隧道近接施工引起邻近既有桩基的内力和变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在城市中进行隧道开挖会对已有建筑物、地下管线等产生不良影响。当隧道近接或穿越建筑物桩基而向前推进时,引起的地层移动会对邻近桩基施加轴向力或侧向力,会降低桩基承载力,增加桩基的不均匀沉降,进而影响到上部结构的正常使用。因此,研究隧道开挖对邻近桩基的影响显得尤为重要。
     本文利用有限差分程序,建立了三维模型,验证了一个实例(Chen1999),然后在实例模型和参数的基础上,研究了盾构隧道近接施工所引起单桩和群桩的内力和变形响应,所取得的成果对工程实际具有一定的参考价值和指导意义。研究内容如下:
     1.研究了隧道开挖对邻近既有单桩的影响,考虑的影响因素有:桩顶荷载、地层分布、隧道纵坡、双孔隧道、桩体弹性模量、桩径等。研究表明:
     ①随着桩顶荷载的增大,桩身轴力和竖向沉降逐渐增大,桩身弯矩和水平位移变化不大。
     ②隧道3倍洞径范围内的土层强度对桩的内力和变形影响较大。当隧道开挖可能对邻近桩体产生不利影响时,可以提前加固此部分土层(如注浆加固、锚杆支护等)来改善桩的受力性能,从而保证桩及上部结构的安全。
     ③有纵坡隧道开挖比无纵坡隧道开挖所引起的桩身沉降要小的多。
     ④双孔隧道开挖对邻近桩的竖向承载力和竖向沉降相当不利,而对桩的水平变形和弯矩比较有利。
     ⑤当桩体弹性模量或桩径增大时,桩身轴力和弯矩随之增大,桩身抵抗侧向变形的能力会相应增加,桩项与桩端的差异沉降减小。
     2.分析了隧道开挖对邻近既有群桩的影响,考虑了桩长、桩与隧道间的水平距离、高低承台等因素变化时桩及桩间土不同响应。研究表明:
     ①当承台上部荷载一定时,随着桩长的增加,桩身轴力、水平位移和弯矩逐渐增大,桩身沉降和桩间土竖向应力逐渐减小。
     ②随着桩与隧道之间距离的增大,桩身轴力、弯矩、水平位移、竖向沉降和桩间土竖向应力等均有不同程度减小。
     ③在桩身轴力和竖向沉降方面,高承台桩大于低承台桩;在水平位移和竖向沉降的变化规律方面,高承台桩与低承台桩基本相同。
     ④由于受前排桩“遮拦作用”的影响,后排桩受隧道开挖影响较小,但后排桩的轴力明显大于前排桩的轴力。
     3.总结分析了隧道近接既有桩基施工时几种常见的保护措施,并以隔断墙为例,通过尺寸研究得出了最为经济合理的桩基保护方案。
The existing buildings and buried pipelines will be affected inevitably by tunneling in urban areas. When the tunnel excavation under or adjacent to the pile foundations of buildings, stratum movements caused by tunneling will exert axial and lateral forces on adjacent piles, which may reduce the bearing capacity of piles and increase the differential settlement, thus superstructure is influenced. Obviously, it is important to study the responses of piles to nearby tunneling.
     In this paper, finite difference code is adopted and three-dimensional model is created. Though verifying an example proposed in Chen's paper, the model put forward by the author is available. Thereafter, the responses of single pile and pile groups to adjacent shield tunneling is investigated, some useful conclusions have been obtained, which can be used to guide practical engineering. The contents of this paper are outlined in details as the following:
     1. The responses of single pile to tunneling are analyzed with parameters, such as loads on the top of a pile, soil layers, longitudinal slop of a tunnel, double-tube-tunnel, elastic modulus of pile and pile diameter. It shows:
     ①The axial force and vertical settlement along a pile increase with the increasing of the load on the top of a pile.
     ②The internal force and deflection of a pile is apparently affected by the strength of soil in the region of three-hole-diameter-of-the-tunnel. Soil strength around the tunnel can be enhanced by some reinforce measures (such as grout and anchor), which can improve the force performance of the pile and ensure the safety of building structure.
     ③The settlement of pile caused by the tunnel with gradient is smaller than that of pile caused the tunnel without gradient.
     ④The excavation of double tunnel is adverse to the vertical bearing capacity and settlement of a pile, but it is advantageous to the lateral deflection and bending moment of the pile.
     ⑤With the increasing of elastic modulus and diameters of the piles, axial force and bending moment of a pile will increase, then the capability to resist deflection of the pile is strengthened, and the differential settlement of the top and bottom of the pile is reduced.
     2. The responses of pile groups to tunneling are also studied with parameters, such as pile length, the horizontal distance between the tunnel and the pile, and the height of the cap of the pile. Research indicates:
     ①When the load on the cap of the pile is definite, the axial force, horizontal movement and moments of the pile will increase as the increase of pile strength, and the settlement of the pile and vertical stress of soil under the cap of the pile will decrease.
     ②The response of piles and soil between the piles to tunneling will decrease with the increasing of the horizontal distance between the tunnel and the pile.
     ③The axial force and vertical settlement of the high cap pile is larger than that of the low cap pile, the horizontal movement and moments of the high cap pile is similar to that of the low cap pile.
     ④Due to the "barrier effect" of the front pile, the responses of back pile to tunneling is smaller than the front pile, the axial force of back pile is larger than the axial force of front pile.
     Finally, some protection measures of pile foundations engineering are summed up and analyzed, then the partition wall is taken into consideration, an optimal scheme is gained through research on the size of the partition wall.
引文
1. A Pastsakorn Kitiyodomny, Tatsunori Matsumoto and Kanji Kawaguchi. Simplified analysis method for piled raft foundations subjected to ground movements induced by tunneling[J], International journal for numerical and analytical methods in geomechanics, 2005, (29): 1485-1507
    2.张志强,何川.地铁盾构隧道近接桩基的施工力学行为研究[J],铁道学报,2003,(25):92-94
    3. R. B. Peck. Deep excavations and tunneling in soft ground state of the art report[C]. 7th Int. Conf. On soil Mech. and Fdn Eng., Mexico City, 1969, 225-290
    4. Loganathan N, Poulos H G, Analytical prediction for tunneling-induced ground movements in clays[J], Journal of Geotechnical and Geoenvironmental Engineering, 1998, (9): 846—856
    5. Mair, R J. Ground Movement Around Shallow Tunnels in Soft Clay [C].10th IntConference on Soil Mechanics and Foundation Engineering. Stolkhom: 323-328
    6.藤田圭一.从基础工程角度看盾构掘进法[M].隧道译丛,1985,(5):49-63
    7.候学渊,廖少明.盾构隧道沉降预估[J],地下工程和与隧道,1993,(4):24-32.
    8. New, B. M. and O'Reilly, M. P.. Tunnelling induced ground movements, predicting their magnitude and effects [C].Proc, 4th Conf.on Ground Movements and Structures, 1991
    9. Eisenstien, Z., El-Nahhas, F, and Thomson, S. Strain field around a tunnel in stiffsoil. Proc, 10thInt, conf. on SiolMech and Found Engineering., Vol.1, A. A. Balkema, Rotterdam, The Netherlands, 1981, 283-288
    10.刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991
    11. Atewell, P. B. and Woodman, J.(1982). Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil[J]. Ground Engineering, Vol. 15, No. 8: 32-41.
    12. O'Reilly, M. P. and New, B. M. Settlements above tunnels in the U. K.-their magnitude and prediction [J]. Tunnelling, 1982, 82: 173-181.
    13. Sagaseta. C(1987). Analysis of undrained soil deformation due to ground loss[J], Geotechique, London, England, 37: 301—320
    14. Verruijt, A., and Booker, J. R. Surface settlement due to deformation of a tunnel in a elastic half plane[J], Geotechnique, London, England, 1996, 46(4): 753—756
    15. Loganathan N, Poulos HG. Analytical prediction for tunneling induced ground movements in clays [J], Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 1998, 124(9): 846-856
    16. Lee K M, Rowe R K, Lo K Y. Subsidence owing to tunneling. Ⅰ: Estimating the gap parameter [J]. Canadian Geotechnical Journal, 1992, 29(6): 929—940
    17. Ingles, O. G., 1972. Soil stabilization. Butterworth's, Sydney, Australia
    18. Lo, K. Y., Ng, R. M. C., Rowe, R. K. Predicting settlement due to tunnelling in clay. Proceedings tunneling in Soil and Rock, Geotech Ⅲ Conference, ASCE, Reston, 1984, Va., pp. 48-76
    19. Shue-Yeong Chi, Jin-Ching Chern, Chin-Cheng Lin. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J], Tunneling and Underground Space Technology, 2001, (16): 159-165
    20.魏纲.软土中盾构法隧道引起的土体移动计算研究[J],岩土力学,2006,27(6):995-999
    21.张海波,殷宗泽,朱俊高.盾构法隧道施工的精细模拟[J],岩土力学,2004,S25(2):280-284
    22.郭军.地铁隧道开挖诱发的地表沉降对邻近建筑结构的影响研究[D],北京:北京工业大学,2005
    23.孙钧.城市地下工程安全的智能预测与控制及其三维仿真模拟系统研究[J],岩石力学与工程学报,1999,18(增):753-762
    24. Ito T, Histake M. Surface displacements caused by tunnel driving in anisotuopic viscoelastic ground. 4th International Conference Rock Mechanis[C]. [s. I]: 1979, 1: 677—684
    25. S. Bernat~* & B. Cambou. Soil-structure Interaction in Shield Tunnelling in Soft Soil[J], Computers and Geotechnics, 1998, 22(3/4): 221-242
    26. Thomas Kasper, Gunther Meschke On the influence of face pressure, grouting pressure and TBM design in soft ground tunneling[J], Tunnelling and Underground Space Technology, 2006, (21): 160-171
    27. Kasper, T., Meschke, G., A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics 2004, (28): 1441-1460
    28.李园,孙群岭.盾构隧道施工过程的有限元分析,低温建筑技术,2003,96(6):55-56
    29.王敏强,陈胜宏.盾构推进隧道结构三维非线性有限元仿真[J],岩石力学与工程学报,2002,21(2):228-232
    30.张志强,何川,佘才高.南京地铁盾构掘进施工的三维有限元仿真分析[J],铁道学报,2005,27(1):84-89
    31.于宁,朱合华.盾构隧道施工地表变形分析与三维有限元模拟[J],岩土力学,2004,25(8):1330-1334
    32.张海波,殷宗泽,朱俊高.盾构法隧道施工的精细模拟[J],岩土力学,2004,25(增):280-284
    33. Mair, R. J., Philips, R, Schofield, A. N, and Taylor, R. N. Application of centrifuge Modeling to the design of tunnels and excavations in soft clay, Proceeding of Symposium on the Application of centrifuge Modeling to Geotechnical Design, Manchester(Balkema) 1984: 357-380.
    34. Mair, P. J., Taylor, R. N., and Brachgirdle, A. Subsurface settlement profile above Tunnels in clay[J], Geotechnique, 1993, 43(2): 315-320.
    35.I to,T.,and Histake,K隧道掘进引起的三维地面沉陷分析[M].隧道译从,1985,(9):46-55
    36.刘庆舒.用离心模型试验研究地铁施工引起的固结沉降[J],四川建筑,2003,23(5):32-33.
    37. Morton, J. D., and King, K. H. Effects of tunnelling on the bearing capacity and settlernent of piled foundations[J], Proc., Tunnelling'79, IMM, London, 1979: 57-68.
    38. Lee, R. G., Turner, A. J., and Whitworth, L. J. Deformations caused by tunnelling beneath a piled structure. Proc., ⅩⅢ Int. Conf. Soil Mech. Found. Engrg., University Press, London, 1994: 873-878.
    39. Chen LT, Poulos HG, Loganathan N. Pile responses caused by tunneling[J], Journal of Geotechnical and Geoenvironmental Engineering (ASCE) 1999, 125(3): 802-811
    40. Loganathan N, Poulos HG, Xu KJ. Ground and pile-group responses due to tunnelling[J]. Soils and Foundations 2001, 41(1): 57-67.
    41. Mroueh H, Shahrour I. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations[J], International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26:217-230.
    42. Pastsakorn Kitiyodomn,y, Tatsunori Matsumoto and Kanji Kawaguchi. A simplified analysis method for piled raft foundations subjected to ground movements induced by tunneling [J], Int. J. Numer. Anal. Meth.Geomech., 2005, 29:1485-1507
    43. Yong-Joo Lee a, Richard H. Bassett.Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis[J], Tunnelling and Underground Space Technology, 2006, (7): 1016-1034
    44.李永盛,黄海鹰.盾构推进对相邻桩体力学影响的实用计算方法[J],同济大学学报,1997,25(3):261-267
    45.阮林旺.软土盾构推进对相邻土层及桩体影响的三维有限元分析[D],上海:同济大学,1997
    46.芮勇勤,岳中琦,唐春安,杨天鸿.隧道开挖方式对建筑物桩基影响的数值模拟分析[J],岩石力学与工程学报,2003,22(5):735—741
    47.杨晓杰,邓飞皇,聂雯,李桂刚.地铁隧道近距穿越施工对桩基承载力的影响研究[J],岩石力学与工程学报,2006,25(6):1290—1295
    48.常银生.隧道开挖对临近桩体的影响二盐城工学院学报[J],2003,第16卷增刊
    49.刘丽.盾构掘进过程中邻近桩基的反应分析研究[D],青岛:山东科技大学,2006
    50.孙宗军.盾构施工与桩基础相互作用的三维力学分析与研究[D],南京:东南大学,2004
    51.王柱.地铁隧道开挖对刚性桩基变形影响研究[D],西安:西安理工大学,2005
    52.李坤.隧道工程引起的地层移动以及邻近桩反映研究[D],浙江:浙江大学,2003
    53.王占生.盾构近距穿越桩基的研究[D],北京:北京交通大学,2002
    54.易宏伟.盾构法施工对土体扰动和地层移动影响的研究[D],上海:同济大学,1999
    55.姜忻良,赵志民,李园.隧道开挖引起土层沉降槽曲线形态的分析与计算[J],岩土力学,2004,25(10):1542-1544
    56.刘洪洲,孙钧.土压力平衡盾构与地层沉降的根源及其影响因素分析[J],岩土工程师,2002,14(2):35-39
    57.中国建筑科学研究院,建筑桩基技术规范(JGJ94-94),北京:中国建筑工业出版社,1999
    58.桩基工程手册编写委员会,桩基工程手册[M].北京:中国建筑工业出版社,1995
    59.林天健,熊厚金,王利群。桩基础设计手册[M].北京:中国建筑工业出版社,1999
    60.刘金砺,桩基础设计与计算[M].北京:中国建筑工业出版社,1990
    61.楼晓明,洪毓康,陈强华.群桩基础地基中的竖向附加应力性状研究[J],岩土工程学报,1996,18(4):20-26
    62.谢涛,袁文忠,朱明.竖向荷载下超大群桩受力变形分析[J],西南交通大学学报,2002,37(4):377-381
    63.陈晓平,贾成,水平荷载下群桩工作性状的数值分析方法[J],武汉水利电力大学学报,1997,30(2):30-17
    64。陈志坚,冯兆祥,陈松等.江阴长江大桥摩擦失效嵌岩群桩传力机理的实测研究[J],岩土力学与工程学报,2002,21(6):883-887
    65.陈开旭,安关峰,鲁亮.采用有厚度接触单元对桩基沉降的研究[J],岩土力学,2000:21(1):92-96
    66.赵明华.桥梁桩基计算与检测[M].北京:人民交通出版社,2000
    67.孙吉主.盾构机掘进对基桩影响的工程分析法[J],武汉理工大学报,2003,25(3):56-58
    68.刘建华.岩体力学行为拉格朗日分析方法研究与工程应用[D].济南:山东大学,2006
    69.刘忠昌.深基坑开挖对近邻地下管线位移影响的数值模拟分析[D].北京:北京工业大学
    70. Itasca, FLAC~(3D). Fast Lagrangian Analysis of Continnua in 3-Dimensions, Version 2.1, Manual, Itasca, Minnesota, Minneapolis, 2002
    71.王泳嘉,邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用[J],岩土力学,1995,16(2)
    72.张二海,陈庆寿,冉恒谦.显示拉格朗日差分法在链子崖危岩体锚固工程中的应用[J],探矿工程,1998,(6):36~38
    73.胡斌,张倬元,黄润秋,许强.FLAC3D前处理程序的开发及仿真效果检验[J],岩石力学与工程学报,2002,21(9):1387-1391
    74. Cundall RA. and Board M.A. microcomputer program of modeling large-strain plasticity problems, in numerical methods in geomechanics[C],Proc6th Int Conf On Numerical Methods in Geomechanics, Innsbruck, Austria,1988, April11-15, Swododa C(ed) 2101-2108, Rotterdam, B alkema.
    75.姜忻良,赵志民,李园.天津地铁盾构施工对邻近工程设施影响的动态模拟.天津大学学报[J],2006,39(2):188-193
    76.施仲衡.地下铁路设计与施工[M].陕西:陕西科学技术出版社,1997
    77.刘波,陶龙光等.地铁双隧道施工诱发地表沉降预测研究与应用[J],中国矿业大学学报,2006,35(3):356-361
    78. PECK R B. Deep excavation and tunneling in soft ground [M]. NewYork:Published by ASCE, 1984
    79. H. Mroueh. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations [J], International journal for numerical and analytical methods in geomechanics, 2002, 26:217-230
    80. C.Y. Cheng. Finite element analysis of tunnel-soil-pile interaction using displacement controlled model [J], Tunnelling and Underground Space Technology,×××(2006) ×××—×××
    81.王占生,王梦恕.盾构施工对周围建筑物的安全影响及处理措施[J],中国安全科学学报2002,12(3):45-49
    82.东南大学等.地基及基础[M],北京:中国建筑工业出版社,1998
    83.张晓丽,王梦恕,张顶立.减小浅埋暗挖法施工对建构筑物影响的措施[J],中国安全科学学报,2005,15(11):69-72
    84.贾喜涛.暗挖隧道过既有建筑物采用隔离桩法施工分析[J],隧道建设,2006,26(1):25-27
    85.张健.地铁盾构隧道穿越桩基的凿除技术[J],中国市政工程,2006,144(4):87-88
    86.罗桂东.注浆技术和树根桩法加固桥梁桩基[J],城市道桥与防洪,2006,3(2):127-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700