氨(胺)基官能化聚硅氧烷的合成、性质及组装行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨(胺)基官能化聚硅氧烷除具有聚硅氧烷许多优良性能外,还可利用其含氮官能基的反应活性,与其他聚合物反应后形成具有特殊性能的聚合物,保留了有机聚硅氧烷优异性能又赋予其新的性能,该类聚合物在许多领域得到广泛应用。一些氨(胺)基的引入却降低了聚硅氧烷的热稳定性,影响了在诸多方面的使用。研究并分析该类聚合物的热降解规律及其影响因素,对于控制热降解反应、更好地利用该类化合物以及改进和研制具有更优异性能的聚合物具有十分重要的意义。同时,在聚硅氧烷主链上引入氨(胺)基官能团进行化学改性引起了人们极大的兴趣。由于稀土元素具有独特的电子层结构,在受到紫外光激发的时候表现出优良的光学性能。因而,通过化学键将稀土离子配合物接枝到有机聚硅氧烷基质上,可以制备兼具优异发光性能和稳定的物理化学性能的复合材料,在很大程度上拓宽了聚硅氧烷的应用领域。
     以N-2-氨乙基-3-氨丙基甲基二甲氧基硅烷(AEP)、八甲基环四硅氧烷(D4)、六甲基二硅氧烷(MM)为起始反应物,采用开环聚合法合成了一系列氨基官能化聚硅氧烷(AEP-PS),采用红外分析(IR)、热重分析(TGA)和裂解气质联用(PY-GC-MS)等方法研究了氨基官能化聚硅氧烷在氮气和空气气氛下的热降解行为,分析了裂解产物。热降解行为和热稳定性的研究结果表明,侧链氨基官能团的引入影响了聚硅氧烷的稳定性,降解反应分为分子链间作用和分子链内作用两种,以链内回咬反应为主。氨基官能化聚硅氧烷的热降解过程分为100℃-350℃和400℃-800℃两个阶段,降解产物多是小分子环体。由于产物降解时的环境影响到降解产物的种类,因此探讨了不同气氛下的热降解机理。
     通过酰胺化反应将氨基聚硅氧烷修饰成相应的酰胺基聚硅氧烷基质,制备发光性能良好的含稀土铕(发红光)、铽(发绿光)、钐(发红光)和镝(发绿光)的聚硅氧烷(侧链酰胺基官能化聚硅氧烷、端酰胺基官能化聚硅氧烷、酰胺基官能化硅树脂)-稀土复合发光材料,测试和分析了复合发光材料的各种性能。酰胺基聚硅氧烷基质中不同的共轭基团导致复合材料的发光性能的差异。材料内部稀土离子与有机基团发生配位作用,受到光激发时,它们之间发生有效的能量传递过程。
Amidofunctionalized polysiloxanes, possessing a variety of unique and superior properties, play important roles in modifitions of organic polymers, such as the copolymerization of polysiloxanes and organic polymers, with the aid of the reaction activity of the aminofunctional groups, to endow the organic polymers with the excellent properties of the polysiloxanes. With the rapid development of these kinds of polymer in silicone chemistry, amido functionalized polysiloxanes have been widely applied in many research fields. However, their applications are limited to some extent due to the decomposition or rearrangement under certain conditions. So understanding their rearrangement conditions and mechanisms will be of great important values for the control, improvement and application of these compounds. At the same time, the introductions of amido (acylamido) groups in main chains of polysiloxanes have aroused great interest. To our best knowledge, lanthanide ions can exhibit their excellent photophysical abilities under UV light excitation because of their unique electron configurations. Therefore, the properties of the materials can be improved by covalently grafting the lanthanide complexes to the polysiloxane backbone. The organic ligands can reinforce the energy absorption efficiency and the inorganic portions of the structure offer good mechanical properties. Thus, some stable composite materials with excellent luminescent propertities were prepared in the modification process, by grafting the lanthanide complexes to organopolysiloxanes via chemical bonds. To some extent, the applications of polysiloxanes were developed.
     A series of amino functionalized polysiloxanes have been synthesized and characterized in ring-opening polymerization with materials of coupling agent (AEP), octamethylcycoltetrasiloxane (D4) and hexamethyldisiloxane (MM). Thermal degradation behaviors have been investigated by Infrared Spectrometry (IR), Thermogravimetric analysis (TGA) and Pyrolysis-Gas Chromatography-Mass Spectrometry (PY-GC-MS) in N2 and air atmosphere. The results show that amido groups in side chain influence the thermal stability. The decomposition processes, which took place in both intramolecular chains and intermolecular chains, are mainly biting-back reactions. And the process is divided into two stages ranging from 100℃to 350℃and 400℃to 800℃with the formation of oligomers. Since the atmospheres impact on the structures of thermal degradation products, two thermal degradation mechanisms of aminopolysiloxanes are proposed.
     Amidopolysiloxanes matrixes were modified by acylamidation reactions to prepare some luminescent polysiloxanes (side chain acylamidopolysiloxane, terminated acylamidopolysiloxane and acylamidoresin)-rare earth composite materials. Narrow-width green emissions are achieved for Tb3+ and Dy3+ composite materials. Narrow-width red emissions are achieved for Eu3+ and Sm3+ composite materials. In conclusion, the different conjugate groups of modified polysiloxanes led to diverse luminescent properties of complexed materials. The excellent emissions mean that the efficient coordination effect and intramoleenlar energy transfer process between polysiloxane groups and lanthanide ions took place within these molecular-based complexed materials.
引文
[1]冯圣玉,张洁,李美江,朱庆增.有机硅高分子及其应用北京:化学工业出版社,2004,6
    [2]幸松民,王一璐.有机硅合成工艺及产品应用北京:化学工业出版社,2000.9
    [3]杜作栋,陈剑华,贝小来,周重光.有机硅化学北京:高等教育出版社,1992.8
    [4]周宁琳.有机硅聚合物导论北京:科学出版社2000
    [5]Grubb W T, Robert C O. Kinetics of the Polymerization of a Cyclic Dimethylsiloxane. J.Am. Chem. Soc.,1955,77(6):1405-1411
    [6]Frederick P Adams, Jack B Carmichael, Ronald J Zeman. Kinetics of nonequilibrium methylsiloxane polymerization and rearrangement. J. Poly. Sci. A-1,1967,5(4):741-759
    [7]Winton Patnode, Donald F Wilcock. Methylpolysiloxanes. J. Am. Chem. Soc., 1946,68(3):358-363
    [8]SemLyen J. A., Wright P. V. Equilibrium ring concentrations and the statistical conformations of polymer chains-oligomeric dimethylsiloxanes. Polymer,1969(10):543-553
    [9]Morton A. Golub, Jorge Heller, M Morton and E. E. Boatick. Cyclohydrochlorination of 3,4-polyisoprene. J. Poly. Sci. B,1964,2(5):523-527
    [10]Lee C L., Johammson O K. Polymerization of Cyclosiloxanes. Ⅰ. Kinetic Studies on Living Polymer-Octamethylcyclotetrasiloxane Systems. J. Poly. Sci. A-1,1966,4(12):3013-3026
    [11]Breed L, Elliott R, Haggerty W, Jr Baiocchi F. Some Alkoxyorganosilanes. J. Org. Chem.,1961,26(4):1303-1305
    [12]William A Piccoli, Gerald G Haberland, Robert L Merker. Highly Strained Cyclic Paraffin-Siloxanes. J. Am. Chem. Soc.,1960,82 (8):1883-1885
    [13]Karl W Krantz. Double Chain Polymers of Phenylsilsesquioxane. J. Am Chem. Soc.,1960,82 (23):6194-6195
    [14]Kendrrick T. C., Parbhoo B M., White J. W. In Comprehensive Polymer Science, Oxford, Pergamon,1989,4:459
    [15]Donald W Scott. Equilibria between Linear and Cyclic Polymers in Methylpolysiloxanes. J. Am. Chem. Soc.,1946,68 (11):2294-2298
    [16]黄文润氨基改性聚硅氧烷及织物柔软剂[J].有机硅材料及应用,1998,(5):15-17
    [17]黄文润氨基改性聚硅氧烷及织物柔软剂续一[J].有机硅材料及应用,1998,(6):15-17
    [18]黄文润氨基改性聚硅氧烷及织物柔软剂续二[J].有机硅材料及应用,1999,(1):6-9
    [19]CHIN SHO METHOD FOR PRODUCING AMINO GROUP CONTAINING POLYSILOXANE [P] JAPAN:JP2003147080,2003-05-21
    [20]HALLORAN DANIEL JOSEPH; HOFFMAN DAWN MARIE Water soluble ammonium siloxane compositions and their use as fiber treatment agents [P] USA:US5707434,1998-01-13
    [21]KONDO TAKAMITSU; TASHIRO MIKIO Synthetic organic fibers coated with an amino silane and an epoxy siloxane containing treating agent [P].USA:US4062999,1977-12-13
    [22]ONA ISAO; OZAKI MASARU Organofunctional polysiloxane compositions for fibertreating [P] USA:US4366001,1982-12-28
    [23]HAMADA YUJI; SASAKI SHOSAKU SILANE OR POLYSILOXANE ADHESION PROMOTER HAVING OLEFIN AND AMINO GROUPS [P].AUS:AU8164087,1988-05-26
    [24]GEE RONALD PAUL Method for making amino functional polysiloxane emulsions [P] USA:US5852110,1998-12-22
    [25]BAILEY DONALDL Aminoalkylpolysiloxanes and process for their production [P] USA:US2947771,1960-8-2
    [26]OKINOSHIMA HIROSHIGE; KASHIWAGI TSUTOMU MANUFACTURE OF AMINO-CONTAINING POLYSILOXANE [P] JAPAN:JP3095227
    [27]陈岚、陈荣圻 线性聚合技术制备氨基聚硅氧烷[J]印染助剂,2000,17(6):10-13
    [28]王树根苏开第马永才氨基改性聚硅氧烷的研制[J]印染助剂,1998,15(6):5-8
    [29]王绪荣氨基改性聚硅氧烷及其微乳液的研制[J],有机硅材料, 2001,15(4):22-26
    [30]李群、陈水林本体聚合法合成的氨基聚硅氧烷及其在毛织物上的应用研究[J]印染助剂,2003,20(6):10-12
    [31]罗正鸿,詹晓力等八甲基环四硅氧烷与氨基有机硅单体的共聚合机理[J]高分子通报,2002,(6):38-44
    [32]詹晓力,罗正鸿等八甲基环四硅氧烷/氨基取代有机硅单体的本体阴离子共聚动力学[J].高校化学工程学报,2003,(2):157-161
    [33]罗正鸿,詹晓力等阴离子本体共聚合成氨基聚硅氧烷的研究[J]功能高分子学报,2002,(15):63-66
    [34]史保川、廖学巍环己氨丙基硅烷偶联剂的合成及应用[J]有机硅材料,2001,15(5):1-4
    [35]安秋凤,季铵化硅烷的合成与应用[J].有机硅材料,2003,17(4):16-19
    [36]李俊英、冯圣玉聚硅氧烷季铵盐抗菌整理剂的合成及应用[J]日用化学工业2003,33(4):249-251
    [371曹文宇 本体共聚制备氨基聚硅氧烷浙江大学硕士学位论文20060701
    [38]Lewis RN. Methylphenylpolysiloxanes J Am Chem Soc 1948(70):1115-1117
    [39]Grassie N, MacFarlane J. The thermal degradation of polysiloxanes-Ⅰ Poly (dimethylsiloxane). Eur Polym J,1978,14(11):875-884
    [40]K.A.Andrianov Vysokomol Soedin A 1971(14):253
    [41]T.H. Thomas, T.C. Kendrcik. Thermal analysis of polysiloxanes Ⅱ Thermal vacuum degradation of polysiloxanes with different substituents on silicon and in the main siloxane chain. J. Polym. Sci. A-21970 (8):1823-1830
    [42]T.H. Thomas, T.C. Kendrcik. Thermal analysis of polydimethylsiloxanes Ⅰ. Thermal degradation in controlled atmospheres. J. Polym. Sci A-2 1969 (7):537-549
    [43]P.V. Wright, J.A. SemLyen. Equilibrium ring concentrations and the statistical conformations of polymer chains:Part 3. Substituent effects in polysiloxane systems. Polymer,1970 (11):462-471
    [44]S.J. Clarson, J.A. SemLyen. Cyclic polysiloxanes:1. Preparation and characterization of poly (phenylmethylsiloxane). Polymer 1986 (27) 1633-1636
    [45]M.S. Beevers, J.A. SemLyen. Equilibrium ring concentrations and the statistical conformations of polymer chains:Part 5. Stereoisomeric cyclics in poly (phenylmethylsiloxane) equilibrates. Polymer,1971 (12) 373-382
    [46]J.A. SemLyen. Ring-chain equilibria and the conformations of polymer chains. Adv. Polym. Sci.,1976 (21) 41
    [47]J.A. SemLyen, P.V. Wright. Equilibrium ring concentrations and the statisticalconformations of polymer chains Ⅰ-oligomeric dimethylsiloxanes. Polymer,1969 (10) 543-553
    [48]D.J. Orrah, J.A. SemLyen, K. Dodgson, S.B. Ross-Murphy. Studies of cyclic and linear poly(dimethylsiloxanes):23. Low temperature behaviour as studied by dynamic oscillatory shear viscometry and differential scanning calorimetry. Polymer,1987 (28):985-990
    [49]S.J. Clarson, J.A. SemLyen.Studies of cyclic and linear poly (dimethyl-siloxanes):21. High temperature thermal behaviour. Polymer,1986 (27) 91-95
    [50]M.K. Lee, D.J. Meier, Synthesis and properties of diarylsiloxane and (aryl/methyl) siloxane polymers:1. Thermal properties. Polymer,1993 (34) 4882-4892
    [51]a) G. Camino, S. M. Lomakin, M. Lazzari, Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer,2001(42)2395-2402 b) G.Camino, S. M. Lomakin, M. Lazzari, Thermal polydimethylsiloxane degradation. Part2. The.degradation.mechanisms. Polymer,43(2002) 2011-2015
    [52]Kissinger H. E., Reaction Kinetics in Differential Thermal Analysis. Anal Chem,1959(29):1702-1706
    [53]钟发春交联聚硅氧烷的热降解行为宇航材料工艺.2003(1)29-32
    [54]Grassie N. The thermal degradation of polysiloxanes. Part 4. poly (dimethyl/ diphenyl siloxane). European Polymer Journal,1979 (15):415-420
    [55]Durham LJ, Wurster CF, Mosher HS.Peroxides.Ⅶ. The Thermal Decomposition of Primary Hydroperoxides. J Am Chem Soc,1958(80)327-332
    [56]Thomas T H, Kendrick T C. Thermal analysis of polydimethylsiloxanes.Ⅰ. Thermal degradation in controlled atmospheres. J Polym Sci:Part A-2,1969(7): 537-549
    [57]Kucera M, L anikovaJ, and JelinekM. J Polym Sci,1961,53(7):301
    [58]T. S. Radhakrishnan. New Method for Evaluation of Kinetic Parameters and Mechanism of Degradation from Pyrolysis-GC Studies:Thermal Degradation of Polydimethylsiloxanes. Journal of Applied Polymer Science,1999 (73):441-450
    [59]Girish Deshpande, Mary E. Rezac. Kinetic aspects of the thermal degradation of poly (dimethylsiloxane) and poly (dimethyl diphenyl siloxane. Polymer Degradation and Stability,2002 (76):17-24
    [60]E. Peter Maziarz Ⅲ, Gary A. Baker, and Troy D. Wood, Capitalizing on the High Mass Accuracy of Electrospray Ionization Fourier Transform Mass Spectrometry for Synthetic Polymer haracterization:A Detailed Investigation of oly(dimethylsiloxane). Macromolecules 1999 (32):4411-4418
    [61]E. Peter Maziarz, Ⅲ, X. Michael Liu, Edmond T. Quinn, Yu-Chin Lai, Daniel M. Ammon, Jr., and George L. Grobe, Ⅲ Detailed analysis of α,ω-bis(4-hydroxybutyl) poly(dimethylsiloxane) using GPC-MALDI TOF mass spectrometry. J Am Soc Mass Spectrom,2002(13):170-176
    [62]Huiping Chen, Endgroup-assisted siloxane bond cleavage in the gas phase. J Am Soc Mass Spectrom,2003,14 (9):1039-1048
    [63]Qingzeng Zhu, Ruifang Guan, Fanjun Meng, Shengyu Feng. The application of heating rate to studies of polysiloxanes with cyanoethyl substituents and silazane polymers. Thermochimica Acta,2003(402):193-197
    [64]G .E.Deshpande, M E Reazc The Effect of Phenyl Content on the Degradation of Poly (Dimethyl Diphenyl) Siloxane Copolymers. Polym. Degra. Stab.2002 (76):17-24
    [65]Caihong Xu, Shengyu Feng. Synthesis and Characterization of Polysiloxane Containing Phenylethynyl Groups. Reactive & Functional Polymers, 2001(47):141-146
    [66]Huang Zhixiong, Xie Wenfeng, Cheng Dongcai, The Thermal Decomposition Kinetics of Polysiloxane/ Polymethylacrylate IPNs Materials. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2006,21(2):47-49
    [67]Hua Sun, David Rigby.Polysiloxanes:ab initio force field and structural, conformational and thermophysical properties. Spectrochimica Acta Part A,1997 (53):1301-1323
    [68]James S. Smith, Oleg Borodin, and Grant D. Smith. A Quantum Chemistry Based Force Field for Poly (dimethylsiloxane). J. Phys. Chem., B 2004(108):20340-20350
    [69]Bo Li. Molecular Simulation of Gas Transport Properties and Chain Conformation of Polysilanes. Ph.D.dissertation, University of Cincinnati,2003
    [70]J. Katajisto et al. Ab initio study on thermal degradation reactions of polycarbonate. Journal of Molecular Structure (Theochem),2003(634):305-310
    [71]Yu, Y.M.; Feng, S.Y. An ab Initio Study on [1,2] Rearrangement Reactions of Silylmethanol H3SiCH2OH. J. Phys. Chem. A,2004 (108):7468-7472
    [72]Yu, Y.M.; Feng, S.Y.; Feng, D.C. An ab Initio Study on Thermal Rearrangement Reactions of 1-Silylprop-2-en-1-ol H3SiCH(OH)CH=CH2. J. Phys. Chem. A 2005(109):3663-3668
    [73]Yu, Y.M.; Feng, S.Y. Theoretical Investigations on Thermal Rearrangement Reactions of (Aminomethyl) silane. J. Phys. Chem. A.,2006(110):12463-12469
    [74]贾中锋 乙酰氧乙基聚硅氧烷的合成、性能与降解动力学 山东大学 硕士学位论文20080410
    [75]F.Vogtle, Superamolecular Chemie, Teubner, Stuttgart,1989
    [76]王竞 基于包结作用的高分子及纳米晶体自组装的研究 复旦大学博士学位论文20070426
    [77]H.Dugas, Biooranic Chemistry, Springer, Heidebarg,1989
    [78]N.F.Curtis, D.A.House, Chem. Ind.,1961,1708
    [79]N.F.Curtis, Y.M.Curtis, H.K.Powell, Transition-metal complexes with aliphatic Schiff bases. Part Ⅷ. Isomeric hexamethyl-1,4,8,11-tetra-azacy clotetradecadienenickel (Ⅱ) complexes formed by reaction of trisdiaminoethanenickel (Ⅱ) with acetone. J. Chem. Soc., A,1966,1015
    [80]Chunqing Liu, Yang Liu, Ping Xie, Rongben Zhang, Chaobin He, Neal Taishung Chung, Synthesis and characterization of a novel alcohol-soluble ladderlike polysilsesquioxane containing side-chain with amino terminal groups. React. Polym.,2000,46,175
    [81]P. Xie; Z.-S. Xie; Y.-Z. Wan; S.-Z. Jin; D.-R. Dai; G.-A. Hou; D.-S. Liu; R.-B. Zhang. Synthesis and Mesomorphic Properties of Fishbone-Like Liquid Crystalline Polysilsesquioxanes 2. Imine-Based Side Chain Mesogenic Polysilsesquioxanes. Mol.Cryst. Liq. Cryst.,1996,289,59
    [82]Youzhi Wan, Ping Xie, Rongben Zhang, Macromol. Symp.,1996,105,249
    [83]Chunqing Liu, Li Cui, Yang Liu, Ping Xie, Rongben Zhang, Synthesis and mesomorphic properties of novel fishbone-like liquid crystalline polysilsesquioxanes VI. Fishbone-like, ester-based liquid crystalline polysilsesquioxanes. Liq. Cryst.,2000,27(7),907
    [84]王前进功能性聚硅氧烷整理剂膜组装、形貌及性能研究 陕西科技大学硕士学位论文20070401
    [85]张庆华,陈碧,詹晓力,陈丰秋PDMS-b-PEO两亲性嵌段共聚物的合成及溶液性质Acta Phys. Chim. Sin.,2009,25(6):1075-1080
    [86]陈碧 聚硅氧烷聚醚两亲性嵌段共聚物的合成及其溶液自组装 浙江大学博士学位论文20080922
    [87]Wang Q.M., Yan B., From molecules to materials:a new way to construct luminescent chemical bonded hybrid systems based with ternary lanthanide complexes of 1,10-phenanthroline. Inorg. Chem. Comm.2004,7(10),1124-1127
    [88]Wang Q.M., Yan B., Novel luminescent molecular-based hybrid organic-inorganic terbium complex covalently bonded materials via sol-gel process. Inorg. Chem. Commun.,2004,7(6),747-750
    [89]Wang Q.M., Yan B., Novel luminescent terbium molecular-based hybrids with modified meta-aminobenzoic acid covalently bonded with silica. J.Mater.Chem.2004,14(15),2450-2454
    [90]Wang Q.M., Yan B., Construction of lanthanide luminescent molecular-based hybrid material using modified functional bridge chemical bonded with silica., J.Photochem.Photobiol. A,2005,175(2-3),159-164
    [91]Lu H.F., Yan B., Attractive sulfonamide bridging bonds constructing lantanide centered photoactive covalent hybrids. J.Non-Cryst.Solids.2006,352, 5331-5336
    [92]James I.W., Linkers for solid phase organic synthesis. Tetrahedron,1999, 55(16),4855-4946
    [93]Lei Liu, Haifeng Lu, Hua Wang, Yiling Bei and Shengyu Feng, Luminescent organo-polysiloxanes containing complexed lanthanide ions, Appl. Organometal. Chem.2009,23,429
    [94]E. Pretsch, P. Buhlmann, C. Affolter (Eds.), Structure Determination of Organic Compounds,2nd printing, Springer, Berlin,2003
    [95]G.Blass, B.C.Grabmaier, Luminescent Materials, Berlin, Springer,1994
    [96]徐光宪,稀土,冶金工业出版社,1995,第2版
    [97]C.Sanchez, F.Ribot, Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem.1994,18,1007
    [98]D.A. Loy, K. J. Shea, Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chem. Rev.1995,95(5),1431
    [99]C.Sanchez, F. Ribot, B. Lebeau, Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem.1999,9,35
    [100]江祖成,蔡汝秀,张华山.稀土元素分析化学第二版,北京:科学出版社,2000,222
    [101]FranvilleA.C., Zambon D., Mahiou R., Synthesis and optical features of a europium organic-inorganic silicate hybrid. J.Alloys.compd.1998,275,831-834
    [102]Dong D.W., Jiang S.C., Men Y.F., Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach. Adv.Mater. 2000,12 (9),646-649
    [103]Embert F., Mehdi A., Reye C., Synthesis and luminescence Properties of Mono-phasic Organic-inorganic Hybrid Materials Incorporating Europium (Ⅲ). Chem. Mater.2001,13 (12),4542-4549
    [104]Corriu R. J.P., Embert F., Guari Y., A simple route to organic-inorganic hybrid materials containing Eu3+complexes. Chem.Commun.2001, (12),1116-1117
    [105]Hobson S.T., Shea K.J., Bridged Bisimide Polysilsesquioxane Xerogels:New Hybrid Organic-lnoganic Materials. Chem.Mater.1997,9,616-623
    [106]黄春辉,稀土配位化学,北京,科学出版社,1997
    [107]A.C. Franville, D. Zambon, R. Mahiou, Luminescence Behavior of Sol-Gel-Derived Hybrid Materials Resulting from Covalent Grafting of a Chromophore Unit to Different Organically Modified Alkoxysilanes. Chem. Mater.2000,12(2),428
    [108]C. Sanchez, B. Lebeau, F. Chaput, Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites. J. P. Boilot, Adv. Mater.2003,15(23),1969
    [109]B.Yan, K.Qian, H.F. Lu, Molecular assembly and photophysical properties of quatemary molecular hybrid material bond. Photochem Photobiol 2007,83, 1481.
    [110]Gi Ja Lee, Ran A Jeong, Seung Hwon Lee, Hong Seok Kim, Dong Hoon Lee, Keu Hong Kim, Kyungsoo Ahn, Physicochemical properties of electrochemically prepared poly(pyrrole hexafluorophosphate. J.Appl. Polym. Sci. 1998,68(4),605
    [111]G.M. Renlund, S. Prochazka, R.H. Doremus, Silicon Oxycarbide Glasses: Part Ⅱ. Structure and Properties. J. Mater. Res.1991,6,2716
    [112]W. Zhou, H. Yang, X. Guo, J. Lu, Thermal degradation behaviors of some branched and linear polysiloxanes. Polym. Degrad. Stabil.2006,91(7),1471
    [113]K. Binnemans, P. Lenaerts, K. Driesen, C. Gorller Walrand, A luminescent tris(2-thenoyltrifluoroacetonato)europium(Ⅲ) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass. J. Mater. Chem.2004,14,191
    [114]Yasuchika Hasegawa, Yuji Wada, Shozo Yanagida, Strategies for the design of luminescent lanthanide(Ⅲ) complexes and their photonic applications. J. Photoch. Photobio. C,2004,5,183
    [115]O.L. Malta, H.F. Brito, J.F.S. Menezes, F.R. Goncalvese Silva, S. Alves Jr., F.S. Farias Jr., A.V.M. de Andrade, Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. Luminescence 1997,75,255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700