苹果SSR标记在梨属植物亲缘关系研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验采用原产于四川的白梨(Pyrus bretschneideri)代表品种‘金花’为材料,比较苹果属(Malus)、西洋梨(P. communis)、砂梨(P. pyrifolia)和白梨(P. bretschneideri)之间的亲缘关系,探讨砂梨(P. pyrifolia)与西洋梨(P.communis)种间杂种‘身不知’与西洋梨(P. communis)及砂梨(P. pyrifolia)之间的亲缘关系,并对定位于‘身不知’与‘金花’遗传连锁图谱中的苹果SSR标记进行多态性评价,选择具代表性及多态性高的SSR标记进一步用于梨属植物的亲缘归类、品种鉴别及芽变鉴别等各个领域。其主要研究结果如下
     ①101个苹果SSR标记中,在‘身不知’ב金花’双亲及4个子代中无扩增条带的SSR引物24对,不具多态性的SSR引物17对;在双亲及62株F1代群体中不符合孟德尔遗传规律的SSR引物11对;在双亲作图时不具连锁关系的SSR引物22对;最后用于‘身不知’与‘金花’遗传连锁图谱构建的苹果SSR引物28对。
     ②24个苹果SSR标记在‘身不知’图谱上表现出连锁关系,其中包括9条遗传连锁片段,覆盖207cM,平均距离13.8cM。15个苹果SSR标记在‘金花’图谱上表现出连锁关系,连锁图谱由5条遗传连锁片段构成,总长152.4 cM。两个遗传连锁图谱可由10个共显性SSR标记连接,分别分布于第9、11、14和17连锁群。相对于‘金花梨’而言,苹果SSR标记更趋向于转移到‘身不知’梨。
     ③比较苹果属(Malus)、西洋梨(P. communis)、砂梨(P. pyrifolia)和白梨(P. bretschneideri)之间的亲缘关系,发现苹果SSR标记青睐西洋梨多于亚洲梨,且苹果与欧洲梨、中国梨及日本梨之间的保守区位于第9连锁群、第11连锁群和第14连锁群。第14连锁群上的SSR标记最为密集,包括CH03d08、CH04f06、CH05g07和CH05g11等。
     ④采用比较作图与亲缘聚类两种方式探讨了砂梨(P. pyrifolia)与西洋梨(P. communis)种间杂种‘身不知’与西洋梨(P. communis)及砂梨(P. pyrifolia)之间的亲缘关系,认为‘身不知’与西洋梨(P. communis)显示了更近的亲缘关系。
     ⑤用于构建‘身不知’ב金花’F1群体遗传连锁图谱的28对苹果SSR引物中,从等位基因数、杂合度和香农指数综合来看,多态性SSR标记排名前十位的分别为CH04a12、CH05d04、CH05g11、CH05c07、CH04d02、CH04f06、CH04h02、CH01f03b、CH03d02和CH01h01,位于第9、11、12、14和17号连锁群。其中CH04a12与CH05d04显示了最高的多态性;而CH03d02和CH05c07在现有的西洋梨,亚洲梨甚至苹果图谱中都具有普遍代表性。采用此10对多态性SSR标记进一步用于梨属植物的亲缘归类、品种鉴别及芽变鉴别等各个领域。
     ⑥根据10对SSR引物对已知的6个西洋梨(P. communis),2个秋子梨(P.ussuriensi),9个白梨(P. bretschneideri),13个砂梨(P. pyrifolia)品种及5个没有分类信息的品种‘南宫慈’、‘红长青’、‘早七黄’、‘石宝生’和‘川霞’以及5个种间杂交种‘身不知’、‘早酥’、‘鄂梨1号’、‘鄂梨2号’和‘中华玉梨’共40个梨材料的扩增数据,将‘早七黄’、‘石宝生’和‘鄂梨1号’归为砂梨(P. pyrifolia)类群,‘南宫慈’、‘红长青’、‘鄂梨2号’和‘中华玉梨’归为白梨(P. bretschneideri)类群,‘川霞’、‘早酥’和‘身不知’归在西洋梨(P. communis)类群。苹果梨归在秋子梨(P. ussuriensi)系统。
     ⑦任何一对单独的SSR引物都不能将‘二十世纪’梨近缘集团鉴别开来,必须两个以上的标记同时作用才能将其全部区分开来。2对或3对引物共同作用,才能对‘二十世纪’梨近缘集团进行品种鉴别。根据10对SSR引物对‘二十世纪’梨近缘集团的扩增数据,以Dice相似系数采用UPGMA聚类,得到的‘二十世纪’梨近缘集团的相似系数在0.84~0.95之间,系统树可以划分为5个组。
     ⑧10对SSR引物对4对芽变品种及1对姊妹品种进行了SSR分析,均能产生较多、清晰的多态性指纹图谱(等位基因)。其中CH03d02能将所有4对芽变品种及1对姊妹品种全部鉴别开来,显示了很好的鉴别力。
In this paper'Jinhua'(Pyrus bretschneideri)'was primary taken as representative Chinese pear of Sichuan province in China to compare genetic map of apple and pear (P. communis, P. pyrifolia, and P. bretschneideri), and to compare the genetic map of'Mishirazi'to P. pyrifolia and P. communis. The apple SSRs mapped in 'Mishirazi'and'Jinhua'were evaluated in polymorphism. The high representative and polymorphic SSR markers were chosen for further genetic classification of Pyrus, cultivar and mutant identification. The main results are as follows:
     ①In 101 apple SSR markers, twenty-three were no amplification, and seventeen were no segregation in'Mishirazi','Jinhua'and their four progenies; eleven were complex segregation in'Mishirazi','Jinhua'and their sixty-two progenies; twenty-two were no linkage relationship and twenty-eight were linked in'Mishirazi' and'Jinhua'.
     ②wenty-four and fifteen apple-mapped SSR markers showed linkage relationship in'Mishirazi'and'Jinhua'respectively. Genetic linkage map segments of these 2 pears were aligned by 10 co-dominant markers that showed segregating alleles in both parents, separately distributed in linkage group segments 9,11,14 and 17. And apple SSRs were more preferable to transfer and conserve to'Mishirazi'than'Jinhua', speculating that'Mishirazi'inherited slightly more features from its male parent, grouped it in P. communis.
     ③he'Jinhua'was primary taken as representative Chinese pear to compare genetic map of apple and European pear (P. communis), Japanese pear (P. pyrifolia) and Chinese pear (P. bretschneideri).The alignment of the species maps based on JoinMap analysis made it possible to verify the degree of synteny between the apple and pear genomes. The apple SSR loci showed the same order and corresponding distances in the pear and apple maps, strongly suggesting the presence of highly conserved regions between the two genomes, and that apple SSRs were more preferable to transfer and conserve to European pears than Asian pears. The most conserved segments of linkage group between apple and pear were located in LG 9, LG 11 and LG 14 relying on 101 apple-mapped SSRs. The SSRs in LG 10 and 12 wouldn't like to link each other in the cultivar of P. bretschneideri in China and P. Pyrifolia in Japan, respectively.
     ④he relationship compared'Mishirazi'to P. pyrifolia and P. communis was investigated using comparative mapping and phylogenetic clustering. And the results were got that'Mishirazi'showed closer relationship to P. communis.
     ⑤n the twenty-eight apple SSRs that mapped in'Mishirazi'and'Jinhua', the former ten order of polymorphism was CH04al2, CH05d04, CH05g11, CH05c07, CH04d02, CH04f06, CH04h02, CH01f03b, CH03d02 and CHOlh01 from the allele numbers, heterozygosity and Shannon's Information index, which located in linkage group 9,11,12,14 and 17. The ten high representative and polymorphic SSR markers were chosen for further genetic classification of P., cultivar and mutant identification.
     ⑥'Zaoqihuang','Shibaosheng'and'Eli 1'were classified in P. pyrifolia; 'Nangongci','Hongchangqing','Eli 2'and'Zhonghuayuli'were classified in P. bretschneideri;'Chuanxia','Zaosu'and'Mishirazi'were classified in P. communis. 'Pingguoli'was classified in P. ussuriensi.
     ⑦ny pair of individual SSR primers was not able to distinguish'Nijisseiki' related group. It's required that two or more than two markers had to meanwhile work. Similarity coefficient of'Nijisseiki'related group was from 0.84 to 0.95. Systematic tree could be divided in 5 groups.
     ⑧en pairs of SSR primers were used in four pair mutant cultivars and one pair of sister cultivar, which could produce more and clear fingerprint polymorphism (allele), in which CH03d02 could identify all the ten cultivars, which showed good distinguishing ability.
引文
Bao L., Chen K.S., Zhang D., et al. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR(simple sequence repeat) markers. Genetic Resourouses and Crop Evolution,2007,54(5):959-971
    Bassil N.V., Postman J.D. EST-SSR's utility in managing the pear collection at the national clonal germplasm repository [abstract]. Plant and Animal Genome Abstracts,2005,111
    Bassil N.V., Hummer K.E., Postman J.D. Microsatellites are used to examine apple and pear identities and genetic relationships [abstract]. HortScience,2006,41(4):993
    Bassil N.V., Postman J.D., Hummer K.E., et al. Molecular Fingerprints Identify Historic Pear Trees in US National Parks. Pear International Symposium,2007,41
    Bassil N.V., Postman J.D. Identification of European and Asian pears using EST-SSRs from Pyrus. Genetic Resources and Crop Evolution,2010,57:357-370
    Bell R.L. Pears (Pyrus). In:Moore JN, Ballington JR (ed) Genetic resources of temperate fruit and nut crops. Acta Hortiscience,1990,290:657-697
    Bouvier L., Guerif P., Djulbic M., et al. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica,2002,123: 255-262
    Brown R., Kadel E.E., Bassoni D.I., et al. Anchored reference loci in loblolly pine(Pinustaeda Ⅰ.)for integrating pine genomics. Genetics,2001,159(2):799-809
    Bus V.G.M, Rikkerink E.H.A, Van de Weg W.E, et al. The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Molecular Breeding,2005,15:103-116
    Calenge F., Faure A., Goerre M., et al. Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 2004,94:370-379
    Dickson E.E., Arumuganathan K., Kresovich S., et al. Nuclear DNA content variation within the Rosaceae. American Journal of Botany,1992,79:1081-1086
    Dondinil L., Pierantonil L., Gaiottil F., et al. Identifying QTLs for fire-blight resistance via a European pear (P. communis L.) genetic linkage map. Molecular Breeding,2004,14: 407-418
    Fernandez F., Harvey N.G., James C.M.. Isolation and characterization of polymorphic microsatellite markers from European pear (P. Communis L.).Molecular Ecology Notes, 2006,6(4):1039-1041
    Ghosh A.K., Lukens L.N., Hunter D.M., et al. European and Asian Pears:Simple Sequence Repeat-Polyacrylamide Gel Electrophoresis-based Analysis of Commercially Important North American Cultivars. HortScience,2006,41(2):304-309
    Gianfranceschi L., Seglias N., Tarchini R., et al. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics,1998,96:1069-1076
    Gonai T., Manabe T., Inoue E., et al. Overcoming hybrid lethality in a cross between Japanese pear and apple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSR markers. Scientia Horticulturae,2006,109:43-47
    Grandbastien M.A.. Activation of plant retrotransposons under stress conditions. Trends in Plant Science,1989,3:181-187
    Griggs W.H., Iwakiri B.T.. Asian pears in California. Californian Agriculture,1977,1:8-11
    Guiford P., Prakash S., Zhu J.M., et al. Microsatellites in Malus × domestica (apple):abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics,1997,94: 249-254
    Gygax M., Gianfranceschi L., Liebhard R., et al. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theoretical and Applied Genetics, 2004,109:1702-1709
    Hemmat M., Brown S.K. and Weeden N.F.. Tagging and mapping scab resistance genes from R12740-7A apple. Journal of American Society and Horticultural Science,2002,127: 365-370
    Hemmat M., Weeden N.F., Brown S.K., et al. Mapping and Evaluation of Malus × domestica Microsatellites in Apple and pear. Journal of American Horticultural Science,2003,128: 452-620
    Igarashi M., Abe Y., Hatsuyama Y., et al. Linkage maps of the apple (Malus × domestica Borkh.) cvs 'Rails Janet' and 'Delicious' include newly developed EST markers. Molecular Breeding,2008,22:95-118
    Iketani H., Abe K., Yamamoto T., et al. Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breeding Science,2001,51:179-184
    Inoue E., Sakuma F., Kasumi M., et al. Effect of high-temperature on suppression of lethality exhibited in the intergeneric hybrid between Japanese pear (P. Pyrifolia Nakai) and apple (MaJus x domestica Borkh.). Scientia Horticultural 2003,98:385-396
    Inoue E., Matsuki Y., Anzai H., et al. Isolation and characterization of microsatellite markers in Japanese pear (P. pyrifolia Nakai).Molecular Ecology Notes,2007,7:445-447
    Jock S., Jacob T., Kim W. S., et al. Instability of short-sequence DNA repeats of pear pathogenic Erwinia strains from Japan and Erwinia amylovora fruit tree and raspberry strains. Molecular Genetics and Genomics,2003,268:739-749
    Kimura M. and Crow J.F.. The number of alleles that can be maintained in a finite population. Genetics 1964,49:725-38
    Kimura T., Shi Y. Z., Shoda M., et al. Identification of Asian pear varieties by SSR analysis. Breeding Science,2002a,52:115-121
    Korban S.S., Skirvin R.M.. Nomenclature of the cultivated apple. HortScience 1984,19(2): 177-180
    Kumar A., Bennetzen J.I.. Plant retrotransposons. Annual Review of Genetics,1999,33:479-532
    Levene H. On a matching problem arising in genetics. The Annals of Mathematical Statistics, 1949,20:91-94
    Lewontin R.C., The apportionment of human diversity, Evolution of Biology,1972,6,381-398
    Lin S., Fang C, Song W., et al. AFLP molecular markers of 10 species of Pyrus in China. Acta Horticulturae,2002,587:233-236.
    Liebhard R., Gianfranceschi L., Koller B., et al. Development and characterization of 140 new microsatellites in apple (Malus x domestica Borkh.). Molecular Breeding,2002, 10:217-241
    Maharaj R., Van Dyk M.M., Rees D.J.G, et al. Development of microsatellite markers for marker-assisted breeding in pears (Pyrus spp.). Acta Horticulturae, International Society for Horticultural Science (ISHS),2005, (No.671) 307-313
    Nishitani C., Terakami S., Sawamura Y., et al. Development of novel EST-SSR markers derived from Japanese pear (P. pyrifolia). Breeding Science,2009,59(4):391-400
    Patocchi A., Bigler B., Koller B., et al. Vr2:a new apple scab resistance gene. Theoretical and Applied Genetics,2004,109:1087-1092
    Patocchi A., Walser M., Tartarini S., et al. Identification by genome scanning approach (GSA) of a microsatellite tightly associated to the apple scab resistance gene Vm. Genome,2005,48: 630-636
    Pierantoni L., Cho K.H., Shin I.S., et al. Characterization and transferability of apple SSRs to two European pear F1 populations. Theoretical and Applied Genetics,2004,109: 1519-1524
    Rolf F.J.. Numerical taxonomy and multivariate analysis system. Version 2.0. Exeter Software, Setauket, New York,1998
    Rubtsov G.A.. Geograpphical distribution of the genus Pyrus and trends and factors in its evolution. The American Naturalist.1944,78:358-366
    Sanada T., Nishida T., Ikeda F. Resistant mutant to black spot disease of Japanese pear 'Nijisseiki'induced by gammarays. Journal of Japan Society and Horticultural Science, 1988,57:159-166
    Sawamura Y., Toshihiro S., Norio T., et al. Identification of Parentage of Japanese Pear'Housui'. Journal of Japan Society and Horticultural Science,2004,73(6):511-518
    Serdani M., Spotts R.A., Calabro J.M., et al. Evaluation of the USDA National Clonal P. Germplasm Collection for Resistance to Podosphaera Leucotricha, HortScience,2006, 41(3):717-720
    Shi Y.Z., Yamamoto T., Hayashi T.. Characterization of copia-like retrotransposons in pear. Journal of Japan Society and Horticultural Science,2002,71:723-729
    Silfverberg-Dilworth E., Matasci C.L., Van de Weg W.E., et al. Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genetics & Genomes,2006,2: 202-224
    Tartarini S., Gennari F., Pratesi D., et al. Characterisation and genetic mapping of major scab resistance gene from the old Italian cultivar'Kurello di Forli'. Acta Horticulturae,2004,663: 743-752
    Terakami S., Shoda M., Adachi Y, et al. Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theoretical and Applied Genetics,2006,113:743-752
    Teng Y.W., Tanabe K., Tamura F., et al. Genetic relationships of pear cultivars in Xinjiang, China as measured by RAPD markers. Journal of Horticultural Science & Biotechnology. 2001,76:771-779
    Teng Y.W., Tanabe K., Tamura F., et al. Genetic relationships of P. species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. Journal of American Society and Horticultural Science,2002,127:262-270
    Teng Y.W., Tanabe K.. Reconsideration on the origin of cultivated pears native to East Asia,4 International Symposium of Taxonomy and Nomenclature of Cultivated Plants. Acta Horticuhurae,2004,634:175-182
    Terakami S., Shoda M., Adachi Y., et al. Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theoretical and Applied Genetics,2006,113:743-752
    Westwood M.N, Challice J.S.. Morphology and surface topography of pollen and anthers of n species. Journal of American Society and Horticultural Science,1978,103(1):28-37
    Wunsch A., Hormaza J.I.. Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Scientia Horticulturae,2007,113,37-43
    Yamamoto T., Tutaka S., Tetsuya K., et al. Microsatellite markers of P. spp.:Sequence similarity and polymorphism between pear and apple identified by apple SSR. Plant & Animal Genome VIII Conference. Town & Country Hotel, San Diego, CA.2000, I,9-12,
    Yamamoto T., T. Kimura, Y. Sawamura, et al. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theoretical and Applied Genetics,2001,102: 865-870
    Yamamoto T., Kimura T., Sawamura Y, et al. Simple sequence repeats for genetic analysis in pear. Euphytica,2002a,124:129-137
    Yamamoto T., Kimura T., Shoda M., et al. Development of microsatellite markers in Japanese pear (P. pyrifolia Nakai). Molecular Ecology Notes,2002b,2:14-16
    Yamamoto T., Kimura T., Shoda M., et al. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theoretical and Applied Genetics, 2002c,106:9-18
    Yamamoto T., Kimura T., Satito T., et al. Genetic Linkage Maps of Japanese and European Pears Aligned to the Apple Consensus Map. Acta Horticulturae, International Society for Horticultural Science (ISHS). Leuven, Belgium,2004,663(1):51-56
    Yamamoto T., Kimura T., Hayashi T., et al. DNA Profiling of Fresh and Processed Fruits in Pear. Breeding Science,2006,56:165-171
    Yamamoto T., Kimura T., Terakami S., et al. Integrated Reference Genetic Linkage Maps of Pear Based on SSR and AFLP Markers. Breeding Science,2007,57:321-329
    Yeh F.C., Yang R.C., Boyle T.. Population Genetic Analysis. University of Alberta and Centre for International Forestry Research,1999
    鲍露,张东,滕元文等.DNA标记技术在梨属植物研究中的应用.果树学报,2006,23(2):270-275
    曹来钧,张修仁.苹果、梨远缘杂交育种十年研究.甘肃农业科技,1982,5,3-4
    曹丽,曲柏宏.应用POD同工酶技术研究梨品种的分类地位.湖北农业科学.2006,45(1):89-91
    曹玉芬,刘凤之, 高源等.梨栽培品种SSR鉴定及遗传多样性.园艺学报,2007,34(2):305-310
    崔海荣,刘金义,佟兆国等.砂梨EST-SSR引物开发及其应用.西北植物学报,2010,30(8):1551-1556
    范太伟,蔡丹英,李红旭等.甘肃中部梨资源遗传变异和亲缘关系的SSR分析.果树学报,2007,24(3):268-275
    房经贵,刘大钧,马正强.利用双杂合位点标记资料构建芒果遗传图谱.分子植物育种,2003,1(3):313-319
    甘玲.梨离体保存材料遗传差异的分子检测.[硕士学位论文].雅安,四川农业大学,2006
    顾模.延边苹果梨综合栽培技术研究报告.1955
    顾模.东北中部地区果树资源的调查.北京:科学出版社,1956
    郭映智,崔广明编著.青海引进的梨.青海资料室,1982
    韩宏伟,杨敏生,徐兴兴等.利用SSR标记鉴定主要梨栽培品种.中国农学通报,2006,22(12):383-386
    黄礼森,李树玲,傅仓生等.中国梨属植物花粉形态的比较观察.园艺学报,1993,20(1):19-24
    何启谦,鲁文杰.苹果与梨属间杂交的研究.沈阳农学院学报,1963,4,11-21
    姜卫兵,高光林,俞开锦等.近十年来我国梨品种资源的创新与展望.果树学报,2002,19(5):314-320
    贾彦利,田义轲,王彩虹等.梨品种资源遗传差异的RAPD分析.果树学报,2007,24(45):25-528
    江先甫,初庆刚,张长胜.中国梨属植物的分类和演化.莱阳农学院学报,1992,9(1):18-21
    郎亚琴.杉木RAPD分子标记连锁图谱的构建:[硕士学位论文].江苏:南京林业大学硕士学位论文,2000
    李秀根,杨健.花粉形态数量化分析在中国梨属植物起源,演化和分类中的应用.果树学报,2002,19(3):145-148
    雷世俊等编著.梨新品种.北京市:气象出版社,1995
    林伯年,沈德绪.利用过氧化物同功酶谱分析梨属植物种质特性及亲缘关系.浙江大学学报,1981,9(3):235-243
    马兵钢,牛建新,冯建荣等.同工酶在梨属系统发育分析中的应用.石河子大学学报(自然科学版),2003,7(2):119-123
    马兵钢,牛建新,吴忠华等.新疆主要梨品种亲缘关系的分子标记分析.石河子大学学报(自然科学版),2004,22(2):97-102
    马艳芝.梨属(Pyrus L.)植物RAPD反应体系的建立及其应用研究[硕士学位论文].保定:河北农业大学,2003
    蒲富慎,王宇霖.东北的梨.上海:上海科学技术出版社,1959:89-109
    蒲富慎.梨种质资源及其研究.中国果树,988(2):42-46
    蒲富慎等编著.梨品种.北京市:农业出版社,1989.05
    曲柏宏,金春兰,陈艳秋等.梨属种质资源的RAPD分析.园艺学报,2001,28(5):460-462
    曲柏宏,金兰香,陈艳秋等.利用RAPD技术探讨延边苹果梨的分类地位.延边大学农学学报,2002,24(3):155-158
    曲柏宏,严花淑,陈艳秋等.部分梨品种花粉形态观察.梨科研与生产进展,2003(2):80-88
    沈玉英,滕元文,田边贤二.部分中国砂梨和日本梨的RAPD分析.园艺学报,2006,33(3):621-624
    《四川梨志》编委会主编.四川梨志.成都市:四川科学技术出版社,1991.06
    孙亮,冷平.苹果和梨属间杂交及其幼胚挽救研究.中国农业大学学报,2008,13(2):25-29
    孙士宗,王志刚主编.梨.北京市:中国农业大学出版社,2005.10
    滕元文,柴明良,李秀根.梨属植物分类的历史回顾及新进展.果树学报,2004a,21(3):252-257
    滕元文,鲍露,郑小艳.梨属植物起源及系统关系研究.见:赵尊练等,园艺学进展,西安:陕西科学技术出版社,2004b,23~39
    田路明,曹玉芬,董星光.二十世纪梨“家族”资源及其育种价值.中国南方果树,2010,39(2):62-65
    王丙旭.RAPD在梨种质资源亲缘关系和品种鉴定中的应用[硕士学位论文].长春:吉林农业大学,1998
    王彩虹,田义轲,赵静.来自苹果的SSRs在蔷薇科植物资源上的通用性分析.园艺学报,2005,32(3):500-502
    王少敏,孙岩主编.梨推广新品种图谱.济南市:山东科学技术出版社,2002
    王西成,姜淑苓,上官凌飞等.梨EST-SSR标记的开发及其在梨品种遗传多样性分析上的应用评价.中国农业科学,2010,43(24):5079-5087
    吴耕民.中国温带果树分类学.北京:农业出版社,1984:33-80
    项秉钧.苹果×梨属间杂交的培育.植物杂志,1991,18(5):32
    辛培刚,王存喜,公庆党等.梨树过氧化物同工酶分析及亲缘关系探讨.果树科学,1989,6(3):153-158
    徐义流,张绍铃.梨配子体型自交不亲和性及其分子机理.果树学报,2003,20(1):59-63
    姚宜轩,许方.我国梨属花粉形态观察.莱阳农学院学报,1990,7(1):1-8
    易芍文,李进斌,周小罡等.云南省梨属植物资源的微卫星分析研究.西南农业学报,2004,17(2):192-196
    尹恩洁,杨玉梅.苹果和白梨的属间杂交研究.辽宁师范大学学报:自然科学版,1993,16(4):329-332
    于新刚编著.梨新品种实用栽培技术.北京市:中国农业出版社,2005.01.
    俞德俊.中国果树分类学.北京:农业出版社,1979
    张东,舒群,滕元文等.中国红皮砂梨品种的SSR标记分析.园艺学报,2007,34(1):47-52
    张绍铃,Hiratsuka Shin,徐国华等.梨自交不亲和及其亲和突变品种花柱内S4(S4SM)基因的表达与作用比较.植物学报,2001,43(11):1172-1178.
    张绍铃,黄绍西,吴俊.日本梨优良品种资源在梨育种上的应用.中国南方果树,2006,35(5):48-49
    张修仁,张居里,张世明.苹果×梨属间杂交新品种‘甘金’的选育.果树科学,1991,5(2):65-70
    赵国芳.ISSR对梨属(Pyrus L.)栽培品种基因组的指纹分析[硕士学位论文].保定:河北农业大学,2003
    郑成木.植物分子标记原理与方法.湖南:科学技术出版社,2005,81-87
    邹乐敏,张西民,张志德等.根据花粉形态探讨梨属植物的亲缘关系.园艺学报,1986,13(4):119-223
    周延清.分子标记技术在植物研究中的应用.北京:化学工业出版社,2005,9-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700