高炉鼓风机控制系统的设计和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冶金企业中,高炉鼓风机是非常重要的复杂设备,为了确保其能够稳定、安全、高效的工作,设计并实现高炉鼓风机的计算机控制是十分重要的。本文结合高炉鼓风机的特点就控制系统的结构和控制方法进行了深入分析和研究,从信号采集、信号分析、PID控制运算、输出控制、安全保护等整个鼓风机控制系统回路的各个组成环节出发,分别进行了设计和优化。在提高控制系统的控制精度的基础上,进一步提高了大型鼓风机运行的可靠性、安全性、稳定性,为高炉的扩容和提产提供了可靠保障。
     高炉鼓风机的控制是以逻辑控制、联锁控制为主。从这个方面考虑,具备较强逻辑控制功能的PLC系统是一个理想的选择。从性能上来看,PLC产品已经具备了很强的模拟量处理能力和稳定性,能够满足本控制系统对模拟信号处理和稳定性的要求。从系统结构来看,PLC系统兼容工业以太网协议,从而为系统间的通讯和扩展提供了更多的空间。因此,选择PLC系统作为控制系统的主体兼顾了设备投资和控制效果。
     具体研究及设计、改造内容是鼓风机西门子S7-400控制系统的硬件架构、控制模型的应用及5台机组控制系统联网通讯实现相互监视、操作。
     1.PLC控制系统硬件结构设计
     采用德国西门子公司大型、主流的PLC控制系统S7-400作为控制系统主体架构,实现机组的启动、调整、调节、停机及安全保护等主要功能。更新现场的信号采集装置和控制输出的执行机构等,从现场到控制系统对整个控制回路进行优化。
     2.控制系统控制模型设计软件设计采用了大量先进的控制技术和控制思想:防喘振变增益自动调节、静叶调节和防喘振调节的解耦控制、重要信号的三选二判断、静叶定风压/定风量选择控制、串级控制等。这些控制思想保证了机组的安全可靠运行,扩大了鼓风机运行区域。
     3.鼓风机控制系统间通讯监控层的通讯采用开放的工业以太网协议,并通过交换器和光纤收发器实现新改造的1#鼓风机的S7-400控制系统与其余4组鼓风机控制系统联网,实现5台机组信号的无缝连接。5台鼓风机控制系统的联网,实现了在一个操作站上可对5台鼓风机进行监控、操作,提高了机组自动化控制水平及劳动生产率。
     结合论文研究工作所研制的高炉鼓风机计算机控制系统已经在某钢铁集团公司投入实际运行,控制系统性能稳定,控制效果良好。
In metallurgical corporation, blast furnace air blower is very crucial and complex facility. To ensure its stable, high efficient and safe work, designing and realizing computer control system is very important. This paper analyzed and researched control system in architecture and control method, integrating blast furnace's feather. This paper focused on optimizing blower control system from different links consisting loop, such as signal acquisition, signal analysis, PID control, output control, safety protection etc. optimized control system raised controlled resolution, satisfied blower running with reliability, safety and stability, and guarantee blast furnace's expansion and increase of production.
     Blower control system is majored in logic control and interlock control. From this point, PLC which has strong logic control function is a desired choice. From performance, PLC product has strong handling ability in analog signal and stability, and can meet this control system's request to analog signal and stability. From system architecture, PLC system is compatible with Industry Ethernet network protocol, providing more space for communication between systems and expansion. Therefore, the choice of PLC system as main part of control system gave attention to two aspects: equipment investment and control effect.
     Detailed research, design and improvement involve hardware framework and control model's application of blower Simens S7-400 control system and monitoring and operating each other among 5 control systems by network communication.
     1. The design of PLC control system hardware framework
     Adopting Simens's large scale and pop PLC control system S7-400 as major part of control system, system realize major function, such as start, revision, adjustment, stop and security protection etc. updating signal acquisition device and actuator controlling output and so on, entire control system was optimized from field to control system.
     2. The design of Control model in control system
     Control system adopt a lot of advanced control technology and control thinking, such as variable gain anti-surge adjustment, decouple control of stationary blade and anti-surge adjustment, 2/3 decide of important signal, and cascade control. These control thinking guarantee safe and reliable running, and expand operation region of air blower.
     3. communication among control systems
     In monitor layer, information is delivered through switch and fiber optic transceiver among new S7-400 control system and 4 others, according to Industry Ethernet protocol standard. Network of 5 control system realize monitoring and operating 5 blower in each control console, improving automatic control level of plant and labor productivity.
     Computer control system of blast furnace blower combined with research work ofthis paper has been operating for half year in one Iron& Steel group with stableperformance and good control effect.
引文
[1]陈燕清.绿色GDP与科学发展观[J].林业勘察设计.2006,(1):34-36
    [2]绿色杭钢.URL http://www.hzsteel.com/web
    [3]王梦奎,马凯.建设节约型社会[M].北京,人民出版社.2005:152-156
    [4]郝素菊,蒋武锋,方觉.高炉炼铁设计原理[M].北京,冶金工业出版社:1-2
    [5]张殿有.高炉冶炼操作技术[M].北京,冶金工业出版社.2006:20-25
    [6]王文涛.防止高炉灌渣的保安风自动控制系统新技术[J].冶金动力.2006(2):19-20
    [7]李超俊,余文龙.轴流压缩机原理及气动设计[M].北京,机械工业出版社.1987:1-2
    [8]郝素菊,蒋武锋,方觉.高炉炼铁设计原理[M].北京,冶金工业出版社.:79-80
    [9]Rick Fausel.Blast Furnace Blower Optimization.Control Journal.2002(11):4-9
    [10]方子严.化工机器[M].北京,中国石化出版社.1999:261-262
    [11]吕文灿,轴流式压缩机[M].北京,机械工业出版社.1980:138-141
    [12]Ffowcs Williams,J,E Harper M.F.L and Allwright D.J.Activestabillization of Compressor Instability and surge in a working engine[J].ASME Journal of Turbomachinery.1993,115:68-75
    [13]沙永志.高富氧大喷煤技术分析[J].炼铁.2006,(6):19-22
    [14]刘殿瑶,高炉富氧鼓风的现状及机前供氧[J].冶金动力.2003,(6):16-18
    [15]王攸留,高炉脱湿鼓风技术[J].鞍钢技术.2006,(3):1-4
    [16]蒋静坪,计算机实时控制系统[M].杭州,浙江大学出版社.1992:1-12
    [17]江秀汉,周建辉,汤楠.计算机控制原理及其应用[M].西安,西安电子科技大学出版社.1995:5-11
    [18]齐从谦,王士兰.PLC技术及应用[M].北京,化学工业出版社.2008:1-2
    [19]刘蓉.最新可编程控制器教程.西安,西北工业大学出版社,2000:1-4
    [20]杜学强.PLC现状与发展浅论.URL http://bbs.gongkong.com/detail.asp?id=237867.2004.4
    [21]盛苏.PLC控制感应加热成套系统研究.master's thesis,浙江大学电机与电器,2003.3
    [22 齐从谦,王士兰.PLC技术及应用[M.北京,化学工业出版社.2008:2-3
    [23 施春雷,宋云辉,韦德成.可编程控制器的发展趋势[J.电站设备自动化,2002,6(2):26-29
    [24 戚学峰,樊丁.高炉鼓风机寻优控制方法及实现[J].风机技术,2002,(6):30-33
    [25 孙俊峰.AV40-11 轴流压缩机的防喘振和逆流保护[J.河北冶金,2005,(3):51-53
    [26 厉玉鸣.化工仪表及自动化[M.北京,化学工业出版社.1999:184-194
    [27]SIMATIC自动化系统S7-400 硬件和安装手册[M.2005:13
    [28 周泽魁,控制仪表与计算机控制装置[M.北京,化学工业出版社.2002:355-340
    [29 赵佳,赵彦奎,郭勇.高炉鼓风机自控系统的抗干扰优化设计[J].冶金动力,2004,(2):59-62
    [30 杨公训,可编程序控制器(PC)的抗干扰技术[J.北京,海洋出版社.1995:80-83
    [31 郝莉,李泽光,倪枫.PLC 系统的抗干扰设计[J].机电技术.2007,(3):69-71
    [32]С.П.里符希茨.高能量头离心式鼓风机[M.北京,机械工业出版社.1982:31
    [33]钟梅梅.鼓风机的静叶角度调整原理与调试方法[J].河北冶金.1998,(2-5):70-74
    [34]李化冶.制氧技术.北京.冶金工出版社.1997:301-304
    [35 哈普塔,蓬斯拉.有关轴流式压缩机喘振的一些现象.北京,航空学院科研部.1957:20-23
    [36 任玉峰.差压式流量传感器测量一般气体流量时的温度压力补偿方法[J.工业仪表与自动化装置.2006,(6):56-58
    [37 胡寿松.自动控制原理.第4版.北京,科学出版社.2000:80-83.
    [38]Gilbert E G.The decoupling of multi variable systems by state feedback[J].SIAM J.Control.1969,7(1):50-63
    [39 刘晨晖.多变量过程控制系统解耦理论[M.北京,水利电力出版社.1984:1-4
    [40 侯文,振动起因及其缓解方法[J.大氮肥.2005,(1):4-7
    [41 杨限平.薄板常转炉除尘风机振动原因诊断[J.包钢科技,2004,30(3):41-42
    [42]National Instruments Corp.Function and V1 reference manual[M].Austin,1998: 418-420
    [43]沈安文,赵方亮.基于DSP的风机振动监测系统[J.自动化仪表,2006,27(4):35-38
    [44]吴志辉,黄建新.高炉鼓风机的振动故障诊断[J.中国设备工程,2006,(增1):88-89
    [45]Bently Nevada.3300 system function[M].American,2001:1-2
    [46]张秀芬,蒋跃.BENTLY 监测系统的故障分析与处理[J.自动化仪表,2002,23(11):40-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700