风暴骤淤二维数值模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国沿海近岸工程众多,常遭受不同程度台风的侵袭。台风期间产生的大浪和风暴潮极易掀起并输运滩面上的泥沙,泥沙落淤到航道中发生骤淤,对港口通航和作业造成较大影响。在台风及风暴潮作用下,泥沙的运动极为复杂,合理地模拟此种条件下的泥沙运动对于准确预测港口航道工程的骤淤情况具有重要意义。为此,本文将建立一套能够比较真实地反映台风过程中风、浪、流相互影响的水动力模拟模型和泥沙运动模型,用于港口航道工程的风暴骤淤预测,以期为近岸工程的设计提供依据。
     本文首先引入描述台风场和气压场的计算模式、描述潮流运动的ADCIRC模型、描述波浪运动的SWAN模型以及描述泥沙运动的挟沙力模型。在了解工程区自然条件的前提下,建立了风暴骤淤二维数值模型,并采用实测资料对模型进行了验证计算。
     最后,把建立的风暴骤淤模型应用于苍南电厂煤港外航道整治工程中,并确定十年一遇的骤淤条件,对不同工程方案的骤淤情况进行模拟和分析,结果表明,建立的模型能够较好地反映在台风天气下泥沙的运动和骤淤情况,可以用于指导工程实践。
There are many coastal infrastructures in China, which are attacked frequently by varying typhoon. During the typhoon attacking, the sediment on beaches in nearshore zone are easily suspended and transported by large waves and storm surge. The sudden siltation can occur due to sediment deposit in channel, which may cause serious effects on the harbor navigation and operation. During typhoon and storm surge process, the sediment transport is very complex. Resonable simulation of the sediment transport process will be very important to predict the sudden siltation of harbor and channel accurately. Therefore, a whole hydrodynamic simulation and sediment transport model, which can reflect the mutual effect among wind, wave and tidal current, is developed in this paper. It can be used to predict the sudden siltation due to storm process, and to provide reliance for coastal engineering design.
     In this paper, the typhoon wind field and atomspheric pressure field model, the ADCIRC model for tidal current simulation, the SWAN model for wind waves simulation and the sediment-carrying capacity model are firstly introduced. After the analysis of the natural conditions of the coastal project in Cangnan, Zhejiang, the 2-D numerical model of sudden siltation is developed and verified by using measured data in site.
     At last, the numerical model of sudden siltation due to storm is applied to simulate the channel siltation of Cangnan power plant coal harbor. The 10-year return period sudden siltation condition is discussed, and the sudden siltation for different channel design plans are simulated and analyzed. It is shown that the model can reflect the fact of sediment transport and sudden siltation in the typhoon process. The simulated results can be used to guide engineering practice.
引文
[1]丁兴丰,胡支林,孔亚珍等.风暴潮对长江口深水航道工程影响的研究报告[R].上海:华东师范大学河口海岸国家重点实验室, 1997.
    [2]冯士笮.风暴潮导论[M].北京:科学出版社, 1982.
    [3]黄华.长江口及杭州湾风暴潮三维数值模拟[D],上海:华东师范大学河口海岸国家重点实验室, 2006.
    [4]中国科学院海洋研究所和厦门大学风暴潮研究小组.风暴潮数值预报(A)[R]. (国家“七五”科技攻关75-76-01-05专题工作报告), 1991.
    [5]青岛海洋大学风暴潮研究小组.风暴潮数值预报(B)[R]. (国家“七五”科技攻关75-76-01-06专题工作报告), 1991.
    [6]青岛海洋大学风暴潮研究小组.风暴潮客观分析四维同化和数值预报产品研究[R]. (国家“八五”科技攻关85-903-03-02专题工作报告), 1996.
    [7]国家海洋环境中心.中国海温带风暴潮数值预报系统.网上发布(http://dell1500sc.nmefc.gov.cn/fbc/wdyubao.htm)
    [8]夏波.风暴潮过程中的波流耦合数值模式研究[D],天津:天津大学, 2005.
    [9] Fajita T. Pressure Distribution in Typhoon [J]. Geophys. Mag., 1952, 23: 437~ 441.
    [10] Myers V A. Maximum Hurricane Winds[J]. Bull. Amer. Metero. Sco., 1957, 38(4): 227~235.
    [11] Jelesnianski C P. Numerical computation of storm surges Induced by a Tropical Storm impinging on a Continetal Shelf[J]. Mon. Wea. Rev., 1965, 93(16): 343~358.
    [12]盛立芳,吴增茂.一种新的台风海面风场的拟合方法[J].热带气象学报,1993, 9(3): 265~271.
    [13]朱首贤,丁平兴,沙文钰等.近岸非对称台风风场模型[J].华东师范大学学报(自然科学版), 2002, 2: 6~71.
    [14]杨支中,沙文钰,朱首贤等.一种新型的非对称台风海面气压场和风场模型[J].海洋通报, 2005, 24(1): 62~68.
    [15]吴少华,王喜年,戴明瑞等.渤海风暴潮概况及温带风暴潮数值模拟[J].海洋学报, 2002, 24(3): 26~34.
    [16] Flied G R, Robinson A R. Deadly surges in the Bay of Bengal: dynamics and storm tide tables[J]. Nature, 1972, 239: 2l3~215.
    [17] Kyeongok Kim, Takao Yamashita. Wind-Wave-Surge coupled model:application to storm surge simulation in the bay of bengal[A]. In: Proceedings of the Rhird International Conference on Asian and Pacific Coastsv[C]. Jeju, Korea, 2005: 1590~1604.
    [18] Kyeongok Kim, Takao Yamashita. Wind-wave-surge parallel computation model and its application to storm surge simulation in shallow sea[J]. Coastal Enginering, 2004, 1578~1590.
    [19]王秀芹,钱成春,王伟.计算域的选取对风暴潮数模拟的影响[J].青岛海洋大学学报, 2001, 31(3): 319~324.
    [20]吴培木,许金殿,李少英.港湾台风暴潮嵌套数值模型的初步研究[J].海洋学报. 1996, 18(4): 35~42.
    [21]赵滨,张平,汪景庸.渤海埕北海域风暴多年一遇极值增水的数值计算[J].黄渤海海洋, 2000, 18(3): 14~19.
    [22]于福江,张占海.一个东海嵌套网格台风暴潮数值预报模式的研制与应用[J].海洋学报, 2002, 24(4): 23~33.
    [23]于福江,王喜年,戴明瑞.影响连云港的几次显著温带风暴潮过程分析和及其数值模拟[J].海洋预报, 2002, 19(1): 113~122.
    [24]于福江,张占海,林一骅.一个稳态Kalman滤波风暴潮数值预报模式[J].海洋学报, 2002, 24(5): 26~35.
    [25]于福江,张占海. Kalman滤波风暴潮数值预报四维同化模式研究进展[J].海洋预报, 2002, 19(1): 105~112.
    [26]包芸,唐元春.采用逐时递推同化技术修正伶仃洋外海边界水位[J].水动力学研究与进展, 2005, 20(1): 95~100.
    [27]朱军政,黄冠鑫.钱塘江河口台风暴潮增水预报可视化[J].河口与海岸工程, 1999, 2: 38~44.
    [28]张鹰,李红.海岸带信息管理系统与风暴潮预警子系统开发[J].海洋预报,2000, 17(2): 64~72.
    [29]朱军政.杭州湾台风风暴潮综合水位预报可视化[J].海洋预报, 2003, 20(4):30~38.
    [30]李洪才,王永信,林少奕.广东沿海台风风暴潮可视化预报系统[J].海洋预报, 2004, 21(4): 81~87.
    [31]钱自立,张鹰.海洋技术中的GIS应用[J].海洋工程, 2001, 19(3): 108~112.[38]李妍,陈希,沙文钰等.湛江港风暴潮、流、浪GIS系统的设计及实现[J].解放军理工大学学报(自然科学版), 2004, 5(6): 77~80.
    [32]李妍,陈希,沙文钰等.湛江港风暴潮、流、浪GIS系统的设计及实现[J].解放军理工大学学报(自然科学版), 2004, 5(6): 77~80.
    [33]张钊.基于MapObjects的台风风暴潮相似型预报系统[J].海洋预报, 2004,21(2): 70~73.
    [34] Boussinesq J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal[J]. Journal de Mathemaoques Pures et Appliquees, 1872, 17(2): 55~l08.
    [35] Peregrine D H. Long waves on a beach[J]. J. Fluid Mech., 1967, 27(4): 815~827.
    [36]李孟国,王正林,蒋德才.近岸波浪传播变形数学模型的研究与进展[J].海洋工程, 2002, 20(4): 43~57.
    [37] Witting J M. A unified model for the evolution of nonlinear water wave[J]. J. Comp. Phys, 1984, 56: 203~239.
    [38] McCowan A D. The range of application of Boussinesg type numerical short wave models[A]. Proc. 22nd IAHR Congr.[C], 1987.
    [39] Madsen P A, Murray R, Sorensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics[J]. Coastal Eng., 1991, 15(4): 1~15.
    [40] Madsen P A, Sorensen O R. A new form of the Boussinesg equations with improved linear dispersion characteristics, Part 2: A slowly-varying bathymetry[J]. Coastal Eng., 1992, 18: 183~204.
    [41] Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. J Wtrwy. Port. Coast and Oc Engrg, 1993,119 (6): 618~638.
    [42] Schaffer H A, Madsen P A. Further enhancements of Boussinesq-type equations[J].Coast Engrg. 1995, 26:1~l4.
    [43] Beji S, Nadaoka K. A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth[J]. Ocean Engineering, 1996, 23(8): 691~704.
    [44] Wei G, Kirby J T. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves[J]. J. Fluid Mech., 1995, 294: 71~92.
    [45] Madsen P A, Schaffer H A. Higher order Boussinesq-type eqations for surfacegravity waves-Derivation and analysis[J]. Phil. Trans. Roya1. Soc. London, Ser A, 1998, 356: 1~59.
    [46]邹志利.高阶Boussinesq水波方程[J].中国科学(E辑), 1998, 27(5): 460~473.
    [47]邹志利.高阶Boussinesq水波方程的改进[J].中国科学(E辑), 1999, 29(1): 87~96.
    [48] Madsen P A, Banijamali B. Boussinesq type equations with high accuracy in dispersion and nonlinearity[A]. In: Proc. 25th Intl. Conf. Coastal. Eng.[C]. ASCE, 1996, 95~108.
    [49] Gobbi M F, Kirby J T. A fourth order Boussinesq-type wave model[A]. Proc. 25th Intl. Conf Coast. Eng[C], 1996, 1116~1129.
    [50] Madsen P A, Bingham H B and Hua Liu. A new Boussinesq method for fully nonlinear waves form shallow to deep water[J]. Fluid Mech., 2002, 462: 1~30.
    [51]李孟国,王正林,蒋德才.关于波浪Boussinesq方程的研究[J].青岛海洋大学学报, 2002, 32(3): 341~354.
    [52]李春颖,李绍武.基于Boussinesq方程的波浪破碎模型的研究综述[J].港工技术, 2003, 4: 1~4.
    [53]冯芒,沙文钰,李岩.近海近岸海浪的研究进展[J].解放军理工大学学报(自然科学版), 2004, 5(6): 70~76.
    [54]黄虎.海岸波浪场模型研究进展[J].力学进展, 2001, 31(4): 592~610.
    [55]冯芒,沙文钰,朱首贤.近岸海浪几种数值计算模型的比较[J].海洋预报,2003, 20(1): 52~59.
    [56]刘百桥.近岸波浪传播应用模型研究[D].天津:天津大学建筑工程学院,2000.
    [57] Berkhoff. Computation of combined refraction-difraction[A]. In: Proc. 13th Int.Conf. On Coastal Eng[C]. ASCE, New York, 1972, 471~490.
    [58]李孟国,蒋德才.关于波浪缓坡方程的研究[J].海洋通报, 1999, 18(4):70~92.
    [59] Booij N. A note on the accuracy of the mild-slope equation[J]. Coastal Eng.,1983, 7: 191~203.
    [60] Yu X, Isobe M, Watanabe A. Finite element solution of wave field around structures in nearshore zone[J]. Coastal Engineering in Japan, 1992, 6: 255~279.
    [61] Rudder A C. On the parabolic equation method for water-wave propagation[J].J. Fluid Mech., 1979, 95: 159~176.
    [62] Lozano C. Refraction-diffraction model for linear surface water waves[J]. J Fluid Mech, 1980, 101:705~720.
    [63] Kirby J T, Dalrymple R A. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildy varying topography[J]. J Fluid Mech., 1983, 136: 453~466.
    [64] Copeland G J M. A practical alternative to the mild-slope equation[J]. Coastal Eng., 1985, 9: 125~149.
    [65] Ebersole B A. Refraction-diffraction model for linear water wave[J]. J. Wtrwy. Port, Coast. And Oc. Engrg., ASCE, 1985, 111(6): 939~953.
    [66]李孟国,蒋德才.关于波浪缓坡方程的研究[J].海洋通报, 1999, 18(4): 70~92.
    [67] WAMDI Group. The WAM model- a third feneration ocean wave prediction model[J]. J Phys. Ocean., 1988, 18(12): 1775~1810.
    [68] Tolman H L. The numerical model WAVEWATCH: a third generation model for the hindcasting of wind waves on tides in shelf seas: Report No. 89-2[R]. Communication on Hydraulic and Geotechnical Engineering, Delhi University of Technology, 1989.
    [69] Benoit M, Marcos F, Becq F. Development of a third generation water wave model with unstructrued spacial meshing[J].Coastal Engineering, ASCE, 1996: 465~478.
    [70] Booij N, Holthuijsen L H, Ris R C. The“SWAN”Wave Model For Shallow Water[J]. Coastal Engineering, 1996, 1: 668~676.
    [71] Yin Baoshu, Wang Tao, El-Sabh M I, 1996. A third generation shallow water wave numerical model YE-WAM[J]. China J. Oceanol. Limnol., 14(2): 106~112.
    [72] Yuan Y, Hua F, Pan Z et al. LAGFD-WAM numerical wave model-1. Basical phisical model[J]. Acta Ocean Sinica, 1991, 10: 483~488.
    [73] Holthuijsen L H, A Herman and N Booij. Phase-decoupled refraction- diffraction for spectral wave models[J]. Coastal Engineering, 2003, 49: 291~ 305.
    [74]李孟国.海岸河口泥沙数学模型研究进展[J].海洋工程, 2006, 24(1): 139~154.
    [75] Vanonif V A.泥沙工程[M].北京:北京水利出版社, 1981.
    [76]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社, 1985.
    [77]窦国仁.潮汐水流中的悬沙运动及冲淤计算.水利学报, 1963, 4: 13-24.
    [78]窦国仁,董凤舞.潮流和波浪的挟沙能力[J].科学通报, 1995, 40(5): 443-446.
    [79]刘家驹,张镜潮.淤泥质海岸航道、港池淤积计算方法及其推广应用[J].水利水运科学研究, 1993, (4): 302-320.
    [80]曹祖德,李蓓,孔令双.波流共存时的水体挟沙力[J].水道港口, 2001, 22(4): 151-155.
    [81]郗殿纲.粉沙质与淤泥质浅滩在风浪和水流作用下的挟沙能力[J].港工技术, 1996, (1): 8-14.
    [82]林全泓.强风浪过程中近岸泥沙运动的数值模拟[D].天津:天津大学, 2003.
    [83] Lou J, Ridd P V. Wave-current bottom shear stress and sediment resuspension in Cleveland Bay, Australia[J] Coastal Eng. , 1996, 29: 169-286.
    [84]曹祖德,李蓓,孔令双.波、流共存时的水体挟沙力[J].水道港口, 2001, 22(4): 151-155.
    [85]白玉川,顾元棪,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟[J ].海洋与湖沼, 2000, 31 (2): 186 - 196.
    [86]辛文杰.潮流、波浪综合作用下河口二维悬沙数学模型[J].海洋工程, 1997,15(1): 30 - 47.
    [87]曹文洪,舒安平.潮流和波浪作用下悬移质挟沙能力研究评述[J].泥沙研究, 1999, (5): 74-80.
    [88] McAnally W H, Mehta A J. Preface[A]. In Coastal and Estuarine Fine Sediment Processes[C]. The Netherland: Elsevier Science, 2001.
    [89] Maa P Y, Mehta A J. Mud erosion by waves: a laboratory study[J]. Cont. Shelf Res. 1987, 7(11/12): 1269-1284.
    [90]曹祖德,王运洪.水动力泥沙数值模拟[M].天津:天津大学出版社, 1994.
    [91] Zhang Jinshan, Lu Peidong, Xu Ming. Numerical modeling on suspended sediment transportation in the Hangzhou Bay[J]. China Ocean Engineering, 1998,12(1): 87-98.
    [92] Mellor G L. Users guide for a three-dimensional primitive equation, numerical ocean model[R]. Princeton University, Princeton, 1998.
    [93] Sheng Y P. On modeling three-dimensional estuarine and marine hydrodynamics[J]. Elsevier Science Publishers, 1987, (5): 35~54.
    [94]张修忠,王光谦.浅水流动及输运三维数学模型研究进展[J].水利学报,2002, (7): 1-7.
    [95]任美锷,张忍顺,杨巨海等.风暴潮对淤泥质海岸的影响—以江苏省淤泥质海岸为例[J].海洋地质与第四纪地质, 1983, 3 (4): 24~30.
    [96]徐福敏,张长宽.台风浪对长江口深水航道骤淤的影响研究[J].水动力学研究与进展, 2004, 19(2): 137 ~143.
    [97]杨辉等.港湾深槽骤淤的条件探讨[J].海洋学报, 2005, 27(4):
    [98]曹祖德等.洋口港航道骤淤的可能性分析[J].水道港口, 2006, 27(1): 9~13.
    [99] Fujita T, 1952. Pressure distribution in typhoon, Geophy. Mag., 23:437~452.
    [100] T. Fujii, J. Maeda, N. Ishida, T. Hayashi, 2002. An analysis of a pressure patten in severe Typhoon Bart hitting the Japanese Islands in 1999 and a comparison of the gradient wind with the observed surface wind. Journal of Wind Engineering and Industrial Aerodynamics, 90: 1555~1568.
    [101]王喜年,尹庆江,张保明, 1991.中国海台风风暴潮预报模式的研究与应用.水科学进展, 2(1): 1~7.
    [102] Miyazaki M, Ueno T, Unoki S, 1962. Theoretical investigations of typhoon surges along the Japanese coast(Ⅰ,Ⅱ) . Ocean, Mag, 13(2): 103~117.
    [103] Ueno T. 1964. Non-Linear numerical studies on tides and surges in the central part of Seto Inland sea. Oceanographical Mag.16(1-2): 53~124.
    [104]赵洪波,赵群.浙江苍南电厂码头和航道工程泥沙淤积研究报告[R],交通部天津水运工程科学研究所, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700