锂离子电池硅负极的失效行为与性能改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高容量负极材料已经成为锂离子电池发展的目标之一,而硅材料因具有高达4200mAh·g~(-1)的理论比容量而成为研究热点之一。但是硅负极材料在电化学循环过程中存在较大的体积变化,从而造成了电化学循环性能的迅速恶化。因此,有效抑制硅的体积变化造成的结构破坏、提高其电化学循环性能是本领域急待解决的问题。本文从晶体结构、电极组成、材料设计三方面研究了锂离子电池硅负极材料的失效行为及其电化学性能。
     采用电化学阻抗谱和X-射线光电子能谱(XPS)研究了硅电极表面固体电解质(SEI)膜的形成过程。结果表明,硅在0.5~0.8V之间形成SEI膜,且SEI膜在0.05V之上的稳定性较高。在0.05V以下,Li_xSi结构的变化造成了SEI膜逐渐增厚。硅表面SEI膜的成分中,有机物成分以醚类或醇类物质为主,而无机物以LiF为主。
     利用第一性原理计算方法研究了硅在合金化过程中形成的晶态Li_xSi的几何结构、电子结构等微观变化。结果表明,在硅与锂的电化学合金化过程中,晶态硅逐渐发生相变转化为Li_xSi。晶态硅中的Si-Si共价作用逐渐减弱,键长逐渐增大并最终断裂,四面体结构逐渐遭到破坏。随着Li_xSi中锂含量的增加,晶态硅的电子局域化程度逐渐降低,锂原子轨道上的p电子逐渐转移到硅原子的p轨道,这使得Li_(15)Si_4具有了金属导电性,电子共有化程度有所提高。锂与硅在合金化过程中逐渐形成Li-Si化学键,并从离子/共价混合键转变为弱共价键。在晶态硅向Li15Si4的转变过程中,体积膨胀为原来的369.2%。而晶体各向异性的特点使得材料在不同宏观方向上的体积膨胀程度有所不同,由此产生的内应力导致材料颗粒的破裂。结合电化学阻抗谱和电极形貌的变化可以将硅的电化学失效原因归结为“电子传输通道中断”,即微观晶体结构的变化导致宏观颗粒的破裂,进而导致颗粒间的电子传输路径中断,造成电化学性能的下降。
     研究了退火处理对硅电极电化学性能的影响。结果显示,在粘结剂(聚偏氟乙烯)熔点之上对电极进行退火处理可以显著提高电化学性能。剥离实验和电极形貌显示,退火之后,粘结剂的粘结力显著提高,电极结构更加致密,这些都有利于抑制硅的体积变化对电极结构稳定性造成的破坏,减小电池阻抗。
     研究了不同电极组成和结构对电化学性能的影响。结果表明,硅含量和电极密度对硅电极的电化学性能影响较大。当硅含量较小时,充放电循环初期硅的体积变化对电极结构稳定性的影响较小,储锂容量较高,这也使得循环后期的脱/嵌锂程度和相应体积变化增大,因此其容量以一定的速率持续衰减。而硅含量增加时,充放电循环初期硅的体积变化对电极结构稳定性的影响较大,衰减较快,这也造成后期循环过程中的脱/嵌锂程度较小,体积变化也相应减小,故在后期循环过程中能够保持较好的循环稳定性。由此可以推断:调节充放电电压范围、控制储锂容量可以改变硅的电化学循环稳定性。此外,在集流体/活性材料涂层界面加入导电碳层可以提高界面稳定性,降低界面接触电阻,提高电子传输效率,显著提高电化学性能。
     纳米硅容易发生团聚和电化学烧结现象,通过表面包覆技术可以显著改善此现象。以聚乙烯醇和聚偏氟乙烯为碳源制备得到的核/壳包覆结构可以显著提高纳米硅的电化学性能,其可逆容量在30次循环之后均保持在1000mAh·g~(-1)以上,容量保持率均在97%以上。其中,聚乙烯醇具有表面活性剂和碳源的双重作用,在液相混合过程中,聚乙烯醇可以吸附在纳米硅表面形成分子膜,分子膜经过碳化后可以形成碳层。而聚偏氟乙烯也可以在纳米硅表面形成致密的碳层。由于聚乙烯醇热解碳的导电性高于聚偏氟乙烯热解碳,因此,以聚乙烯醇为碳源得到的纳米复合材料具有更好的倍率性能,在电流密度为1000mA·g~(-1)时,其可逆容量可以保持在600mAh·g~(-1)以上。
     通过将微米尺度的硅分散、镶嵌到导电碳或金属纳米粒子中可以有效抑制硅的体积变化对材料结构造成的破坏、提高材料导电性和电化学循环稳定性。其中,以沥青热解碳包覆硅时,硅的可逆容量在经过100次循环后可以保持在1200mAh·g~(-1)以上。当硅表面形成以Co纳米粒子为主、并含有少量碳的包覆层时,复合材料的导电性得到了显著提高,其可逆容量在50次循环后可以保持在500mAh·g~(-1)以上,相对于未改性的硅材料有了显著提高。
Exploring high-capacity anode material has been one of the targets for lithium ion batteries and silicon is one of the hot topics as anode candidate due to the high theoretical capacity of 4200mAh·g~(-1). However, the huge volume change during electrochemical charge/discharge cycle decays the cycle performance of silicon. Suppressing the structural destruction caused by volume change and enhancing the cycle performance have been the research topics for silicon material. In this dissertation, crystal structure, electrode structure and material designs were investigated to from the electrochemical performance of silicon anode.
     Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) were employed to investigate the formation of solid electrolyte interphase (SEI) on silicon surface. SEI film was found to form in range of 0.8~0.5V and was stable above 0.05V. Below 0.05V, SEI film became thick due to the volume change of Li_xSi. X-ray photoelectron spectroscopy (XPS) revealed that SEI film on the surface of lithiated silicon was comprised of organic compounds with aether-/hydroxyl groups and inorganic compound of LiF.
     The geometric and electronic structures of crystalline Li_xSi formed during lithiation were investigated by first-principle calculations. In processes of the phase transformation of crystalline silicon to crystalline Li_xSi, the results showed that the covalent interaction of Si-Si was weakened as the Si-Si bond length increased and the tetrahedron structure was destoryed. As the lithium contents in Li_xSi increased, Li-p electrons transferred to Si-p orbits, which generated the metallic conductivity of Li15Si4 and improved the communization degree of the electrons. Lithium was bonded with silicon and the bond type was changed from covalence/ionicity to weak covalence. The volume change was 369.2% from silicon to Li_(15)Si_4. As the volume was expanded, the anisotropy of the crystalline made the expansion degree of macro-particle in various directions different, resulting in internal stress acted on particle and the final cracking of the particle. Combined EIS with morphology change of the electrode, the fading mechanism of silicon could be ascribed to the model of“cutting off the path of electron transportation”, which demonstrated that the cracking of macro-particle caused by the volume change of microstructure cut off the path of electron transportation and decayed the electrochemical performance of silicon.
     The influence of annealing process was studied and it was found that the electrochemical performance was enhanced greatly by annealing the electrode at the temperature above the melt point of polyvinylidene fluoride (PVDF). The peeling test and morphology change of electrode showed that the bond strength of PVDF binder was enhanced and the electrode structure became compact after annealing, which was good for restraining the destruction on electrode stability caused by volume change of silicon and reducing the cell impedance.
     The influence of electrode composites and structure was investigated and the results demonstrated that the electrochemical performance was affected by silicon amount and electrode density. In case of small silicon amount, the influence of volume change of silicon on electrode structure during earlier cycles was relatively low and thus the lithium storage performance was good, which made the lithium insertion/extraction degree and the volume change relatively large in later cycles. Therefore, the capacity was kept fading during cycles. In case of more silicon, the influence of volume change of silicon on electrode structure was relatively severe in earlier stage and thus the insertion/extraction degree and the volume change were relatively small in later cycles. Therefore, good cycle performance was obtained in later cycles. Based on above phenomenon, it was deduced that controlling the voltage range in cycles could vary the cycle stability of silicon anode. Besides, sandwiching a carbon layer at the current collector/actives coating interface was found to stabilize the interface and reduce the contact resistance, finally improving the electron transportation properties and the electrochemical performance.
     The coating technique is helpful to restrain the agglomeration and electrochemical sintering of nanosilicon. Here polyvinyl alcohol (PVA) and PVDF were employed as carbon source to construct the core/shell structure to enhance the performance of nanosilicon, both of which exhibited high capacity above 1000mAh·g~(-1) for 30 cycles with retention above 97%. The PVA played the dual roles of surfactant and carbon source and could adsorb on the surface of silicon in the solution to form the molecular membrane. By pyrolysis process, the molecular membrane was turned into the carbon coating. Meanwhile, PVDF binder could also form a compact carbon coating on the surface of silicon. It was found that the PVA-pyrolyzed carbon had higher conductivity than PVDF-pyrolyzed carbon, which resulted in the enhanced rate capability compared with PVDF carbon source, i.e. 600mAh·g~(-1) at the current density of 1000mA·g~(-1).
     Dispersing or inlaying micron-scaled silicon in conductive carbon or nanosized metal matrix could restrain the destruction on material structure caused by volume change of silicon and enhance the conductivity and electrochemical stability effectively. For example, by coating silicon with pitch-pyrolyzed carbon, the silicon would exhibit the capacity above 1200mAh·g~(-1) for 100 cycles. Meanwhile, by coating nanosized Co metal and trace carbon on surface of silicon, the conductivity of the prepared composite was improved remarkably and the capacity was remained above 500mAh·g~(-1) for 50 cycles, which was much better than that of the untreated silicon.
引文
1 S. Flandrois, B. Simon. Carbon materials for lithium-ion rechargeable batteries. Carbon. 1999, 37(2): 165-180
    2 M. Noel, R. Santhanam. Electrochemistry of graphite intercalation compounds. Journal of Power Sources. 1998, 72(1): 53-65
    3 Q. Wang, H. Li, L. Chen, et al. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics. 2002, 152-153: 43-50
    4 U. Alpen. Li3N: A promising Li ionic conductor. Journal of Solid State Chemistry. 1979, 29(3): 379-392
    5 M. Nishijima, T. Kagohashi, Y. Takeda, et al. Electrochemical studies of a new anode material, Li3-xMxN (M = Co, Ni, Cu). Journal of Power Sources. 1997, 68(2): 510-514
    6 M. Nishijima, Y. Takeda, N. Imanishi, et al. Li Deintercalation and Structural Change in the Lithium Transition Metal Nitride Li3FeN2. Journal of Solid State Chemistry. 1994, 113(1): 205-210
    7 K. Zhong, X. Xia, B. Zhang, et al. MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources. 2010, 195(10): 3300-3308
    8 J.S. Chen, X.W. Lou. The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power Sources. 2010, 195(9): 2905-2908
    9 C. Lai, Y.Y. Dou, X. Li, et al. Improvement of the high rate capability of hierarchical structured Li4Ti5O12 induced by the pseudocapacitive effect. Journal of Power Sources. 2010, 195(11): 3676-3679
    10 T. Yuan, R. Cai, P. Gu, et al. Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation. Journal of Power Sources. 2010, 195(9): 2883-2887
    11 R. Benedek, M.M. Thackeray. Lithium reactions with intermetallic-compound electrodes. Journal of Power Sources. 2002, 110(2): 406-411
    12 H. Li, L. Shi, Q. Wang, et al. Nano-alloy anode for lithium ion batteries. Solid State Ionics. 2002, 148(3-4): 247-258
    13 Z. Chen, J. Qian, X. Ai, et al. Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries. Journal of PowerSources. 2009, 189(1): 730-732
    14 J. Li, J.R. Dahn. An In Situ X-Ray diffraction study of the reaction of Li with crystalline Si. Journal of The Electrochemical Society. 2007, 154(3): A156-A161
    15 M.N. Obrovac, L. Christensen. Structural changes in silicon anode during lithium insertion/extraction. Electrochemical and Solid-State Letters. 2004, 7(5): A93-A96
    16 V.A. Sethuraman, M.J. Chon, M. Shimshak, et al. In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation. Journal of Power Sources. 2010, 195(15): 5062-5066
    17 U. Kasavajjula, C. Wang, A.J. Appleby. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources. 2007, 163(2): 1003-1039
    18 X.N. Zhang, P.X. Huang, G.R. Li, et al. Si-AB5 composites as anode materials for lithium ion batteries. Electrochemistry Communications. 2007, 9(4): 713-717
    19 Z.W. Lu, G. Wang, X.P. Gao, et al. Electrochemical performance of Si–CeMg12 composites as anode materials for Li-ion batteries. Journal of Power Sources. 2009, 189(1): 832-836
    20 K.M. Lee, Y.S. Lee, Y.W. Kim, et al. Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling. Journal of Alloys and Compounds. 2009, 472(1-2): 461-465
    21 Z.B. Sun, X.D. Wang, X.P. Li, et al. Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries. Journal of Power Sources. 2008, 182(1): 353-358
    22 C.H. Doh, H.-M. Shin, D.H. Kim, et al. A new composite anode, Fe-Cu-Si/C for lithium ion battery. Journal of Alloys and Compounds. 2008, 461(1-2): 321-325
    23 Y.S. Lee, J.H. Lee, Y.W. Kim, et al. Rapidly solidified Ti–Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta. 2006, 52(4): 1523-1526
    24 S. Yoon, S.-I. Lee, H. Kim, et al. Enhancement of capacity of carbon-coated Si-Cu3Si composite anode using metal-organic compound for lithium-ion batteries. Journal of Power Sources. 2006, 161(2): 1319-1323
    25 J.M. Yan, H.Z. Huang, J. Zhang, et al. The study of Mg2Si/carbon composites as anode materials for lithium ion batteries. Journal of Power Sources. 2008, 175(1): 547-552
    26 G. X. Wang, L. Sun, D. H. Bradhurst, et al. Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. Journal of Alloys and Compounds. 2000, 306(1-2): 249-252
    27 M.S. Park, Y.J. Lee, S. Rajendran, et al. Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries. Electrochimica Acta. 2005, 50(28): 5561-5567
    28 H.Y. Lee, Y.L. Kim, M.-K. Hong, Sung-man Lee, Carbon-coated Ni20Si80 alloy composite as an anode material for lithium-ion batteries. Journal of Power Sources. 2005, 141(1): 159-162
    29 M.Q. Li, M.Z. Qu, X.Y. He, et al. Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries. Electrochimica Acta. 2009, 54(19): 4506-4513
    30 S.M. Jang, J. Miyawaki, M. Tsuji, et al. The preparation of a novel Si-CNF composite as an effective anodic material for lithium–ion batteries. Carbon. 2009, 47(15): 3383-3391
    31 Z. Luo, D. Fan, X. Liu, et al. High performance silicon carbon composite anode materials for lithium ion batteries. Journal of Power Sources. 2009, 189(1): 16-21
    32 P. Gu, R. Cai, Y. Zhou, et al. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis. Electrochimica Acta. 2010, 55(12): 3876-3883
    33 H. Wolf, Z. Pajkic, T. Gerdes, et al. Carbon-fiber-silicon nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition. Journal of Power Sources. 2009, 190(1): 157-161
    34 Q. Si, K. Hanai, N. Imanishi, et al. Highly reversible carbon–nano-silicon composite anodes for lithium rechargeable batteries. Journal of Power Sources. 2009, 189(1): 761-765
    35 J.H. Lee, W.J. Kim, J.Y. Kim, et al. Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources. 2008, 176(1): 353-358
    36 S.H. Ng, J. Wang, K. Konstantinov, et al. Spray-pyrolyzed silicon/disorderedcarbon nanocomposites for lithium-ion battery anodes. Journal of Power Sources. 2007, 174(2): 823-827
    37 M. Alias, O. Crosnier, I. Sandu, et al. Silicon/graphite nanocomposite electrodes prepared by low pressure chemical vapor deposition. Journal of Power Sources. 2007, 174(2): 900-904
    38 H. Kim, D. Im, S.G. Doo. Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode. Journal of Power Sources. 2007, 174(2): 588-591
    39 X. Wang, Z. Wen, Y. Liu, et al. Preparation and characterization of a new nanosized silicon-nickel-graphite composite as anode material for lithium ion batteries. Journal of Power Sources. 2009, 189(1): 121-126
    40 M.Q. Li, M.Z. Qu, X.Y. He, et al. Electrochemical properties of Li2ZrO3-coated silicon/graphite/carbon composite as anode material for lithium ion batteries. Journal of Power Sources. 2009, 188(2): 546-551
    41 Q. Si, K. Hanai, T. Ichikawa, et al. A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries. Journal of Power Sources. 2010, 195(6): 1720-1725
    42 S.L. Katar, D. Hernandez, A.B. Labiosa, et al. SiN/bamboo like carbon nanotube composite electrodes for lithium ion rechargeable batteries. Electrochimica Acta. 2010, 55(7): 2269-2274
    43 H. Jung, M. Park, S.H. Han, et al. Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries. Solid State Communications. 2003, 125(7-8): 387-390
    44 H. Guo, H. Zhao, C. Yin, et al. A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries. Material Science and Engineering B. 2006, 131(1-3): 173-176
    45 V. Baranchugov, E. Markevich, E. Pollak, et al. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochemistry Communications. 2009, 9(4): 796-800
    46 K.L. Lee, J. Jung, S. Lee, et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources. 2004, 129(2): 270-274
    47 T. Zhang, L.J. Fu, H. Takeuchi. Studies of the structure of vacuum deposited silicon films on metal substrates as anode materials for Li-ion batteries.Journal of Power Sources. 2006, 159(1): 349-352
    48 T. Takamura, M. Uehara, J. Suzuki, et al. High capacity and long cycle life silicon anode for Li-ion battery. Journal of Power Sources. 2006, 158(2): 1401-1404
    49 Y.L. Kim, H.Y. Lee, et al. Electrochemical characteristics of Co-Si alooy and multilayer films as anodes for lithium ion microbatteries. Electrochimica Acta. 2003, 48(18): 2593-2597
    50 J.B. Kim, H.Y. Lee, K.S. Lee, et al. Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochemical Communications. 2003, 5(7): 544-548
    51 S.J. Lee, H.Y. Lee, Y. Park, et al. Si (–Zr)/Ag multilayer thin-film anodes for microbatteries. Journal of Power Sources. 2003, 119-121: 117-120
    52 L.B. Chen, J.Y. Xie, H.C. Yu, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries. Electrochimica Acta. 2008, 53(28): 8149-8153
    53 K.S. Lee, Y.L. Kim, S.M. Lee. Silver alloying effect on the electrochemical behavior of Si-Zr thin film anodes. Journal of Power Sources. 2005, 146(1-2): 464-468
    54 C.K. Chan, R. Ruffo, S.S. Hong, et al. Structural and electrochemical study of the reaction of lithium with silicon nanowires. Journal of Power Sources. 2009, 189(1): 34-39
    55 J.G. Zhang, J. Liu, D. Wang, et al. Vapor-induced solid–liquid–solid process for silicon-based nanowire growth. Journal of Power Sources. 2010, 195(6): 1691-1697
    56 B. La?k, L. Eude, J.P. Pereira-Ramos, et al. Silicon nanowires as negative electrode for lithium-ion microbatteries. Electrochimica Acta. 2008, 53(17): 5528-5532
    57 M.H. Park, M.G. Kim, J. Joo, et al. Silicon Nanotube Battery Anodes. Nano Letters. 2009, 9(11): 3844–3847
    58 H. Ma, F. Cheng, J. Chen, et al. Nest-like silicon nanospheres for high-capacity lithium storage. Advanced Materials. 2007, 19(22): 4067-4070
    59 A. Esmanski, G.A. Ozin. Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Advanced Functional Materials. 2009, 19(12): 1999-2010
    60 J. Li, R.B. Lewis, J.R. Dahn. Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries. Electrochemical Solid-State Letters. 2007, 10(2): A17-A20
    61 B. Lestriez, S. Bahri, I. Sandu, et al. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications. 2007, 9(12): 2801-2806
    62 N. Ding, J. Xu, Y. Yao, et al. Improvement of cycleability of Si as anode for Li-ion batteries. Journal of Power Sources. 2009, 192(2): 644-651
    63 J.S. Bridel, T. Aza?s, M. Morcrette, et al. Key parameters governing the reversibility of Si/Carbon/CMC electrode for Li-ion batteries. Chemistry of Materials. 2010, 22(3): 1229-1241
    64 Y.L. Kim, Y.K. Sun. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochimica Acta. 2008, 53(13): 4500-4504
    65 K.L. Lee, J.Y. Jung, S.W. Lee, et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources. 2004, 129(2): 270-274
    66 C.C. Nguyen, S.W. Song. Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries. Electrochimica Acta. 2010, 55(8): 3026-3033
    67 T. Jiang, S. Zhang, X. Qiu, et al. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochemistry Comunications. 2007, 9(5): 930-934
    68 M. Yoshio, T. Tsumura, N. Dimov. Electrochemical behaviors of silicon based anode material. Journal of Power sources. 2005, 146(1-2): 10-14
    69 J.N. Reimers. Can first principles calculations aid in lithium-ion battery design? Journal of Power Sources. 1995, 54(1): 16-19
    70 G. Ceder, M.K. Aydinol, A.F. Kohan. Application of first-principles calculations to the design of rechargeable Li-batteries. Computational Materials Science. 1997, 8(1-2): 161-169
    71 ?. Benco, J.L. Barras, M. Atanasov, et al. First principles calculation of electrode material for lithium intercalation batteries: TiS2 and LiTi2S4 cubic spinel structures. Journal of Solid State Chemistry. 1999, 145(2): 503-510
    72 R. Benedek, M.M. Thackeray, L.H. Yang. First-principles calculation of atomicstructure and electrochemical potential of Li1+xV3O8. Journal of Power Sources. 1999, 81: 487-490
    73 M.E. Dompablo, G. Ceder. First-principles calculations on LixNiO2: phase stability and monoclinic distortion. Journal of Power Sources. 2003, 119: 654-657
    74 R. Benedek, M.M. Thackeray, L.H. Yang. Atomic structure and electrochemical potential of Li1+xV3O8. Physical Reviews B. 1999, 60(9): 6335-6342
    75 P. Tang, N.A.W. Holzwarth. Electronic structure of FePO4, LiFePO4, and related materials. Physical Review B. 2003, 68(16): 165107
    76 C. Sigala, D. Guyomard, A. Verbaere, et al. Positive electrode materials eith high operating voltage for lithium batteries. Solid State Ionics. 1995, 81(3-4): 167-170
    77 G. Ceder, M.K. Aydinol, A.F. Kohan. Application of first-principles calculations to the design of rechargeable Li-batteries. Computational Materials Science. 1997, 8(1-2): 161-169
    78 L’. Benco, J.L. Barras, M. Atanasov, et al. First-principles prediction of voltages of lithiated oxides for lithium-ion batteries. Solid State Ionics. 1998, 112(3-4): 255-259
    79 J.N. Reimers, J.R. Dahn. Application of ab initio methods for calculation of voltage as a function of composition in electrochemical cells. Physical Review B. 1993, 47(6): 2995-3000
    80 I.A. Courtney, J. S. Tse, Ou Mao, et al. Ab initio calculation of the lithium-tin voltage profile. Physical Review B. 1998, 58 (23): 15583-15588
    81 T. Amriou, B. Khelifa, H. Aourag, et al. Ab initio investigation of the Jahn-Teller distortion effect on the stabilizing lithium intercalated compounds. Materials Chemistry and Physics. 2005, 92(2-3): 499-504
    82 Y.A. Jeon, Y.S. Kim, S.K. Kim, et al. Theoretical calculation of electronic structure and X-ray absorption near-edge structure of cathode materials for Li ion batteries. Solid State Ionics. 2006, 177(26-32): 2661-2665
    83 R. Prasad, R. Benedek, M.M. Thackeray. Dopant-induced stabilization of rhombohedral LiMnO2 against Jahn-Teller distortion. Physical Review B. 2005, 71(13): 134111
    84 Y. Koyama, Y. Makimura, I. Tanaka, et al. Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2. I. First-principles calculation on electronic and crystal structures, phase stability and new LiNi1/2Mn1/2O2 material. Journal of The Electrochemical Society. 2004, 151(9): A1499-A1506
    85 S. Sharma, L. Fransson, E. Sj?stedt,et al. A Theoretical and Experimental Study of the Lithiation ofη’-Cu6Sn5 in a Lithium-Ion Battery. Journal of The Electrochemical Society. 2003, 150(3): A330-A334
    86 M.D. Segall, P.J.D. Lindan, M.J. Probert, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter. 2002, 14(11): 2717-2743
    87 D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Revew B. 1990, 41(11): 7892-7895
    88 J.P. Perdew; K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996, 77(18): 3865-3868
    89 B.G. Pfrommer, M. Cote, S.G. Louie, et al. Relaxation of Crystals with the Quasi-Newton Method. Journal of Computational Physics. 1997, 131(1): 133-140
    90 M. Holzapfel, A. Martinent, F. Alloin, et al. First lithiation and charge/discharge cycles of graphite materials investigated by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry. 2003, 546: 41-50
    91 A. Martinent, B. Le Gorrec, C. Montella, et al. Three-electrode button cell for EIS investigation of graphite electrode. Journal of Power sources. 2001, 97-98: 83-86
    92庄全超,田雷雷,魏国振等.石墨电极首次阴极极化过程的两电极和三电极电化学阻抗谱研究.科学通报. 2009, 54(9): 1233-1237
    93 Q.C Zhuang, L.L. Tian, G.Z. Wei, et al. Two- and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation. Chinese Science Bulletin. 2009, 54(15): 2627-2632
    94 S. Santee, A. Xiao, L. Yang, et al. Effect of combinations of additives on the performance of lithium ion batteries. Journal of Power Sources. 2009, 194(2): 1053-1060
    95 M. Xu, W. Li, B.L. Lucht. Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. Journal of Power Sources. 2009, 193(2): 804-809
    96 R.I.R. Blyth, H. Buqa, F. P. Netzer, et al. XPS studies of graphite electrode materials for lithium ion batteries. Applied Surface Science. 2000, 167(1-2): 99-106
    97文钟晟,王可,谢晶莹.锂离子电池高容量硅负极嵌锂过程中的表面成膜研究.无机化学学报. 2007, 22(3): 437-441
    98 F.T. Quinlan, K. Sano, T. Willey, et al. Surface Characterization of the Spinel LixMn2O4 Cathode before and after Storage at Elevated Temperatures. Chemistry of Materials. 2001, 13(11): 4207–4212
    99 S. Leroy, H. Martinez, R. Dedryvère, et al. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Applied Surface Science. 2007, 253(11): 4895-4905
    100 X. Wang, T. Hironaka, E. Hayashi, et al. Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation: II: Electrode surface characterization, Journal of Power Sources. 2007, 168(2): 484-492
    101 H. Guo, H. Zhao, C. Yin, etal. A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries. Material Science and Engineering B. 2006, 131(1-3): 173-176
    102 K.L. Lee, J.Y. Jung, S.W. Lee, et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources. 2004, 129(2): 270-274
    103 H.X. Deng, C.Y. Chung, Y.T. Xie, et al. Improvement of electrochemical performance of Si thin film anode by rare-earth La PⅢtechnique. Surface & Coating Technology. 2007, 201(15): 6785-6788
    104 Y.M. Kang, S.B. Suh, Y.S. Kim. First-Principle Calculation-Assisted Structural Study on the Nanoscale Phase Transition of Si for Li-Ion Secondary Batteries. Inorganic Chemistry. 2009, 48(24): 11631-11635
    105 H.J. Monkhorst, J.D. Pack. Special points for Brillouin-zone integrations. Physical Review B. 1976, 13(12): 5188-5192
    106 L.A. Stearns, J. Gryko, J. Diefenbacher, et al. Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization. Journal of Solid State Chemistry. 2003, 173(1): 251-258
    107 J. Evers, G. Oehlinger. LiSi, a unique Zintl phase-although stable, it long-evaded synthesis. European Journal of Solid State Inorganic Chemistry. 1997,
    34(7-8): 773-784 108 M.N. Obrovac, L. Christensen. Structural changes in silicon anodes during lithium insertion/extraction. Electrochimical and Solid-State Letters. 2004,
    7(5): A93-A96
    109 T.D. Hatchard, J.R. Dahn. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of The Electrochemical Society. 2004, 151(6): A838-
    110 Y. Kubota, M.C. Sison Esca?o, H. Nakanishi, et al. Crystal and electronic structure of Li15Si4. Journal of Applied Physics. 2007, 102(5): 053704
    111 H. Liu, Q. Cao, L.J. Fu, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications. 2006, 8(10):1553-1557
    112 S. Zhang, C. Deng, B.L. Fu, et al. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries. doi:10.1016/j.jelechem.2009.11.035
    113 C. Wang, X. Ma, J. Cheng, et al. Effects of Ca doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. Solid State Ionics. 2006, 177(11-12): 1027-1031
    114 N. Ding, J. Xu, Y. Yao, et al. Improvement of cyclability of Si as anode for Li-ion batteries. Journal of Power Sources. 2009, 192(2): 644-651
    115 W.R Liu, Z.Z. Guo, W.S. Young, et al. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. Journal of Power Sources. 2004, 140(1): 139-144
    116 J. Zhang, S. Xie, X. Wei, et al. Lithium insertion in naturally surface-oxidized copper. Journal of Power Sources. 2004, 137(1): 88-92
    117 A.B. Gurevich, B.E. Bent, A.V.Teplyakov, et al. A NEXAFS investigation of the formation and decomposition of CuO and Cu2O thin films on Cu(100). Surface Science. 1999, 442(1): L971-L976
    118钟兴厚,萧文锦,袁启华等,无机化学丛书第六卷:卤素铜分族锌分族.科学出版社. 1995: 477
    119 S. Bijani, M. Gabás, L. Martínez, et al. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries. Thin Solid Films. 2007, 515(13); 5505-5511
    120 H. Jung, M. Park, Y. Yoon, et al. Amorphous silicon anode for lithium-ion rechargeable batteries. Journal of Power Sources. 2003, 115(2): 346-351
    121 Y.L. Cao, L.F. Xiao, X.P. Ai, et al. Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries. Electrochemical Solid-State Letters. 2003, 6(2): A30-A33
    122 S. Yoon, S.I. Lee, H. Kim, et al. Enhancement of capacity of carbon-coated Si-Cu3Si composite anode using metal-organic compound for lithium-ion batteries. Journal of Power Sources. 2006, 161(2): 1319-1323
    123 L.B. Chen, J.Y. Xie, H.C. Yu, et al. Electrochimica Acta. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries. 2008, 53(28): 8149-8153
    124 H.X. Deng, C.Y. Chung, Y.T. Xie, et al. Improvement of electrochemical performance of Si thin film anode by rare-earth LaPIII technique. Surface&Coating Technology. 2007, 201(15): 6785-6788
    125 H. Guo, H. Zhao, C. Yin, et al. A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries. Materials Science and Engineering: B. 2006, 131(1-3): 173-176
    126 V. Baranchugov, E. Markevich, E. Pollak, et al. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochemistry Communications. 2007, 9(4) 796-800
    127 C.C. Nguyen, S.W. Song. Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in Lithium-ion batteries. Electrochimica Acta. 2010, 55(8): 3026-3033
    128 Y.L. Kim, Y.K. Sun, S.M. Lee. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochimica Acta. 2008, 53 (13): 4500-4504
    129 T. Jiang, S. Zhang, X. Qiu, et al. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochemistry Communications. 2007, 9(5): 930-934
    130 T. Zhang, L.J. Fu, H. Takeuchi, et al. Studies of the structure of vacuum deposited silicon films on metal substrates as anode materials for Li-ion batteries. Journal of Power Sources. 2006, 159(1): 349-352
    131 M. Yoshio, T. Tsumura, N. Dimov. Electrochemical behaviors of silicon based anode material. Journal of Power Sources. 2005, 146(1-2): 10-14
    132 N. Ichinose, Y. Ozaki, S. Kashu. Superfine Particle Technology. Springer-Verlag. 1992: 13
    133 N. Dimov, S. Kugino, M. Yoshio. Carbon-coated silicon as anode material for lithium ion batteries; advantages and limitations. Electrochimica Acta.2003, 48(11): 1579-1587
    134 H. Li, X. Huang, L. Chen, et al. The crystal structural evolution of nano-Si anode caused by lithium inertion and extraction at room temperature. Solid State Ionics. 2000, 135(1-4): 181-191
    135 R.A. Huggins, W.D. Nix. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics. 2006. 6(1-2): 57-63
    136 W.-M. Zhang, X.-L. Wu, J.-S. Hu, et al. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Advanced Functional Materials. 2008, 18: 3941-3946
    137 M. Yoshio, H. Wang, K. Fukuda. Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material. Angewandte Chemie International Edition. 2003, 42(35): 4203-4206
    138 Y. Yu, L. Gu, C. Wang, et al. Encapsulation of Sn@carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries. Angewandte Chemie International Edition. 2009, 48(35): 6485-6489
    139 H.S. Kim, M. Kong, K. Kim, et al. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. Journal of Power Sources. 2007, 171(2): 917-921
    140 R. Dominko, M. Gaberscek, M. Bele, et al. Carbon nanocoatings on active materials for Li-ion batteries. Journal of the European Ceramic Society. 2007, 27(2-3): 909-913
    141 A.M. Wilson, J.N. Reimers, E. W. Fuller, et al. Lithium insertion in pyrolyzed siloxane polymers. Solid state Ionics. 1994, 74(3-4): 249-254
    142 A.M. Wilson, J.R. Dahn. Lithium insertion in carbons containg nanodispersed silicon. Journal of The Electrochemical Society. 1995, 142(2): 326-332
    143 S.H. Ng, J. Wang, D. Wxler, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie International Edition. 2006, 45(41): 6896-6899
    144 Y.S. Hu, R. Demir-Cakan, M.M. Titirici, et al. Superior storage performance ofa Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angewandte Chemie International Edition. 2008, 47(9): 1645-1649
    145 N. Dimov, S. Kugino, M. Yoshio. Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta. 2003, 48(11): 1579-1587
    146 Z.S. Wen, J. Yang, B.F. Wang, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochemistry Communication. 2003, 5(2): 165-168
    147 Y. Liu, K. Hanai, J. Yang, et al. Morphology-stable silicon-based composite for Li-intercalation. Solid State Ionics. 2004, 168(1-2): 61-68
    148 G.X. Wang, J.H. Ahn, J. Yao, et al. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communication. 2004, 6(7): 689-692
    149 F. Zhou, R. Zhou, X. Hao, et al. Influences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation. Radiation Physics and Chemistry. 2008, 77(2): 169-173
    150 T. Li, Y.L. Cao, X.P. Ai, et al. Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries. Journal of Power Sources. 2008, 184(2): 473-476
    151 Y. Liu, T. Matsumura, N. Imanishi, et al. Preparation and characterization of Si/C composite coated with polyaniline as novel anodes for Li-ion batteries. Electrochemical Solid-State Letters. 2005, 8(11): A599-A602
    152 Z.P. Guo, D.Z. Jia, L. Yuan, et al. Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries. Journal of Power Sources. 2006, 159(1): 332-335
    153 V. Baranchugov, E. Markevich, E. Pollak, et al. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochemistry Communications. 2007, 9(4): 796-800
    154 H. Dong, R.X. Feng, X.P. Ai, et al. Structural and electrochemical characterization of Fe-Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying. Electrochemica Acta. 2004, 49(28): 5217-5222
    155 Y. Liu, Z. Y. Wen, X. Y. Wang, et al. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors. Journal of Power Sources. 2009, 189(1): 733-737
    156 S.H. Ng, J. Wang, D. Wexler, et al. Amorphous carbon-coated siliconnanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. The Journal of Physical Chemistry C. 2007, 111(29): 11131-11138
    157 J.K. Lee, M.C. Kung, L. Trahey, et al. Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance lithium ion battery anode. 2009, Chemistry of Materials. 2009, 21(1): 6-8
    158 M.M. Doeff, Y. Hu, F. Mclarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochemical and Solid-State Letters. 2003, 6(10): A207-A209
    159余红明,郑威,曹高劭等.优化碳包覆对正极材料LiFePO4/C高倍率性能的影响.物理化学学报. 2009, 25(11): 2186-2190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700