家庭移动服务机器人的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术的成熟,机器人系统逐渐进入家庭生活与服务领域。由于应用领域和应用目的的不同,服务机器人有其独特的关键技术。本文对家庭移动服务机器人的若干关键技术进行了深入和系统的研究,提出了一些新的思想和方法。
     服务机器人的工作性质决定了机器人必须在未知多变的工作环境中按无碰撞的路径运动,因此避障路径规划是服务机器人必须具备的基本功能。本文对未知环境下的爬行虫算法路径规划进行了改进,在爬行虫算法的基础上提出了一种综合考虑机器人实际尺寸和传感器误差的激光爬行虫算法,消除了爬行虫算法的两个前提假设在实际应用中的限制,通过搜索安全路径中障碍物的绕行点和绕行线,最终确定可行路径。该方法在路径规划时不需要建立障碍物边线的解析式,只利用激光传感器的实时读数进行路径规划,同时为了节省存储空间、提高规划效率,在规划过程中只用必需扇形空间中的部分传感数据,在需要时才扩展其它数据,节省了计算开支,保证了算法的实时性。实验结果验证了该方法的有效性。
     区域覆盖是家庭清扫服务机器人中最常用的一种应用,该任务要求机器人高效无重复地到达环境中的所有区域,目前的家庭清扫机器人多是用随机方法进行清扫,不仅效率低而且无法保证完全覆盖,本文针对简单机器人提出了基于栅格地图的内螺旋覆盖方式。机器人从外向内螺旋覆盖环境,在外圈的覆盖过程中规划内圈的覆盖路径,为了保证完全覆盖和提高覆盖效率,引进了GATE栅格的概念,解决了复杂环境的覆盖问题。内螺旋覆盖方法在第一圈沿环境边界探索后即可确定所有要覆盖区域的大小,覆盖路径规划不需要进行复杂的数学计算,能够保证任务的实时性,适用于配置不高的家庭嵌入式机器人系统,满足了家庭机器人的需要。实验结果验证了该方法的可行性。
     家庭移动机器人另一种常用的任务是环境变化监控,主人不在家时机器人可以按既定路径进行巡视并在发生异常情况如出现火情或不明入侵者时进行判断并通过网络通知主人,本文利用基于颜色分析和聚类的方法实现机器人环境变化监控任务。首先建立环境的图像数据库,机器人在巡视过程中,将实时拍摄的图像与数据库中的图像进行比较,如果发现颜色直方图中的颜色簇出现不同,即可判断出现异常,发出警报。由于该方法在HS空间进行
With the development of robot technologies, the applications of robot systems have been extented to families and the service field. The service robots have their own key technologies due to the unique applications. This dissertation presents a thorough and systematic research on some key technologies of home mobile service robot, and puts forward some new ideas and methods.
     The application of service robot determines that the robot must move along collision-free path in unknown and dynamic environment, so the obstacle avoidance path planning is the fundamental function for service robot. The Bug algorithm is improved in unknown environment and based on which a new LaserBug algoritm is presented which comprehensively considered the physical size of the robot and the data error of the sensors. The two hypothesises of the Bug algorithm are taken into account and are satisfied during the planning. The path is determined by searching for the rounding points and the rounding lines. Only the necessary sensing data of the laser range-finder instead of the analytical expression of the obstacles are used in the method. And only partial sensing data is calculated in common, which saves the cost of calculation and guarantees the real-time property of the algorithm. Experiments show the effectiveness of the approach.
     Region covering is one of the most popular tasks for service robot, in which the robot is demanded to reach every free point efficiently without repetition. Most of the home cleaning robots in the market sweep the floor in a random manner; as a result the robots sweep the floor ineffectively and can not gurantee sweeping the floor completely. The new Interal Spiral Coverage (ISC) method based on grid map is presented which is fit for simple robot. The robot covers the environment from the outer to the inner in the spiral manner, planning the following loop while covering the current loop. And the GATE grids are introduced to gurantee complete coverage and improve efficiency, which makes the covering in complicated environment possible. The robot gets to know the area of the environment after the first loop along the boundary. There is no complicated mathematical calculating in ISC, which can gurantee the real-time
引文
1 蔡鹤皋. 机器人将是 21 世纪技术发展的热点. 中国机械工程. 2000, 11: 58~60
    2 E. J. Tira-Thompson, N. S. Halelamien, J. J. Walse, and D. S. Touretzky. Tekkotsu: Cognitive Robotics on the Sony AIBO. Proceedings of the Sixth International Conference on Cognitive Modeling. Mahwah, NJ, 2004, 7: 390~391
    3 M. B. Forhecz, Z. Korondi. Developing an Efficient Mobile Robot Control Algorithm in the Webots Simulation Environment. IEEE International Conference on Industrial Technology. 2003, 1: 179~184
    4 肖雄军,蔡自兴. 服务机器人的发展. 机器人博览. 2004, 6: 10~13
    5 S. Asami. Robots in Japan: Present and Future. IEEE International Conference on Robotics& Automation. 1994, 6: 22~24
    6 吴海彬, 朱世强, 马翔. 自主吸尘机器人在非结构环境下的避障与路径规划研究. 机器人. 2000,22 (7):627~630
    7 高从军. 用机器人修复心脏. 机器人技术与应用. 1999, (5): 16~18
    8 J. M. Evans. HelpMate: an Autonomous Mobile Robot Courier for Hospitals. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Munich, Germany. 1994, 9: 1695~1700
    9 刘晓民. 中风病人康复用机器人. 机器人技术与应用. 1999, (6): 16
    10 Y. Matsumotot, T. Ino, T. Ogsawara. Development of Intelligent Wheelchair System with Face and Gaze Based Interface. Preceedings of the 10th IEEE International Workshop on Robot and Human Interactive Communication. Bordeaux, Paris. 2001, 9: 262~267
    11 K. Gunhee, C. Woojin, K. Kyung-Rock, K. Munsang, H. Sangmok, R. H. Shinn. The Autonomous Tour-guide Robot Jinny. Preceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004, 4(9): 3450~3455
    12 D. Zeng, C. Xie and X. Li. Design and Implementation of a Security and Patrol System. IEEE International Conference on Mechatronics andAutomation. 2005, 4(7): 1745~1749
    13 Tomono, M. Planning a Path for Finding Targets under Spatial Uncertainties Using A Weighted Voronoi Graph and Visibility Measure. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2003: 124~129
    14 J. M. Ibarra-Zannatha, J. H. Sossa-Azuela and H. Gonzalez-Hernandez. A New Roadmap approach to Automatic Path Planning for Mobile Robot Navigation. IEEE International Conference on Systems, Man and Cybernetics. San Antonio, TX. 1994, 3 (10): 2803~2808
    15 A. Sanchez. A Deterministic Sampling Approach to Robot Motion Planning. Proceedings of the Fourth Mexican International Conference on Computer Science. 2003, 9: 300~307
    16 F. Lingelbach. Path Planning for mobile manipulation using probabilistic cell decomposition. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004, 9: 2807~2812
    17 X. Bin, D. Z. Chen and R. J. Szczerba. A New Algorithm and Simulation for Computing Optimal Paths in a Dynamic and Weighted 2-D Environment. IEEE International Conference on Systems, Man, and Cybernetics. 2000, 1(10): 313~318
    18 C. W. Warren. Global Path Planning Using Artificial Potential Fields. IEEE International Conference on Robotics and Automation. 1989, 1(5): 14~19
    19 A. Poty, P. Melchior and A. Oustaloup. Dynamic Path Planning for Mobile Robots Using Fractional Potential Field. First International Symposium on Control, Communication and Signal Processing. 2004: 557~561
    20 I. Kamon and E. Rivlin. Sensor-based Motion Planning with Global Proofs. IEEE Transactions on Robotics and Automation. 1997, 13(12): 814~822
    21 H. Noborio, K. Fujimura and Y. Horiuchi. A Comparative Study of Sensor-based Path-planning algorithms in an unknown maze. Proceedings of IEEE/RSJ Internaltional Conference on Intelligent Robots and Systems. 2000, 2(10): 909~916
    22 L. Lulu and A. Elnager. A Comparative Study Between Visibility-based Roadmap Path Planning Algorithms. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005, (8): 3263~3268
    23 T. Kito, R. Katsuki, T. Mizuta, T. Arai, T. Ueyame and T. Nishiyama. Smooth Path Planning by Using Visibility Graph-like Method. IEEE International Conference on Robotics and Automation. 2003, 3(9): 3770~3775
    24 H. P. Huang and S. Y. Chung. Dynamic Visibility Graph for Path Planning. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004, 3(9): 2813~2818
    25 Alber, Amos, Gerth and Wilfried. Analytic Path Planning Algorithms for Bipedal Robots without a Trunk. Journal of Intelligent and Robotics Systems. 2003, 36(2): 109~127
    26 Lam, Srikanthan. High-speed Environment Representation Scheme for Dynamic Path Planning. Journal of Intelligent and Robotic Systems. 2001, 32(3): 307~319
    27 Kimmel, Ron, Sethian, James. Optimal Algorithm for Shape from Shading and Path Planning. Journal of Mathematical Imaging and Vision. 2001, 14(3): 237~244
    28 D. Z. Chen, R. J. Szczerba and J. J. Uhran. A Framed-quadtree Approach for Determining Euclidean Shortest Paths in a 2-D Environmnet. IEEE Transaction on Robotics and Automation. 1997, 13(10): 668~681
    29 K. Hamada and Y. Hori. Octree-based Approach to Real-time Collision-free Path Planning for Robot Manipulator. Proceedings of the 4th International Workshop on Advanced Motion Control. Mie, Japan. 1996, 2(3): 705~710
    30 K. Fujimura and H. Samet. A Hierarchical Strategy for Path Planning among Moving Obstacles [Mobile Robot]. IEEE Transaction on Robotics and Auomation. 1989, 5(2): 61~69
    31 S. Shimoda, Y. Kuroda and K. Iagnemma. Potential Field Navigation of High Speed Unmanned Ground Vehicles on Uneven Terrain. Proceedings of the IEEE International Conference on Robotics and Automation. 2005, (4): 2828~2833
    32 F. G. Ding, P. Jiao, X. Q. Bian and H. J. Wang. AUV Local Path Planning Based on Virtual Potential Field. IEEE International Conference on Mechatronics and Automation. 2005, 4(8): 1711~1716
    33 O. Khatib. Real Time Obstacle Avoidance for Manipulators and MobileRobots. Journal of Rotics Research. 1986, 5(1): 90~98
    34 Y. Koren and J. Borenstein. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. Proceedings of IEEE International Conference On Robotics and Automation. Sacramento, CA. 1991: 1398~1404
    35 S. Rajko and S. M. LaValle. A Pursuit-evasion BUG Algorithm. IEEE International Conference on Robotics and Automation. 2001, 2: 1954~1960
    36 E. Maqid and E. Rivlin. CautiousBug: a Competitive Algorithm for Sensory-based Robot Navigation. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2004, 3(9): 2757~2762
    37 J. Colegrave and A. Branch. A Case Study of Autonomous Household Vacuum Cleaner, in: AIAA/NASA CIRFFSS (1994).
    38 Y.Y. Huang, Z.L. Cao and E.L. Hall. Region Filling Operations for Mobile Robot Using Computer Graphics. Proceedings of the IEEE Conference on Robotics and Automation .1986, 3(4): 1607~1614.
    39 Y. Zhang, M. Schervish and H.Choset. Probabilistic Hierarchical Spatial Model for Mine Location and Its Application in Robotic Landmine Search. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, 1(9): 681~689
    40 M. Ollis and A. Stentz, First Results in Vision-based Crop Line Tracking. IEEE International Conference on Robotics and Automation. 1996, 1(4): 951~956
    41 H. Choset. Coverage for Robotics—A Survey of Recent Results. Annals of Mathematics and Artificial Intelligence. 2001, 31:113~126
    42 R.A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation. 1986, 2(3): 14~23
    43 E. Gat and G. Dorais, Robot Navigation By Conditional Sequencing. Proceedings of IEEE International Conference on Robotics and Automation. San Diego, CA. 1994, 2(5): 1293~1299.
    44 T. Balch and R.C. Arkin. Communication in Reactive Multiagent Robotic Systems. Autonomation and Robots. 1995, 1(1)
    45 D. MacKenzie and T. Balch, Making a Clean Sweep: Behavior Based Vacuuming. AAAI Fall Symposium, Instationating Real-World Agents. 1996
    46 T. Balch, The Case for Randomized Search. in: Workshop on Sensors and Motion, IEEE International Conference on Robotics and Automation, San Francisco, CA . 2000, 5
    47 D. Gage. Randomized Search Strategies with Imperfect Sensors. Proceedings of SPIE Mobile Robots VIII. Boston, MA. 1993, (9): 270~279
    48 C. Hofner and G. Schmidt, Path Planning and Guidance Techniques for an Autonomous Mobile Cleaning Robot. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. 1994, 1(9): 610~617
    49 R. Carvalho, H. A. Vidal, P. Vieira, and M. I. Ribeiro. Complete Coverage Path Planning and Guidance for Cleaning Robots. Proceedings of the IEEE International Symposium on Industrial Electronics. Guimaraes, Portugal: 1997: 677~682
    50 A. Elfes. Sonar-based Real-world Mapping and Navigation. IEEE Journal of Robotics and Automation. 1987, 3(6): 249~265
    51 H. Moravec and A. Elfes. High resolution maps for wide angles sonar. IEEE International Conference on Robotics and Automation. 1985
    52 A. Zelinsky, R.A. Jarvis, J.C. Byrne and S. Yuta. Planning Paths of Complete Coverage of an Unstructured Environment by a Mobile Robot. Proceedings of International Conference on Advanced Robotics. Tokyo, Japan. 1993, 9: 533~538
    53 Y. Gabriely and E. Rimon. Spiral-STC: An On-Line Coverage Algorithm of Grid Environments by a Mobile Robot. Proceedings of IEEE International Conference on Robotics and Automation. 2002, 1(5): 954~960
    54 S.V. Spires and S.Y. Goldsmith. Exhaustive Geographic Search with Mobile Robots along Space-filling Curves. Proceedings of the First International Workshop. Paris, France, July 1998, Lecture Notes in Artificial Intelligence. Springer, Berlin.1998, 1456: 1~12
    55 H. Choset, E. Acar, A. Rizzi and J. Luntz. Exact Cellular Decompositions in Terms of Critical Points of Morse Functions. IEEE International Conference on Robotics and Automation. San Francisco, CA. 2000, 3(4): 2270~2277.
    56 H. Choset and P. Pignon. Coverage Path Planning: The BoustrophedonDecomposition. Proceedings of the International Conference on Field and Service Robotics. Canberra, Australia. 1997, (12)
    57 E.Acar and H. Choset. Critical Point Sensing in Unknown Environments. IEEE International Conference on Robotics and Automation. San Francisco, CA. 2000, 4(4):3803~3810
    58 Z. L. Cao, Y. Huang and E. Hall. Region Filling Operations with Random Obstacle Avoidance for Mobile Robots. Journal of Robotic and Systems. 1988: 87~102
    59 Y. Huang, Z. Cao and E. Hall. Region Filling Operations for Mobile Robot Using Computer Graphics. IEEE International Conference on Robotics and Automation. 1986, 3(4): 1607~1614
    60 W. Huang. Optimal Line-sweep Decompositions for Coverage Algorithms. Technical Report 00-3, Rensselaer Polytechnic Institute, Department of Computer Science, Troy, NY (2000)
    61 K. L. Su, T. L. Chien and J. H. Guo. Design a Low Cost Security Robot Applying in Family. The 2nd International Conference on Automomous Robos and Agents. Palmerston North, New Zealand. 2004, (12): 367~372
    62 J. N. K. Liu, W. Meng and F. Bo. IBotGuard: an Internet-based Intelligent Robot Security System Using Invariant Face Recognition against Intruder. IEEE Transaction on Systems, Man and Cybernetics, Part C. 2005, 35(2): 97~105
    63 H. R. Everett. Robotic Security Systems. IEEE Instrumentation & Measurement Magazine. 2003, 6(11): 30~34
    64 P. Biber, S. Fleck and T. Duckett. 3D Modeling of Indoor Environments for a Robotic Security Guard. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 3(6): 124~130
    65 A. Birk and H. Kenn. An Industrial Application of Behavior-oriented Robotics. IEEE International Conference on Robotics and Automation. 2001, 1: 749~754
    66 M. Saitoh, Y. Takahashi, A. Sankaranarayanan, H. Ohmachi and K. Marukawa. A Mobile Robot Testbed with Manipulator for Security Guard Application. IEEE International Conference on Robotics and Automation.1995, 3: 2518~2523
    67 Y. Takahashi and I. Masuda. A Visual Interface for Security Robots. IEEE International Workshop on Robot and Human Communication. 1992: 123~128
    68 H. Hara. Development of ROBOT KOBAN. IEEE European Convention on Security and Detection. 1995: 193~197
    69 Y. Shimosasa, J. Kanemoto, K. Hakamada, H. Horii, T. Ariki, Y. Sugawara, F. Kojio, A. Kimura and S. Yuta. Some Results of the Test Operation of a Security Service System with Autonomous Guard Robot. The 26th Annual Conference of the IEEE on Industrial Electronics Society. 2000, 1(10): 22~28
    70 R. C. Luo, K. L. Su and T. H. Kuo. Intelligent Security Robot Fire Detection System Using Adaptive Sensory Fusion Method. IEEE 28th Annual Conference of Industrial Electronics Society. 2002, 4(11): 2663~2668
    71 A. Treptow, G. Cielniak and T. Duckett. Active People Recognition Using Thermal and Gray Images on a Mobile Security Robot. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005, (8):2103~2108
    72 C. C. Fung and N. Jerrat. A Neural Network Based Intelligent Intruder Detection and Tracking System Using CCTV Images. Proceedings of TENCON 2000. 2000, 2(9): 409~414
    73 T. Takano, K. Ushita, N. Aoyama, S. Ikeda and I. Nishimura. Intruder Detection System by Image Processing. Proceedings of 28th Annual International Carnahan Conference on Security Technology. 1994, (10): 31~33
    74 R. F. Eibert and S. Shuanghe. Recent Advances in Imaging for X-ray Inspection Systems. The 38th Annual 2004 International Carnaban Conference on Security Technology. 2004, (10): 252~257
    75 M. Klima and K. Flieqel. Image Compression Techniques in the Field of Security Technology: Example and Discussion. The 38th Annual 2004 International Carnaban Conference on Security Technology. 2004, (10): 278~284
    76 K. Sanqkyu, B. Abidi and M. Abidi. Integration of Color and Shape forDetection and Tracking Security Breaches in Airports. The 38th Annual 2004 International Carnaban Conference on Security Technology. 2004, (10): 289~294
    77 鲁守银,钱庆林,张滨,王明瑞,李向东,王宏. 变电站设备巡检机器人的研制. 电力系统自动化. 2006, 30(7): 94~98
    78 W. G. Walter. The Living Brain. W.W. Norton, New York.1963
    79 S. Yuta and Y. Hada. Long term activity of the autonomous robot –Proposal of a bench-mark problem for the autonomy. Proceedings of the IEEE/RSJ Internatioanl Conference on Intelligent Robots and Systems. Victoria B.C. Canada. 1998,(10): 1871~1878
    80 I. Nourbakhsh. An affective mobile robot with a full-time job. Artificial Intelligence. 1999, 114(1-2):95-124
    81 M. C. Silverman. Staying Alive: A Docking Station for Autonomous Robot Recharging. IEEE International Conference on Robotics and Automation. Washington D.C. 2002, 1(5): 11~15
    82 Mars Microrover Power Subsystem. http://mars.jpl.nasa.gov/MPF/roverpwr/power.html
    83 I. Kelly, O. Holland, and Chris Melhuish. SlugBot: A Robotic Predator in the Natural World. The 5th International Symposium on Artificial Life and Robotics for Human Welfare and Artificial Liferobotics, Compal Hall, Oita, Japan. 2000, (1): 470~475
    84 C. Bererton and P. K. Khosla. Toward a Team of Robots with Repair Capabilities: A Visual Docking System. Proceedings the 7th International Symposium on Experimental Robotics, December 2000
    85 韩学东. 群机器人协作进化研究. 哈尔滨工业大学博士学位论文. 2004
    86 朴松昊. 智能移动机器人路径规划研究. 哈尔滨工业大学博士学位论文. 2004
    87 H. Surmann, J. Huser and J. Wehking. Path Planning for a Fuzzy Controlled Autonomous Mobile Robot. IEEE International Conference on Fuzzy Systems. UAS:New Orleans. 1996:1660-1665
    88 I. Kamon, E. Rimon and E. Rivlin. TangentBug: A Range-sensor-based Navigation algorithm. International Journal of Robotics Research. 1998,17(9): 934~953
    89 M. A. Batalin and G. S. Sukhatme. Efficient Exploration without Localization. Proceedings of IEEE International Conference on Robotics and Automation. 2003, 2(9): 2714~2719
    90 C. Stachniss and W. Burgard. Mapping and Exploration with Mobile Robots Using Coverage Maps. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2003, 1(10): 467~472
    91 C. Luo, S. X. Yang and M. Q. –H. Meng. Real-time Map Building and Area Coverage in Unknown Environments. Proceedings of IEEE International Conference on Robotics and Automation. 2005, (4): 1736~1741
    92 Y. Zhang, M. Schervish, E. U. Acar and H. Choset. Probabilistic Methods for Robotic Landmine Search. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001, 3(10): 1525~1532
    93 H. Moravec and A. Elfes. High Resolution Maps from Wide Angle Sonar. Proceedings of IEEE International Conference on Robotics and Automation. 1985: 116~121
    94 W. Burgard. Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids. Proceedings of the National Conference on Artificial Intelligence. Portland, Oregon, USA. 1996: 896~901
    95 B. Shiele and J. Growley. A Comparison of Position Estimation Techniques Using Occupancy Grids. Robotics and Autonomous Systems. 1994, 12: 163~171
    96 A. Zelinsky. A Mobile Robot Exploration Algorithm. IEEE Transaction on Robotics and Automation. 1992, 8(6): 707~717
    97 王俭,陈卫东,赵鹤鸣. 优化的移动机器人无障区域内覆盖路径研究.苏州科技学院学报(工程技术版). 2004, 17(6): 61~64
    98 H.Choset and P. Pignon. Coverage of Known Spaces: The Boustrophedon Cellular Decomposition. Autonomous Robotics. 2000, (9): 247~253
    99 E. Acar, H. CHoset, A. Rizzi, P. Atkar and D. Hull. Morse Decompositions for Coverage Tasks. The International Journal of Robotics Research. 2002, 21(4): 331-344
    100 J. Borenstein and L. Feng. UMBmark: A Benchmark Test for MeasuringOdometry Errors in Mobile Robots. SPIE Confernece on Mobile Robots. Philadelphia, 1995, (10)
    101 K. Komoriya and E. Oyama. Position Estimation of a Mobile Robot Using Optical Fiber Gyroscope. International Conference on Intelligent Robots and Systems. Munchen, Germany. 1994, (9): 143~149
    102 R. Pritchard, D. White, D Adams, E. Krause, E. Fox, M. Ladd, R. Heintzleman, O. Sprauer and J. MacEachin. Test and Evaluation of Panoramic Imaging Security Sensor for Force Protection and Facility Security. IEEE International Conference on Security Technology. Alexandria, VA. 1998, (10): 190~195
    103 C. Riccardo, T. Fabio, B. Paolo and F. Roberto. Docking and Charging System for Autonomous Mobile Robots. Technical Report, DEA-Unibs, 2005
    104 H. Yasushi and Y. Shin’ichi. Robust Navigation and Battery Re-charging System for Long-term Activity of Autonomous Mobile Robot. Proceedings of the 9th International Conference on Advanced Robotics. 1999: 297~302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700