二氧化硫催化氧化反应器流向变换强制周期操作的模型化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Modeling of Catalitic Reactors of Sulphur Dioxide Oxidation by Periodical Forced Reversal of the Mixture Flow
  • 作者:吴慧雄
  • 论文级别:博士
  • 学科专业名称:化学工程
  • 学位年度:1995
  • 导师:李成岳 ; 傅举孚
  • 学科代码:081701
  • 学位授予单位:北京化工大学
  • 论文提交日期:1995-03-01
摘要
硫酸是一种基本的化工原料,对许多行业,如化肥、农药、冶金、炼油、有机合成和制药工业等的发展起着重要的作用。我国60%的硫酸用于磷肥生产,因此硫酸工业的发展和技术进步对磷肥工业的发展有着极其重大的意义。我国是一个人口大国,要解决由于人口增长带来的日益严峻的粮食紧张问题,必须在有限的可耕地下使粮食增产。这就要求扩大磷肥生产,同时,加快硫酸工业的发展。
     传统的硫酸生产工艺是将硫磺或硫铁矿通过焙烧制得含SO_2的烟气,送人一段或多段定态转化器,将SO_2转化成SO_3,用浓硫酸吸收其中的SO_3制成硫酸。这种工艺要求进入转化器的气体含二氧化硫浓度较高(一般应高于5%),否则反应器不能自热操作。然而,我国的硫资源主要以品位较低的硫铁矿和冶炼尾气为主,所制得的烟气和冶炼尾气中的二氧化硫的浓度都不高,若用传统的硫酸生产工艺,势必导致流程复杂,设备投资过多,操作费用大。
     流向变换强制周期操作技术对低浓度反应物的放热反应有着独特的优势。这种技术的基本思想是:将低温的反应混合物引入预热至反应温度的催化剂床层,于是会形成一个沿轴向缓慢移动的热波,其温升可以明显高于绝热温升;通过周期性地交换进出口,使反应物的流向在热波还未移出床层之前便发生改变,因而反应热几乎全部积蓄在床层内,即使反应物浓度很低,反应也能自热地完成;由于最终形成中央高,两端低的轴向温度分布,从热力学观点看特别适合于可逆放热反应。
     正是由于这一技术在处理低浓度气体方面的优势,近年来,在世界范围内引起了学术界和工业界的广泛注意,并纷纷起步进行探索性研究和过程开发,试图将这一技术用于化学制热、环境保护和低浓度原料气合成化学品等领域。本文针对将这一技术用于低浓度二氧化硫催化氧化的需要,对这类催化氧化反应器开展系统的模型化研究。
Sulphuric acid is an essential chemical material. It plays an important role in many industries, such as, chemical fertilizer, pesticide, metallurgy, oil refining, organic synthesis and pharmacy, ect. 60 percent of the yield of sulphuric acid are used in producing phosphate fertilizer in our country. So the development and the technical progess of the sulphuric acid industry are of great significance to the development of the phosphate fertilizer industry. On the other hand, the output of the grain production has to be raised in difinite arable land to solve the problem of short supply of food caused by great growth of population in our country. This also demands to enlarge the production of the phosphate fertilizer. As a result, the development of the surphric acid industry must be accelerated.
    The traditional techniques of sulphuric acid production operate in steady state. The sulphur dioxide made from the sulphur or sulphur pyrite is converted into sulphur trioxide in one or more catalyst beds in a stationary converter. A higher concentration of sulphur dioxide (generally more than 5mol%) is requested in those techniques. Otherwise, the converter can not operate autothermally. However, the concentration of gases made from sulphur pyrite and effluent gases from non-ferrous metallurgy in our country is not so high. Evidently, if the traditional technique is used, the prosess will be complicated, the investment of the equipment will be great and the cost of the production will be high.
引文
1. Adesina A. A., Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 64, 447(1986).
    
    2. AL-Taie A. S. and Kershenbaum L. S., Proc. 5th Int. Conf. Chem. React. Eng. Houston, 513-25(1978).
    
    3. Baiker A. and Richarz W., Chimia, 30(11), 502(1976).
    
    4. Bailey J. E. and Horn F. J. M., AIChE J., 17(3), 550(1971a).
    
    5. Bailey J. E., Horn F. J. M. and Lin R. C., AIChE J., 17(4), 818(1971b).
    
    6. Bailey J. E., Periodic Phenomena, Chemical Reactor Theory (Lapidus L. and Amundson N. R. eds.), Prentice-Hall, Englewood Cliffs, New Jersey, 758(1977).
    
    7. Balzhinimaev B. S., Pouomarev V. E., Belyaeva N. P., Ivanov A. A. and Boreskov G. K., React. Kinet. Catal. Lett., 30(1), 23-32(1986).
    
    8. Bilimoria M. R. and Barley J. E., Ibid.
    
    9. Boreskov G. K., Matros Y. S. and Kiselev O. V., Kinet. Katal., 20(3), 773-780(1979).
    
    10. Boreskov G. K., Ivanov A. A., Balzhinmaev B. S. and Karnatovskaya L. M., React. Kinet. Catal. Lett., 14(1),25-29(1980).
    
    11. Boreskov G. K., Matros Y. S., Lakhmosrov V. S., Puxhilova V. I. and Lugovskoi V. I., USSR Patent 882,056 (1981).
    
    12. Boreskov G. K., Matros Y. S. and Lugovskoi V. I., USSR Patent 849, 594 (1982).
    
    13. Boreskov G. K., Bunimovich G. A., Matros Y. S. and Ivanov A. A., Kinet. Katal., 20(3), 773-780(1982).
    
    14. Boreskov G. K. and Matros Y. S., Applied Catalysis, 5, 337-343(1983).
    
    15. Boreskov G. K. and Matros Y. S., Catal. Rev.-Sci. Eng., 25(4), 551-590(1983).
    
    16. Boreskov G. K., Bunimovich G. A., Matros Y. S. and Ivanov A. A., Kinet. Katal., 23(2), 402-406(1980).
    17. Bradshaw A. V., Johnson A., McLachlan N. H. and Chiu Y. T., Trans. Inst. Chem. Eng., 48, T77(1970).
    
    18. Briggs J. P., Hudgins R. R. and Silveston P. L., Chem. Eng. Sci., 32, 1087(1977).
    
    19. Burshad Y. and Gulari E., AIChE J., 31, 649(1985).
    
    20. Burshad Y., Zhou X. and Gulari E., J. Catal., 94, 128(1985).
    
    21. Burshad Y. and Gulari E., J. Catal., 94, 468(1985).
    
    22. Chang K. S. and Bankoff S. G., I & EC Fundamentals, 9(1), 21(1970).
    
    23. Chumachenko V. A., Balzhinimaev B. S., Karnatovskaya L. M., Matros Y. S. and Oruzheinikov A. I., React. Kinet. Catal. Lett., 20(1-2), 145-150(1982).
    
    24. Claybaugh B. E., Bergna H. E. and Watson A. T., U.S. Patent, 3, 472, 829(1969).
    
    25. Crone G. and Renken A., Ger. Chem. Eng., 2, 337(1979).
    
    26. Cutlip M. B., AIChE J., 25, 502(1979).
    
    27. Danckwerts P. V., Chem. Eng. Sci., 2, 1(1953).
    
    28. Denis G. H. and Kubel R. L., Chem. Eng. Sci., 25(6), 1057(1970).
    
    29. Denis G. H. and Kubel R. L., AIChE J., 16(6), 972(1970).
    
    30. Dettmer M., Ger. Chem. Eng., 10, 22(1978).
    
    31. Douglas J. M. and Rippin D. W. T., Chem. Eng. Sci., 21(4), 305-15(1966).
    
    32. Douglas J. M., Ind. Eng. Chem., Process Des. Develop. 6(1),43-8(1967a).
    
    33. Douglas J. M. and Gaitonge N. Y., Ind. Eng. Chem. Fund., 6(2), 265-76(1976b).
    
    34. Feimer J. L., Jain A. K., Hudgins R. R. and Silveston P. L., Chem. Eng. Sci., 37, 1797(1982).
    
    35. Feimer J. L., Silveston P. L. and Hudgins R. R., Can. J. Chem. Eng., 63. 36(1985a).
    
    36. Froment G. F. and Bischoff K. B., "Chemical Reactor Analysis and Design'', John Wiley Sons, New York(1979).
    
    37. Goss M. J. and Turner G. A., AIChE J. 17,590(1971).
    38. Gunn D. J. and De Souza J. F. C., Chem. Eng. Sci., 29, 1363-1371(1974).
    
    39. Handley D. and Heggs P. J., Trans. Inst. Chem. Eng., 46, T251(1968).
    
    40. Helmrich H., Renken A. and Schugerl K., Chem.-Ing.-Tech., 46(15), 647(1974).
    
    41. Horn F. J. M. and Lin R. C., Ind. Eng. Chem., Process. Des. Develop. 6(1),21-30(1967).
    
    42. Horn F. J. M. and Bailey J. E., Journal of Optimization Theory and Applications, 2(6), 441(1968).
    
    43. Ivanov A. A. and Balzhinimaev B. S., React. Kinet. Catal. Lett., 35(1-2),413-424(1987).
    
    44. Jain A. K., Silveston P. L. and Hudgins R. R., ACS Symp Ser. 178,267(1982a).
    
    45. Jain A. K., Hudgins R. R. and Silveston P. L., ACS Symp Ser. 196, 97(1982b).
    
    46. Jain A. K., Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 60, 809(1982c).
    
    47. Jain A. K., Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 61, 46(1983a).
    
    48. Jain A. K., Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 61, 824(1983b).
    
    49. Jain A. K., Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 63, 166(1985).
    
    50. Kaguei S., Shiozawa B. and Wakao N., Chem. Eng. Sci., 32, 507(1977).
    
    51. Krupiczka R., Chemia Stosowana, 2B, 183(1966).
    
    52. Kunii D. and Smith J. M., AIChE J., 7(1), 29-34(1961).
    
    53. Lehr C. G., Yunchaks and Kabel R. L., AIChE J., 14, 627(1968).
    
    54. Leuplak E. J. and Renken A., Ibid., 49(8), 667(1977).
    
    55. Renken A., Muzer M. and Helmrich H., Ibid., b47(24), 1029(1975).
    
    56. Li Chengyue, Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 63, 795(1985a).
    57. Li Chengyue, Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 63, 803(1985b).
    
    58. Li Chengyue, Hudgins R. R. and Silveston P. L., Catalysis on the Energy Scene, ELSEVIER SCIENCE PUBLISHERS B.V., 1984.
    
    59. Lindauer G. C., AIChE J., 13, 1181(1967).
    
    60. Littman H. and Barile R. G., Chem. Eng. Prog. Symp. Ser., 62(67), 10(1966).
    
    61. Littman H., Barile R. G. and Pulsifer A. H., Ind. Eng. Chem. Fund., 7, 554(1968).
    
    62. Lynch D.T., Chem. Eng. Sci., 39, 1325(1984).
    
    64. Matros Y. S., React. Kinet. Catal. Lett, 35(1-2), 425-435(1987).
    
    65. Matros Y. S., Catalytic Processes Under Unsteady-State Conditions, Amsterdam-Oxford-New York-Tokyo: Elsevier Scientific Publishing Company, 1989.
    
    66. Oruzheinikov A. I., Chumachenko V. A. and Matros Y. S., React. Kinet. Catal. Lett., 21(1-2), 97-102(1982).
    
    67. Ostergaard K. and Michelsen M. L., Can. J. Chem. Eng., 47, 107(1969).
    
    68. Ponomarev V. E. and Ketov A. N., React. Kinet. Catal. Lett., 18(1-2), 229-232(1981).
    
    69. Rambeau G. and Amariglio H., Appl. Catal., 1, 291(1981).
    
    70. Rambeau G. and Amariglio H., Appl. Catal., 3, 273(1983).
    
    71. Renken A., Chem. Eng. Sci., 27, 1925(1976).
    
    72. Renken A., Chem. React. Eng., Proc. Int. Symp., 4th 1976, 107-16.
    
    73. Renken A., Chem.-Ing.-Tech., 54(6), 571-80(1982).
    
    74. Renken A., Dechema-Monogr., 94, 313-33(1983).
    
    75. Renken A., Truffer M. A. and Dettmer M., Ind. Chem. Eng. Symp. Ser., 87(Chem. React. Eng.), 117-24(1984).
    
    76. Schumann T. E. W., J. Franklin Inst, 208, 405(1929).
    77. Shen J., Karuei S. and Wakao N., Chem. Eng. Sci., 36,1283-1286(1981).
    
    78. Silveston P. L., Sadhana, 10(1-2),217-46(1987).
    
    79. Silveston P. L. and Hudgins R. R., Recent Trends Chem. React. Eng., [Proc. Int. Chem. React. Conf.], 2nd 1, 235-53(1987).
    
    80. Silveston P. L., Can. J. Chem. Eng., 69(5), 1106-20(1991).
    
    81. Silveston P. L. and Hudgins R. R., Processes Catal., [Proc. Int. Conf.], 557-69(1990).
    
    82. Sapundzhiev C., Grozev G. and Elenkov D., Chem. Eng. Technol., 13, 131-135(1990).
    
    83. Turner G. A. and Otten L., Ind. Eng. Chem. Process Des. Dev., 12, 417(1973).
    
    84. Unni M. P., Hudgins R. R. and Silveston P. L., Can. J. Chem. Eng., 31,623-629(1973).
    
    85. Votruba J., Hlavacek V. and Marek M., Chem. Eng. Sci., 27, 1845-1852(1972).
    
    86. Wandrey C. and Renken A., Chem.-Ing.-Tech., 45(12), 854(1977).
    
    87. Wandrey C. and Renken A., Chem. Eng. Sci., 32(4), 448(1977).
    
    88. Wakao N., Chem. Eng. Sci., 31,1115-1122(1976).
    
    89. Wakao N., Tanisho S. and Shiozawa B., Kagaku Kogaku Ronbunshu, 2, 422(1976).
    
    90. Wakao N. and Kaguei S., Heat and Mass Transfer in Packed Beds, Gordon and Breach, Science Publishers, Inc. 1982.
    
    91. Wilson D. H. and Rinker R. G., Chem. Eng. Sci., 37, 343(1982).
    
    92. Wu Huixiong, Zhang Shuzeng and Li Chenyue, Modeling of Unsteady-State Oxidation of Sulphur Dioxide by Periodically Flow Reversal, accepted to make an oral presentation to the 2nd International Conference on Unsteady-State Processes in Catalysis. St. Louis, Missouri, USA, Sept. 10-14, 1995.
    
    93. Yagi S., Kunii D. and Wakao N., AIChE J., 6(4), 543-546(1960).
    
    94. Zhou X. and Gulari E., Chem. Eng. Sci., 41, 883(1986).
    95. Zhou X., Burshad Y. and Gulari E., Chem. Eng. Sci., 41, 1727(1986).
    96.陈甘棠,化学反应工程,化学工业出版社,1981。
    97.蒋其友,北京化工大学硕士学位论文,1987。
    98.李成岳等,乙烯环氧化反应的动态特性与反应器的动态操作(Ⅰ)、(Ⅱ),化工学报,43卷3期,255~267,1992。
    99.李成岳等,Lurgi型合成甲醇反应器的模型化(Ⅰ)、(Ⅱ),化工学报,45(4),393-405(1994)。
    100.李成岳 阎泽群译,固定床催化反应器的非定态特性,科学出版社,1994。
    102.南京化工研究院,硫酸生产分析方法,化学工业出版社(1971)。
    103.彭明华,硫酸工业,(3),15-18(1992)。
    104.苏德新,北京化工大学硕士学位论文,(1989)。
    105.王静 李成岳等,催化中的动态分析及其应用学术会议论文集,1989,天津。
    106.王建华 廖晖 刘邦荣,催化中的动态分析及其应用学术会议论文集,1989,天津。
    107.吴慧雄 张树增 李成岳,二氧化硫强制非定态氧化过程的模型化(Ⅰ)、 (Ⅱ),《化工学报》已接受,1994。
    108.肖文德 项红 袁渭康 张瑞生,硫酸工业,(2),13—19(1991)。
    109.肖文德 袁渭康,第王届全国化学反应工程学术报告会论文集,1993,天津。
    110.张文广 张树增 朱卓群 李成岳,北京化工学院学报,1994,21(2):70~74。
    111.朱起明 刘崇微 韩占生,催化中的动态分析及其应用学术会议论文集,1989,天津。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700