聚酰亚胺膜的硅杂化改性及其渗透汽化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(Polyimide,简称PI)具有非常优异的耐热性、耐辐射性、耐化学性,良好的电绝缘性和力学性能等,现已广泛应用于航空、航天、电子、化工、机械等领域。现代科学技术的飞速发展对材料的种类和性能提出了更高的要求,各种杂化材料应运而生。杂化材料的特点是综合了各组分的优势,并起多功能的作用。聚酰亚胺在杂化材料的制备中有其独特之处,从而受到格外关注。本研究围绕聚酰亚胺薄膜的硅杂化改性主要展开了4个方面的工作:
     第一,聚酰胺酸(PAA)的合成与热亚胺化工艺条件确定。采用两步法合成(HQDPA-ODA)型聚酰亚胺。合成聚酰胺酸的优选工艺条件为:将单体二酐逐次加入二胺的溶液中,单体比为1.01:1,溶液固含量为10%,反应温度为10℃,反应时间为6h。热酰亚胺化工艺条件为:在80℃、150℃、240℃、280℃分别维持1h、1h、1h和0.5h。采用此工艺制备的薄膜经元素分析和红外分析可知已经基本亚胺化完全。采用热失重(TGA)分析薄膜热酰亚胺化动力学机理,得出酰亚胺化过程为两步一级动力学反应,快速阶段的活化能为38.14 kJ·mol~(-1),慢速阶段的活化能为37.99 kJ·mol~(-1),较为相近,速率常数的不同与活化能无关。快速阶段的指前因子A为172.31S~(-1),慢速阶段的指前因子A为22.08S~(-1),指前因子是导致快慢两个阶段速率常数降低的主要因素。
     第二,聚酰亚胺/SiO_2无机杂化膜的制备及硅偶联剂对聚酰亚胺/SiO_2杂化膜性能的影响。以正硅酸乙酯为无机前驱体,采用溶胶-凝胶法制备了聚酰亚胺/SiO_2无机杂化膜。结果表明,随着SiO_2含量的增加,杂化膜的热稳定性有所提高,但热分解温度的升高不是很明显。10%SiO_2含量的杂化膜,断裂伸长率、模量和强度分别比纯PI膜高32.5%、31.3%、26.1%,但SiO_2含量的进一步增大,杂化膜的各项力学性能均有所下降。扫描电镜显示SiO_2的团聚引起的应力集中,是造成膜的强度降低的主要原因。
     为提高聚酰亚胺和SiO_2两相的相容性,在杂化膜中添加分子间偶联剂GOTMS。SiO_2颗粒的团聚现象得到了有效抑制,10%SiO_2含量的杂化膜中,粒径从1-1.5μm减小到400nm左右,20%SiO_2含量的膜中,粒径也大大减小。较未添加偶联剂之前杂化膜的热稳定性降低,在10-25℃之间。同未添加GOTMS相比,纯PI膜和10%SiO_2含量的膜强度下降,20%、30%SiO_2含量的杂化膜强度增大。杂化膜的模量降低,断裂伸长率降低。
     同时添加分子间偶联剂GOTMS和分子内偶联剂APrTEOS以后,有机无机相相容性进一步提高,10%SiO_2含量的杂化膜中,粒径从1-1.5μm减小到100nm左右,20%和30%SiO_2含量的膜中,颗粒状SiO_2基本消失。杂化膜的热分解温度Td降低明显,都在120℃以上。纯PI膜和10%SiO_2含量的膜强度下降,20%、30%SiO_2含量的杂化膜强度增大。模量减小,断裂伸长率降低。但与相同SiO_2含量的只添加GOTMS的杂化膜相比,模量减小,断裂伸长率增大。
     第三,聚酰亚胺.聚硅氧烷嵌段杂化膜的制备与性能。为了改善刚性、半刚性聚酰亚胺-聚硅氧烷嵌段共聚物的可加工性等,本研究设计并合成了聚酰胺酯.聚硅氧烷嵌段共聚物,该共聚物较传统的聚酰胺酸-聚硅氧烷嵌段共聚物具有更高的溶解性和可加工性。实验证实这一合成路线的可行性。对合成的嵌段共聚物的热稳定测试表明,材料仍具有较高的热稳定性,热分解温度都在550℃以上,较聚酰亚胺降低不大,22~37℃。对制备的聚酰胺酯-聚硅氧烷共聚物亚胺化前后的形态进行研究发现,聚酰胺酯共聚物在固化过程出现了微相分离,并且相分离区有垂直于膜表面的趋势,随着硅氧烷含量的增大,相分离的区域增大,在PDMS=20wt%的膜中发现了完全从连续相分离出来的球形颗粒。亚胺化以后形成的PI-PDMS共聚物相分离进一步增大,结构更加疏松,形成了两相互穿的聚合物网络,此种结构是理想的渗透汽化膜分离材料的结构。
     最后,对经过无机SiO_2改性和有机硅氧烷嵌段改性的聚酰亚胺杂化膜进行了渗透汽化性能测试。65℃分离85%乙醇/水体系时,聚醚酰亚胺(HQDPA-ODA)具有优先透水的性质,渗透通量可达到60.7 g/m~2·h,分离因子59。聚酰亚胺膜在这一体系中,乙醇和水的透过表观活化能分别为33.6、76.2KJ/mol。聚酰亚胺/SiO_2杂化膜渗透通量较纯聚酰亚胺膜减小,分离因子升高。乙醇水透过杂化膜的表观活化能随SiO_2含量的增大而增大。经聚二甲基硅氧烷嵌段改性的聚酰亚胺膜在分离乙醇水时表现了良好的分离性能。在分离因子仍就很高的情况下,通量增大到原来的2~3倍。
Polyimides (PI) have unique physicochemical properties: strong resistance to high temperature, radiation and chemical resistance, good mechanical strength, superior insulation properties, etc. The properties make polyimides valuable materials which can be used widely in different branches of industry, such as aviation, aerospace, electron, chemical industry and mechanical industry, etc. With the rapid development of modern science and technology some new materials with special properties are required. Hybrid materials emerged in this context. Hybrid materials which combine the advantages of their components can play the multifunctional role. For its unique properties polyimide hybrid materials received much attention. In this dissertation focusing on the hybrid modification with silicon compounds four studies were conducted.
     1. Determination of process conditions in Synthesis of polyamic acid and thermal imidization. The polycondensation of HQDPA-ODA polyimide were carried out in two stages. The optimum conditions for synthesis of polyamic acid are present as: HQDPA was added into ODA solution in batches, the molar ratio of HQDPA: ODA is 1.01:1, the solid content of this solution is 10wt%, reaction temperature is 10℃, and reaction time is 6h. Imidization was carried out in successive isothermal steps of 1 h for each 80, 150, 240℃, and 0.5h for 280℃. Fourier transfer infrared spectrophotometer (FT-IR) spectra and element analysis show that the film nearly finished a complete imidization. The reaction mechanisms and kinetic models for imidization were investigated by Thermogravimetric analysis (TGA). The results suggest the imidization is a first, two step reactions. Activation energies for the fast process and the second slow process are 38.14 KJ/mol and 37.99 KJ/mol, respectively. Preexponential factors for the two steps are 172.31S~(-1) and 22.08S~(-1), which account for the difference in the rate constants.
     2. Preparation of polyimide/SiO_2 hybrid membranes and the effects of coupling agents on properties of the polyimide/SiO_2 hybrid membranes. Polyimide and polyimide/SiO_2 hybrid membranes were prepared via sol-gel process while Tetraethyl orthosilicate(TEOS) was added as inorganic precursor. Results show the thermal stability of PI/SiO_2 increases with the increasing of SiO_2 content, but this increase of Td is not remarkable. Elongation at break of the hybrid membrane containing 10wt% SiO_2 increases by 32.5%, strength 31.3%, and modulus 26.1% in contrast to that of the pristine PI. But more introduction of SiO_2 decreases the strength and modulus. Scanning electron microscopy (SEM) indicates that the decrease may be caused by the aggregation of silica, which would lead to stress concentration at the silica/PI interfaces.
     In order to improve the compatibility between polyimide and silica, inter-molecular coupling agent, GOTMS was introduced into PI/SiO_2 hybrid membranes. The aggregation of silica particle was efficiently prevented. The particle size in PI/SiO_2 hybrid membranes containing 10wt% SiO_2 was reduced from 1~1.5μm to 400nm, and that containing 10wt% SiO_2 reduced greatly too. The Td of PI/SiO_2 hybrid membranes decreased by 10~25℃after the introduction of GOTMS. The strength of pristine PI and hybrid membranes containing 10wt% SiO_2 declined while that containing 20wt% and 30wt% SiO_2 heightened. The elongation at break and modulus lowered.
     After the introduction of inter-molecular coupling agent GOTMS and intra-molecular coupling agent APrTEOS at one time, the compatibility between organic and inorganic phase was further improved. The particle size in PI/SiO_2 hybrid membranes containing 10wt% SiO_2 was reduced from 1~1.5μm to 100nm, and particle in that containing 20wt% and 30% SiO_2 nearly disappeared. The Td of PI/SiO_2 hybrid membranes decreased markedly by 120℃or more. The strength of pristine PI and hybrid membranes containing 10wt% SiO_2 declined while that containing 20wt% and 30wt% SiO_2 heightened. The elongation at break and modulus lowered. However comparing with these hybrid membranes with equal SiO_2 the elongation at break lowered, and modulus rise.
     3. Preparation and characterization of polyimide-block-polydimethylsiloxane (PI-PDMS). To facilitate the processibility of PI-PDMS, we designed and synthesized polyamic acid ester-block-polydimethylsiloxane which has a better solubility and processibility than polyamic acid-block-polydimethylsiloxane. Experiments proved the synthesis route is feasible. Comparing with the pristine PI Td of PI-PDMS decreased mildly by 22~37℃, but still was above 550℃. Investigation of morphology of PAE-PDMS and PI-PDMS provided that micro-phase separation in the course of solidification, and that the micro-phase separation had a tendency to be vertical with surface of membranes. The domain of phase separation became bigger with the increasing PDMS. When content of PDMS rise to 20wt% spherical particles isolated from the continuous matrix. The successive thermal imidization made the domain of phase separation bigger further and structure looser. An interpenetrating network polymer was developed which should be a promising membrane materials for pervaporation.
     4. Pervaporation performance of PI/SiO_2 and PI-PDMS membranes. In separation of 85wt% aqueous ethanol solution at 65℃the pristine PI had preferential permeability to water over ethanol, and exhibited a flux of 60.7g/m2·h and a separation factor of 59. The apparent permeation activation energy for ethanol and water was 33.6 and 76.2kJ/mol respectively. PI/SiO_2 hybrid membranes had lower flux and higher separation factors than the pristine PI. Apparent activation energy of water and EtOH through polyimide hybrid membranes increases with increasing of SiO_2. When PDMS was blocked in the PI, PI-PDMS membranes exhibited high separation performance. The flux became 2~3 times high than the pristine PI while separation factor is sill in a high level.
引文
[1] U. Buder, R. Petz, M. Kittel, et al. AeroMEMS polyimide based wall double hot-wiresensors for flow separation detection[J]. Sensors and Actuators A: Physical, 2008, 142(1):130-137.
    
    [2] L. Liu, L. Qinghua, Y. Jie, et al. Preparation and properties of photosensitivepolyimide/titania-silica hybrid materials[J]. Materials Science and Engineering, 2002,C(22): 61-65.
    
    [3] F. Qiu, Z. Da, D. Yang, et al. The synthesis and electro-optic properties of polyimide/silicahybrids containing the benzothiazole chromophore[J]. Dyes and Pigments, 2008, 77(3):564-569.
    
    [4] 丁孟贤,何天白,聚酰亚胺新型材料[M],科学出版社,北京,1998.
    
    [5] 张雯,张露,李家利等.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料,2001,(2): 21-23.
    
    [6] 李生柱.聚酰亚胺的现状和将来[J].化工新型材料,1999,27(11):12-17.
    
    [7] 汪多仁.聚酰亚胺的合成与应用的进展[J].电线电缆,2001,6):10-12.
    
    [8] 王勇.国外聚酰亚胺工业现况[J].化工新型材料,1998,26(11):38-42.
    
    [9] 邹盛欧.聚酰亚胺发展动向[J].化工新型材料,1999,3):3-6.
    
    [10]徐昌运.国外工程塑料现状与发展趋势[J].化工新型材料,1999,27(11):3-11.
    
    [11] M. Harasimowicz, P. Orluk, G Zakrzewska-Trznadel, et al. Application of polyimidemembranes for biogas purification and enrichment[J]. Journal of Hazardous Materials,2007, 144(3): 698-702.
    
    [12] Y. Kim, E. Kang, Y. S. Kwon, et al. Electrical properties of silica-polyimide compositedielectric thin films prepared via sol-gel reaction and thermal imidization[J]. SyntheticMetals, 1997,85,1399-1400.
    
    [13] J. Wen, G L. Wilkes. Organic/Inorganic Hybrid Network Materials by the Sol-GelApproach[J]. Chem. Mater., 1996, 8(8): 1667-1681.
    
    [14] F. Qiu, H. Xu, Y. Cao, et al. Nonlinear optical materials: Synthesis, characterizations,thermal stability and electro-optical properties[J]. Materials Characterization, 2007, 58(3):275-283.
    
    [15] F. Qiu, Y. Cao, H. Xu, et al. Synthesis and properties of polymer containing azo-dyechromophores for nonlinear optical applications[J]. Dyes and Pigments, 2007, 75(2):454-459.
    
    [16] Y. A. Shchipunov, T. Y. Karpenko. Hybrid Polysaccharide-Silica Nanocomposites Preparedby the Sol-Gel Technique[J]. Langmuir, 2004,20(10): 3882-3887.
    
    [17] J. Macan, H. Ivankovic, M. Ivankovic, et al. Study of cure kinetics of epoxy-silicaorganic-inorganic hybrid materials[J]. Thermochimica Acta, 2004,414(2): 219-225.
    
    [18] W. C. Liaw, K. P. Chen. Preparation and characterization of poly(imide siloxane)(PIS)/titania(TiO2) hybrid nanocomposites by sol-gel processes[J]. European PolymerJournal, 2007, 43(6): 2265-2278.
    
    [19] 徐国财,张立德,纳米复合材料[M],化学工业出版社,北京,2002.
    
    [20] Y. Unno, T. Kohriki, Y.Ikegami, et al. Application of Cu-polyimide flex circuit and Al-on-glass pitch adapter for the ATLAS SCT barrel hybrid[J]. Nuclear Instruments and??Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 541(1-2): 286-294.
    
    [21] 王华林,有机聚合物/SiO_2有机无机杂化材料的研究,合肥工业大学博士论文,2006.
    
    [22] P. C. Chiang, W. T. Whang. The synthesis and morphology characteristic study ofBAO-ODPA polyimide/TiO2 nano hybrid films[J]. Polymer, 2003,44(8): 2249-2254.
    
    [23] L. Mascia, Z. Zhang, S. J. Shaw. Carbon fibre composites based on polyimide/silicaceramers: aspects of structure-properties relationship[J]. Composites Part A: AppliedScience and Manufacturing, 1996,27(12): 1211-1221.
    
    [24] X. y. Shang, Z. k. Zhu, J. Yin, et al. Compatibility of Soluble Polyimide/Silica HybridsInduced by a Coupling Agent[J]. Chem. Mater., 2002,14(1): 71-77.
    
    [25] Y. Zhang, Y. Li, G Li, et al. Polyimide-Surface-Modified Silica Tubes: Preparation andCryogenic Properties[J]. Chem. Mater., 2007,19(8): 1939-1945.
    
    [26] C. Xenopoulos, L. Mascia, S. J. Shaw. Variables analysis in the gelation of alkoxysilanesolutions for the production of polyimide-silica hybrids[J]. Materials Science andEngineering: C, 1998,6(2-3): 99-114.
    
    [27] P. Musto, M. Abbate, M. Lavorgna, et al. Microstructural features, diffusion and molecularrelaxations in polyimide/silica hybrids[J]. Polymer, 2006,47(17): 6172-6186.
    
    [28] J. Ren, C. Staudt-Bickel, R. N. Lichtenthaler. Separation of aromatics/aliphatics withcrosslinked 6FDA-based copolyimides[J]. Separation and Purification Technology, 2001,22-23:31-43.
    
    [29] T. M. Su, I. J. Ball, J. A. Conklin, et al. Polyaniline/polyimide blends for pervaporation andgas separation studies[J]. Synthetic Metals, 1997,84(1-3): 801-802.
    
    [30] W. Qiu, Y. Luo, F. Chen, et al. Morphology and size control of inorganic particles inpolyimide hybrids by using SiO2-TiO2 mixed oxide[J]. Polymer, 2003,44(19): 5821-5826.
    
    [31] R. D. M. J.L.Hedrick, D.Yoon. Functional oligomers and reactive copolymers for thegeneration of thin film nanofoams[J]. Polym. Prepr., 1997, 38(1): 987-992.
    
    [32] C. Nan, S. H. Han, J. H. Lee, et al. Intercalation behavior of polyimide/organoclaynanocomposites during thermal imidization[J]. Composites Part B: Engineering, 2004,35(2): 125-131.
    
    [33] L. J. Bian, X. F. Qian, J. Yin, et al. Preparation and properties of rare earth oxide/polyimidehybrids[J]. Polymer Testing, 2002,21(7): 841-845.
    
    [34] T. Agag, T. Koga, T. Takeichi. Studies on thermal and mechanical properties ofpolyimide-clay nanocomposites[J]. Polymer, 2001,42(8): 3399-3408.
    
    [35] C. J. Cornelius, E. Marand. Hybrid inorganic-organic materials based on a6FDA-6FpDA-DABA polyimide and silica: physical characterization studies[J]. Polymer,2002, 43(8): 2385-2400.
    
    [36] L. Yang, Y. Kang, Y. Wang, et al. Synthesis of crown ether-containing copolyimides andtheir pervaporation properties to benzene/cyclohexane mixtures[J]. Journal of MembraneScience, 2005,249(1-2): 33-39.
    
    [37] P. C. Chiang, W. T. Whang, M. H. Tsai, et al. Physical and mechanical properties ofpolyimide/titania hybrid films[J]. Thin Solid Films, 2004,447-448(359-364.
    
    [38] M.-H. Tsai, S. J. Liu, P. C. Chiang. Synthesis and characteristics of polyimide/titania nanohybrid films[J]. Thin Solid Films, 2006, 515(3): 1126-1131.
    
    [39] R. Magaraphan, W. Lilayuthalert, A. Sirivat, et al. Preparation, structure, properties and??thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites[J]. CompositesScience and Technology, 2001, 61(9): 1253-1264.
    
    [40] Y. Imai. Synthesis of new functional silicon2bsaed condensation polymers[J]. J MacromolSci Chem, 1991, A28: 1115 -1135.
    
    [41] A. U. K Yano, A Okada.. synthesis and properties of polyimide-clay hybrid[J]. J Polym Sci,Polym Chem, 1997, 35: 2289-2294.
    
    [42] W.H.G.M Ree , Y Kim. The film of organic polymer composites with inorganic aerogelsas dielectric materals : polymer chain orientation and properties[J]. Polym Bull, 1995, 35:215-222.
    
    [43] Y. H. Zhang, Y. Li, S. Y. Fu, et al. Synthesis and cryogenic properties of polyimide-silicahybrid films by sol-gel process[J]. Polymer, 2005,46(19): 8373-8378.
    
    [44] P. Musto, G Ragosta, G Scarinzi, et al. Toughness enhancement of polyimides by in situgeneration of silica particles[J]. Polymer, 2004,45(12): 4265-4274.
    
    [45] S. Q. Lai, T. S. Li, F. D. Wang, et al. The effect of silica size on the friction and wearbehaviors of polyimide/silica hybrids by sol-gel processing[J]. Wear, 2007, 262(9-10):1048-1055.
    
    [46] C. Park, S. E. Lowther, J. G SmithJr, et al. Polyimide-silica hybrids containing novelphenylethynyl imide silanes as coupling agents for surface-treated titanium alloy[J].International Journal of Adhesion and Adhesives, 2000,20(6): 457-465.
    
    [47] M.-H. Tsai, P. C. Chiang, W. T. Whang, et al. Synthesis and characteristics ofpolyimide/siloxane hybrid films for reliability adhesion[J]. Surface and CoatingsTechnology, 2006,200(10): 3297-3302.
    
    [48] N. Furukawa, M. Yuasa, Y. Kimura. Characterization of polysiloxane-block-polyimideswith silicate group in the polysiloxane segments[J]. Polymer, 1999,40(7): 1853-1862.
    
    [49] C. Hibshman, C. J. Cornelius, E. Marand. The gas separation effects of annealingpolyimide-organosilicate hybrid membranes[J]. Journal of Membrane Science, 2003,211(1):25-40.
    
    [50] S. Kripotou, P. Pissis, V. A. Bershtein, et al. Dielectric studies of molecular mobility inhybrid polyimide-poly(dimethylsiloxane) networks[J]. Polymer, 2003,44(9): 2781-2791.
    
    [51] M. E. Wright, B. J. Petteys, A. J. Guenthner, et al. Chemical Modification of FluorinatedPolyimides: New Thermally Curing Hybrid Polymers with POSS[J]. Macromolecules, 2006,39(14): 4710-4718.
    
    [52] C. Park, J. J. G Smith, J. W. Cornell, et al. Polyimide/silica hybrid-clay nanocomposites[J].Polymer, 2005,46(23): 9694-9701.
    
    [53] D. M. Delozier, R. A. Orwoll, J. F. Cahoon, et al. Preparation and characterization ofpolyimide/organoclay nanocomposites[J]. Polymer, 2002,43(3): 813-822.
    
    [54] D. M. Delozier, R. A. Orwoll, J. F. Cahoon, et al. Polyimide nanocomposites prepared fromhigh-temperature, reduced charge organoclays[J]. Polymer, 2003,44(8): 2231-2241.
    
    [55] 李传峰,钟顺和.聚酰亚胺-二氧化硅杂化膜的制备与表征[J].催化学报,2001,22(5): 449-452.
    
    [56] Y. H. Zhang, J. T. Wu, S. Y. Fu, et al. Studies on characterization and cryogenic mechanical properties of polyimide-layered silicate nanocomposite films[J]. Polymer, 2004, 45(22): 7579-7587.
    
    [57] Y.-H. Zhang, S.-Y. Fu, R. K. Y. Li, et al. Investigation of polyimide-mica hybrid films for??cryogenic applications[J]. Composites Science and Technology, 2005, 65(11-12):1743-1748.
    
    [58] B. Shi, Y. Wu, J. Liu. Vapor permeation separation of MeOH/MTBE throughpolyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes[J]. Desalination, 2004,161(1): 59-66.
    
    [59] M. H. Tsai, W. T. Whang. Low dielectric polyimide/poly(silsesquioxane)-likenanocomposite material[J]. Polymer, 2001,42(9): 4197-4207.
    
    [60] L. Jiang, J. Liu, D. Wu, et al. A methodology for the preparation of nanoporous polyimidefilms with low dielectric constants[J]. Thin Solid Films, 2006, 510(1-2): 241-246.
    
    [61] B.-J. Chang, Y. H. Chang, D. K. Kim, et al. New copolyimide membranes for thepervaporation of trichloroethylene from water[J]. Journal of Membrane Science, 2005,248(1-2): 99-107.
    
    [62] F. Qiu, Y. Zhou, J. Liu, et al. Preparation, morphological and thermal stability ofpolyimide/silica hybrid material containing dye NBDPA[J]. Dyes and Pigments, 2006,71(1): 37-42.
    
    [63] F. X. Qiu, Y. M. Zhou, J. Z. Liu. The synthesis and characteristic study of6FDA-6FHP-NLO polyimide/SiO2 nanohybrid materials[J]. European Polymer Journal,2004,40(4): 713-720.
    
    [64] E. Espuche, L. David, C. Rochas, et al. In situ generation of nanoparticulate lanthanum(Ⅲ)oxide-polyimide films: characterization of nanoparticle formation and resulting polymerproperties[J]. Polymer, 2005,46(17): 6657-6665.
    
    [65] C. Cornelius, C. Hibshman, E. Marand. Hybrid organic-inorganic membranes[J].Separation and Purification Technology, 2001,25(1-3): 181-193.
    
    [66] M. Smaihi, J. C. Schrotter, C. Lesimple, et al. Gas separation properties of hybridimide-siloxane copolymers with various silica contents[J]. Journal of Membrane Science,1999, 161(1-2): 157-170.
    
    [67] J. Compton, D. Thompson, D. Kranbuehl, et al. Hybrid films of polyimide containing insitu generated silver or palladium nanoparticles: Effect of the particle precursor and of theprocessing conditions on the morphology and the gas permeability[J]. Polymer, 2006,47(15): 5303-5313.
    
    [68] C. J. Cornelius, E. Marand. Hybrid silica-polyimide composite membranes: gas transportproperties[J]. Journal of Membrane Science, 2002,202(1-2): 97-118.
    
    [69] C. Hibshman, M. Mager, E. Marand. Effects of feed pressure on fluorinatedpolyimide-organosilicate hybrid membranes[J]. Journal of Membrane Science, 2004,229(1-2): 73-80.
    
    [70] S. Duo, M. Li, M. Zhu, et al. Resistance of polyimide/silica hybrid films to atomic oxygenattack[J]. Surface and Coatings Technology, 2006,200(24): 6671-6677.
    
    [71] 杨俊华.有机硅改性的聚酰亚胺[J].化工新型材料,1991,10):8-13.
    
    [72] T. M. I. Laius L A Polyimides :Synthesis and Characterization, Kluwer Academic Publishers, New York, 1984,295-309.
    
    [73] M. Bennett, B. J. Brisdon, R. England, et al. Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams[J]. Journal of Membrane Science, 1997, 137(1-2): 63-88.
    
    [74]石尔.硅橡胶(PDMS)复合膜结构及渗透蒸发应用研究,四川大学博士论文,2007,p.??29.
    
    [75] B. Smitha, D. Suhanya, S. Sridhar, et al. Separation of organic-organic mixtures by pervaporation-a review[J]. Journal of Membrane Science, 2004,241(1): 1-21.
    
    [76] 刘茉娥等,膜分离技术,化学工业出版社,北京,1998,p.1-19,140-180.
    
    [77]王学松,膜分离技术及其应用,科学出版社,北京,1994,p.132-145.
    
    [78]蒋维钧等,新型传质分离技术,化学工业出版社,北京,1992,p.149-160.
    
    [79]徐又一,徐志康,高分子膜材料,化学工业出版社,北京,2005.
    
    [80]李军,许振良,刘洪来等.乙醇和水在聚酰亚胺膜中的溶解和传递现象研究(Ⅱ)[J]. 化工学报,1997,48(5):524~53 1.
    
    [81]李军、许振良、刘洪来等.乙醇和水在聚酰亚胺膜中的溶解和传递现象研究(Ⅰ)(吸 收和解吸实验)[J].化工学报,1997,48(5):517-523.
    
    [82]沈立强,徐志康,徐又一.聚酰亚胺中空纤维膜研究进展[J].功能材料,2000,(31): 20-22.
    
    [83] V. V. K. Haruhiko Ohya, Svetlana I. Semenova, Polyimide Membranes, Gordon and Breach Publisher, Tokyo, 1996.
    
    [84]麻洪,段晓芳,陈萍等.含偶氮类非线性光学活性侧基的聚酰亚胺的合成及表征[J].高 分子学报,1997,(6):652-657.
    
    [85] 印杰,房建华,徐宏杰等.共缩聚型可溶性聚酰亚胺的合成与性能研究(Ⅱ)[J].高 分子材料科学与工程,1998,14(4):50-55.
    
    [86] 路庆华,孙立民,王宗光等.结构型感光性聚酰亚胺的研究[J].高分子材料科学与工 程,1998,14(5):96-98.
    
    [87] 黄健,黄培,时钧.一种均苯型可溶性聚酰亚胺的研究[J].化工新型材料,2002,30(5): 28-31.
    
    [88] 史立新,崔连复.聚酰亚胺合成研究[J].沈阳化工学院学报,1994,8(4):272-276.
    
    [89] 彭凤玲,聚酰亚胺/无机物纳米复合薄膜材料的研究,西北大学硕士论文,2004.
    
    [90] A. I. E. John A Kreuz, F P Gay. Studies of thermal cyclizations of polyamic acids andtertiary amine salts[J]. J Polym Sci, 1966,4: 2607-2616.
    
    [91] Y. Ren, M. Baba, Y. Oishi. Preparation and characterization of organic thin films onsubstrates and self-supporting films by RF sputtering of polyimide films[J]. JapaneseJournal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2005,44(4A): 1987-1990.
    
    [92] Y. Seo, S. M. Lee. D. Y. Kim, et al. Kinetic Study of the Imidization of a Poly(ester amicacid) by FT-Raman Spectroscopy[J]. Macromolecules, 1997, 30(13): 3747-3753.
    
    [93] E. Pyun, R. J. Mathisen Chong S. P. Sung. Kinetics and Mechanisms for ThermalImidization of a Polyamic Acid Studied by Ultraviolet-Visible Spectroscopy[J].Macromolecules, 1989,22(3): 1174-1183.
    
    [94] 黄培,耿洪斌,程茹.长链聚酰胺酸的热环化动力学[J].高分子学报,2004,(2):256-262.
    
    [95]卢红斌,何天白.聚酰亚胺反应动力学研究进展[J].高分子材料科学与工程,2000, 16(5):9-12.
    
    [96] S. M. Mominul Alam, T. Agag, T. Kawauchi, et al. Organic-inorganic hybrids containing polyimide, organically modified clay and in situ formed polydimethylsiloxane[J]. Reactive and Functional Polymers, 2007, 67(11): 1218-1224.
    
    [97] C. T. Yen, W. C. Chen, D. J. Liaw, et al. Synthesis and properties of new polyimide-silica hybrid films through both intrachain and interchain bonding[J]. Polymer, 2003, 44(23):??7079-7087.
    
    [98]柯以侃,董慧茹,分析化学手册第三分册[M],化学工业出版社,北京,1998.
    
    [99] 李传峰,钟顺和.聚酰亚胺-二氧化硅复合膜的制备与表征[J].催化学报,2001,22(5): 449-452.
    
    [100]J.A.迪安,兰氏化学手册[M],科学出版社,北京,2003.
    
    [101] P. Musto, G Ragosta, G Scarinzi, et al. Polyimide-silica nanocomposites: spectroscopic,morphological and mechanical investigations[J]. Polymer, 2004,45(5): 1697-1706.
    
    [102] I.L. Karpova, T.A. Shantalii, K.S. Dragan. Synthesis and thermomechanicalcharacterization of polyimides reinforced with the sol-gel derived nanoparticles[J]. Scienceand Technology of Advanced Materials 2003,4: 115-119.
    
    [103] S. Hong-Son Ryang, N.Y., silicone-imide copolymers and method for making, in: GeneralElectric Company, Schenectady, N.Y., united states, 1983.
    
    [104]虞鑫海.聚酰亚胺硅氧烷共聚物的合成[J].化工新型材料,2002,30(9):1-5.
    
    [105] M. sugo, Takasaki(JP), H. Kato, et al. polyimide silicone resin, its solution composition,and polyimide silicone resin film[P], US 6,703,133 B2,2004.
    
    [106] K. Y. Wang, T.-S. Chung, R. Rajagopalan. Dehydration of Tetrafluoropropanol (TFP) byPervaporation via Novel PBI/BTDA-TDI/MDI co-polyimide (P84) Dual-layer HollowFiber Membranes[J]. Journal of Membrane Science, 2007,287(1): 60-66.
    
    [107] T. Nakagawa, T. Nishimura, A. Higuchi. Morphology and gas permeability in copolyimidescontaining polydimethylsiloxane block[J]. Journal of Membrane Science, 2002, 206(1-2):149-163.
    
    [108]郝建军,江璐霞.含硅聚酰亚胺的进展[J].化工新型材料,1993,(9):11-16.
    
    [109] M. Krea, D. Roizard, N. Moulai-Mostefa, et al. New copolyimide membranes with highsiloxane content designed to remove polar organics from water by pervaporation[J]. Journalof Membrane Science, 2004,241(1): 55-64.
    
    [110] R. A. Potyrailo, T. M. Sivavec. Boosting sensitivity of organic vapor detection with siliconeblock polyimide polymers[J]. Analytical Chemistry, 2004, 76(23): 7023-7027.
    
    [111] J. Brus, J. Dybal, P. Sysel, et al. Mobility, Structure, and Domain Size inPolyimide-Poly(dimethylsiloxane) Networks Studied by Solid-State NMR Spectroscopy[J].Macromolecules, 2002, 35(4): 1253-1261.
    
    [112] C. A. Arnold, J. D. Summers, Y. P. Chen, et al. Structure-property behaviour of solublepolyimide-polydimethylsiloxane segmented copolymers[J]. Polymer, 1989,30(6): 986-995.
    
    [113] A. Tiwari, A. K. Nema, C. K. Das, et al. Thermal analysis of polysiloxanes, aromaticpolyimide and their blends[J]. Thermochimica Acta, 2004,417(1): 133-142.
    
    [114]徐炽焕.含硅聚酰亚胺的发展现状[J].上海化工,1999,24(11):28-31.
    
    [115] T. Miwa, Y. Okabe, M. Ishida. Effects of precursor structure and imidization process onthermal expansion coefficient of polymide (BPDA/PDA)[J]. Polymer, 1997, 38(19):4945-4949.
    
    [116] L. Wang, Z. Zhao, J. Li, et al. Synthesis and characterization of fluorinated polyimides forpervaporation of n-heptane/thiophene mixtures[J]. European Polymer Journal, 2006, 42(6):1266-1272.
    
    [117] K. R. Carter, R. A. DiPietro, M. I. Sanchez, et al. Polyimide Nanofoams Based on OrderedPolyimides Derived from Poly(amic alkyl esters): PMDA/4-BDAF[J]. Chem. Mater., 1997,9(1): 105-118.
    
    [118] K. Inomata, Y. Ozeki, S. Shimomura, et al. Structural study on rodlike aromatic polyimidesderived by solid-state thermal and chemical imidization of poly(amic n-dodecyl ester)[J].Journal of Molecular Structure, 2005,739(1-3): 117-123.
    
    [119] Y. Q. Li, Q. Y. Pan, M. Li, et al. Preparation and mechanical properties of novelpolyimide/T-silica hybrid films[J]. Composites Science and Technology, 2007, 67(1):54-60.
    
    [120] J. P. Garcia Villaluenga, A. Tabe-Mohammadi. A review on the separation ofbenzene/cyclohexane mixtures by pervaporation processes[J]. Journal of MembraneScience, 2000,169(2): 159-174.
    
    [121]沈立强,徐志康,徐又一.聚酰亚胺中空纤维膜研究进展[J].功能材料,2000,(31): 20-22.
    
    [122]刘茉娥,膜分离技术,化学工业出版社,北京,1998.
    
    [123] M. Y. Teng, C. L. Li, K. R. Lee, et al. Permselectivities of 3,3',4,4' benzhydrol tetraacarboxylic dianhydride based polyimide membrane for pervaporation[J]. Desalination, 2006, 193(1-3): 144-151.
    
    [124]陈镇,胡纲,陈翠仙等.聚酰亚胺渗透汽化膜的研究(Ⅱ)聚酰亚胺化学结构对膜渗透 汽化性能的影响[J].膜科学与技术,2004,(03).
    
    [125] N. Tanihara, K. Tanaka, H. Kita, et al. Pervaporation of Organic Liquid-Mixtures throughMembranes of Polyimides Containing Methyl-Substituted Phenylenediamine Moieties[J].Journal of Membrane Science, 1994,95(2): 161-169.
    
    [126] J. Hao, K. Tanaka, H. Kita, et al. The pervaporation properties of sulfonyl-containingpolyimide membranes to aromatic/aliphatic hydrocarbon mixtures[J]. Journal of MembraneScience, 1997,132(1): 97-108.
    
    [127] W. Xu, D. R. Paul, W. J. Koros. Carboxylic acid containing polyimides for pervaporationseparations of toluene/iso-octane mixtures[J]. Journal of Membrane Science, 2003,219(1-2): 89-102.
    
    [128] X. Qiao, T.-S. Chung, K. P. Pramoda. Fabrication and characterization of BTDA-TDI/MDI(P84) co-polyimide membranes for the pervaporation dehydration of isopropanol[J].Journal of Membrane Science, 2005,264(1-2): 176-189.
    
    [129] L. Wang, Y. Tian, H. Ding, et al. Microstructure and properties of organosolublepolyimide/silica hybrid films[J]. European Polymer Journal, 2006,42(11): 2921-2930.
    
    [130] T.-S. Chung, W. F. Guo, Y. Liu. Enhanced Matrimid membranes for pervaporation byhomogenous blends with polybenzimidazole (PBI)[J]. Journal of Membrane Science, 2006,271(1-2): 221-231.
    
    [131] Y. Nagase, S. Mori, M. Egawa, et al. Preparation of Polyimide Polydimethylsiloxane GraftCopolymer and Its Permeabilities for Gases and Liquids[J]. MakromolekulareChemie-Macromolecular Chemistry and Physics, 1990, 191(10): 2413-2421.
    
    [132] E. I. Akiyama, Y. Takamura, Y. Nagase. Studies on Silicone-Grafted Copolyimides .3.Synthesis of Soluble Polyimide Polydimethylsiloxane Graft Copolymer and Application toSeparation Membrane[J]. Makromolekulare Chemie-Macromolecular Chemistry andPhysics, 1992, 193(6): 1509-1519.
    
    [133] H. Yanagishita, J. Arai, T. Sandoh, et al. Preparation of polyimide composite membranesgrafted by electron beam irradiation[J]. Journal of Membrane Science, 2004, 232(1-2):93-98.
    
    [134] H. Yanagishita, D. Kitamoto, T. Ikegami, et al. Preparation of photo-induced graft fillingpolymerized membranes for pervaporation using polyimide with benzophenone structure[J].Journal of Membrane Science, 2002,203(1-2): 191-199.
    
    [135] O. Ohtani, Y. Goto, K. Okamoto, et al. Synthesis of self-standing mesostructuredphenylene-silica-polyimide hybrid films[J]. Materials Letters, 2006,60(2): 177-179.
    
    [136] X. Qiao, T.-S. Chung, R. Rajagopalan. Zeolite filled P84 co-polyimide membranes fordehydration of isopropanol through pervaporation process[J]. Chemical EngineeringScience, 2006,61(20): 6816-6825.
    
    [137] T. Suzuki, Y. Yamada. Physical and gas transport properties of novel hyperbranchedpolyimide-silica hybrid membranes[J]. Polymer Bulletin, 2005, 53(2): 139-146.
    
    [138] T. Suzuki, Y. Yamada, J. Sakai. Gas transport properties of ODPA-TAPOB hyperbranchedpolyimide-silica hybrid membranes[J]. High Performance Polymers, 2006,18(5): 655-664.
    
    [139]王玉玲,张传卫,凌文凯等.聚酰亚胺/二氧化硅纳米复合材料的制备及渗透汽化性能 [J].高分子材料科学与工程,2003,(05):180-186.
    
    [140] H. Yanagishita, T. Nakane, H. Nozoye, et al. Preparation of Polyimide CompositeMembrane by Chemical-Vapor-Deposition and Polymerization Technique (Cvdp)[J].Journal of Applied Polymer Science, 1993,49(4): 565-572.
    
    [141] H. Yanagishita, D. Kitamoto, K. Haraya, et al. Separation performance of polyimidecomposite membrane prepared by dip coating process[J]. Journal of Membrane Science,2001, 188(2): 165-172.
    
    [142] J.-H. Kim, K.-H. Lee, S. Y. Kim. Pervaporation separation of water from ethanol throughpolyimide composite membranes[J]. Journal of Membrane Science, 2000,169(1): 81-93.
    
    [143] T. Gupta, N. C. Pradhan, B. Adhikari. Separation of phenol from aqueous solution bypervaporation using HTPB-based polyurethaneurea membrane[J]. Journal of MembraneScience, 2003,217(1-2): 43-53.
    
    [144] H. Tang, H. Feng, H. Luo, et al. The aggregation state of polyimide[J]. European PolymerJournal, 1997,33(4): 519-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700