processes of haline stratification in ROFIswith application to the Rhine outflow region[J]. Journal of Marine Systems, (12):277-298.
    Madsen, O.S., Y.-K. Poon and H.C. Graber, 1988 , Spectral wave attenuation by bottom frictior: Theory, Proc. 21th Int. Conf. Coastal Engineering, ASCE, 492-504.
    Mehta, A.J., T.M. Parchure, J.G. Dixit, and R. Ariathurai, 1982, Resuspension Potential of Deposited Cohesive Sediment Beds, Estuarine Comparisons, V.S. Kennedy, Editor, Academic Press, New York, pp. 591-609.
    Mehta, A.J., E. Partheniades, J. Dixit, and W.H.McAnally, 1982. Properties of Deposited Kaolinite in a Long Flume, Proceedings of the Hydraulics Division Conference on: Applying Research to Hydraulic Practice, ASCE, Jackson, Mississippi, August, Mellor G.L. and Yamada T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851-875.
    Owen, M.W., 1971, The Effect of Turbulence on the Settling Velocities of Silt Flocs, Proceedings of the Fourteenth Congress of I.A.H.R., Vol.4. Paris, August, pp. 27-32.
    Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydaulics Division, ASCE, 91(HY1), 105-139.
    Patankar S.V., 1980.Numerical heat transfer and fluid flow. Hemisphere, 197pp.
    Steinhorn I., 1991.Salt flux and evaporation. Journal of Physical Oceanography, 21, 1681-1683.
    Van Leussen, W., 1994, Estuarine macroflocs and their role in fine-gained sediment transport. PhD Thesis, University of Utrecht, The Netherlands, 488pp.
    Van Rijn, L.C., 1984. Sediment transport, part II: Suspended load transport, ASCE, J.Hydr. Engr., 110(11):1613-1638.
    Van Rijn, L.C., 1993.Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Aqua Publications, Amsterdam, the Netherlands.
    Winterwerp, J.C., 1999.On the Dynamics of High-Concentrated Mud Suspensions, Doctoral Thesis for the Technical University of Delf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700