不可逆加成—断裂链转移剂存在下的自由基乳液聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于不可逆加成-断裂链转移机理的分子量调节剂首次报道出现在上世纪80年代末,并在随后十几年的研究中发现烯丙基结构的化合物在自由基聚合中能充当链转移剂来控制聚合物分子量。通过设计该类链转移剂的分子结构,可以得到对应单体链转移常数不同的分子量调节剂;在本体和溶液自由基聚合中,部分链转移剂在聚合过程中既无阻聚现象发生,又能有效降低聚合物分子量,是理想的链转移剂。基于不可逆加成-断裂链转移机理的分子量调节剂与传统的硫醇等链转移剂相比,克服了烷基硫醇自身令人讨厌的气味,同时又能优化乙烯基类单体的链转移常数,具有一定的应用价值。参阅大量文献,基于不可逆加成-断裂链转移机理的分子量调节剂在本体和溶液聚合的研究甚多,并且得到了大量对于苯乙烯链转移常数不同的分子量调节剂,但是这些分子量调节剂运用于乳液聚合的研究几乎没有。基于此,研究该类链转移剂在乳液聚合的动力学特性,无论对理论的探索还是工业的应用都非常重要。因此,本论文就在如下几个方面展开了研究工作,并得出相应结论。
     首先,根据文献合成或购买了5种基于烯丙基结构的化合物,它们分别是:正丁基-2-苯基烯丙基硫(BPAS),正十二烷基-2-苯基烯丙基硫(DPAS),α-苯磺酰甲基丙烯酸乙酯(EBSA),α-对甲基苯磺酰甲基丙烯酸乙酯(ETSA)以及2,3-二氯丙烯(DCP)。合成和购买的链转移剂无味且产率较高,通过~~1H NMR对5种有机化合物进行了表征,结果表明结构正确,产物纯净。
     第二,将5种链转移剂运用于苯乙烯乳液聚合来调节聚合物分子量,研究了各链转移剂存在下的乳液聚合动力学特性,并用~1H NMR对聚合物结构,时间-转化率曲线对聚合速率,激光粒度仪和扫描电镜对乳胶粒子以及GPC对聚合物数均分子量分别进行了表征,结果表明本文所使用的5种分子量调节剂的链转移过程符合不可逆加成-断裂机理;不同链转移常数的分子量调节剂因在乳胶粒子中存在自由基解吸附作用,因此对苯乙烯乳液聚合速率影响各不相同。其中,链转移常数较大的分子量调节剂解吸附明显,聚合速率下降严重。而相对链转移常数较小的链转移剂解吸附速率常数较小,对聚合速率影响轻微。而扩散作用,同样影响聚合速率,分子量较大的链转移剂扩散速度慢,自由基解吸附小,对聚合速率几乎未有影响。不同链转移常数的分子量调节剂对数均分子量的控制上,链转移常数较大的调节剂在前期消耗过快,会出现在聚合中后期难以调节聚苯乙烯分子量。而链转移常数相对较小的调节剂能在整个聚合过程中控制聚苯乙烯分子量。而分子量较大的链转移剂因扩散速率慢难以调节聚合物分子量。经典数学模型模拟的数均分子量能与观测值相匹配。
     第三,利用BPAS在苯乙烯乳液聚合中进了详细考察,得到了乳胶粒子个数、聚合速率与乳化剂浓度、引发剂浓度以及链转移剂浓度之间的相互关系,其动力学特征符合经典乳液聚合原理和相关动力学数学模型假设;BPAS存在下的苯乙烯乳液聚合,用量较少时,解吸附现象并不严重;BPAS存在下的低温苯乙烯乳液聚合对聚合物分子量调节效率与高温苯乙烯乳液聚合一致,其分子量调节效率与温度几乎无关,扩宽了BPAS作为链转移剂的温度使用范围。
     第四,不可逆加成-断裂链转移机理的分子量调节剂在乳聚丁苯橡胶的应用同时也进行了研究。聚合动力学特性与其在苯乙烯高温乳液聚合特性有相似之处,即在不考虑链转移剂扩散因素的前提下,链转移常数越大解吸附现象越严重,聚合速率越慢。而链转移常数较小的分子量调节剂难以有效调节聚合物分子量。在乳液聚合中,因自由基解吸附存在,所以聚合速率和分子量调节效率是一对矛盾体,在链转移剂分子设计中应综合考虑以上两个因素,来解决聚合过程中出现的问题。
Molecular weight regulators or chain transfer agents (CTAs) based onirreversible addition-fragmentation chain transfer (AFCT) mechanism werefirst reported in the late1980s. Among these CTAs mentioned in thereferences in the following research, some allyl CTAs can be used formolecular weight control. The chain transfer constant for some particularvinyl monomers can be easily changed by designing the structure of theCTAs; It were also found no retardation during polymerization when theseallyl compounds were used in bulk or solution system for molecular weightcontrol of polystyrene. Therefore, they were ideal CTAs in bulk andsolution polymerization. Compared with mercaptans, the advantages ofirreversible AFCT agents are obvious: they have no odors; the chaintransfer constant for particular vinyl monomers can be regulated easily bychanging the activity group. Thus, these CTAs have the prospect for application in the industrial areas. Although various irreversible AFCTagents have been evaluated in bulk and solution polymerization, to the bestof our knowledge, the study on the emulsion polymerization of styrenewith these CTAs has never been published. Therefore, the research on theintrinsic kinetics of emulsion polymerization with irreversible AFCT agentsis important for the application of these new CTAs. This work mainlyfocused on the study of the kinetics for emulsion polymerization withirreversible AFCT agents as following description.
     Firstly, five kinds of CTAs based on allyl structure were synthesizedaccording to the literature or purchased from the chemical company. Theyare butyl(2-phenylallyl)sulfane (BPAS), dodecyl(2-phenylallyl)sulfane(DPAS), ethyl α-benzenesulfonyl-methylacrylate (EBSA), ethylα-p-toluenesulfonyl-methacrylate (ETSA) and2,3-dichloro-1-propene(DCP). These CTAs can be easily synthesized with high yield and have noobjectionable odors compared with mercaptans. They were alsocharacterized by~1H NMR, and the spectrums of compounds shown that thestructures were correct.
     Secondly, the emulsion polymerization of styrene with above fivedifferent CTAs based on irreversible AFCT mechanism was carried outusing conventional surfactant (sodium dodecyl sulfate, SDS) and initiator(potassium peroxodisulfate, KPS). The influences of these irreversibleAFCT agents on the rate of polymerization, particle size and average-number molecular weight were investigated. It was found that theintrinsic activity, diffusion and desorption behaviors of the CTAsdetermined the efficiency of molecular weight control, rate ofpolymerization and particle size in the emulsion polymerization. It has beendemonstrated that the irreversible AFCT agents with high chain transferconstant (EBSA and ETSA) decreased the reaction rate and practice size,meanwhile, the molecular weight of the polymers could not be controlledwell, whereas the irreversible AFCT agents with low chain transferconstant (BPAS, DPAS and DCP) had a slight effect on the polymerizationrate and particle size. DPAS failed to control the molecular weight, whichwas attributed to the low rate of diffusion through monomer droplets toaqueous phase. The average number of radicals per particle and thenumber-average molecular weight were calculated by classical radicalemulsion polymerization theory, and the experimental results were in goodagreement with the results of model calculations, when the irreversibleAFCT agents were used as CTAs. The effect of CTAs on the kinetics andnucleation in the emulsion polymerization of styrene can be attributed todesorption of chain-transfered radicals from the polymer particles. Theresults of this work show that BPAS as CTA in emulsion polymerization ofstyrene provides the best balance between the rate of polymerization andthe efficiency for molecular weight control conflicting tendencies.
     Thirdly, the emulsion polymerizations of styrene in presence of BPAS were carried out using various amount of sodium dodecyl sulfate assurfactant and potassium peroxodisulfate as initiator. The effects ofsurfactant, initiator and BPAS on the course of the emulsion polymerization,and the number-average molecular weight were studied. The relationshipsbetween the rates of polymerization and the number of the particles pervolume with respect to the concentrations of KPS, SDS and BPAS werefound. The obtained relationships can be attributed to the exit of leavinggroup radicals on BPAS from the particle. The experimental values of theaverage number of radicals per particle strongly depended on theconcentration of BPAS and were in good agreement with the theoreticalvalues of model calculations. The number-average molecular weight can becontrolled by BPAS almost over the whole conversion range which is alsoin agreement with a mathematical model. Moreover, BPAS can also beused in the emulsion polymerization at lower temperature, and itsefficiency for molecular weight control is relatively independent of reactiontemperature.
     Finally, the emulsion polymerizations of styrene-butadiene rubber(E-SBR) were also carried out using three CTAs based on irreversibleAFCT mechanism. The polymerization kinetics is similar with theemulsion polymerization of styrene at high temperature. It was also foundthat the irreversible AFCT agents with high chain transfer constantdecreased the reaction rated of polymerization, due to desorption of chain-transfered radicals from the polymer particles. Meanwhile, CTAswith very low chain transfer constant would obtain a decreased efficiencyfor molecular weight control. Therefore, there is a conflicting tendencybetween the rate of polymerization and the efficiency for molecular weightcontrol in emulsion polymerization.
引文
[1] Freidlina R K, Terentev A B.Free-Radical Rearrangements In Telomerization. Accounts ofChemical Research[J].1977,10(1):9-15.
    [2] Vaclavek V.Regulation of Molecular Weight of Styrene-Butadiene Rubber.I. Choice ofRegulator From Homologous Series of Xanthogen Disulfides[J]. Journal Of Applied PolymerScience.1967,11(10):1881.
    [3] Vaclave.Regulation of molecular weight of styrene-butadiene rubber. II. Influence of Variationof Polymerization[J]. Journal of Applied Polymer Science1967.11(10):1892-1902.
    [4] Vacavek V.Regulation of molecular weight of styrene-butadiene rubber. III. Choice of regulatorfrom the homologous series of aliphatic mercaptans[J]. Journal of Applied Polymer Science.1967,11(10):1903-1914.
    [5] Boutevin B.From telomerization to living radical polymerization[J]. Journal of polymer sciencepart a-polymer chemistry.2000,38(18):3235-3243.
    [6] Boutevin B, David G, Boyer C.Telechelic oligomers and macromonomers by radicaltechniques[J].2007,206:31-135.
    [7] Colombani D.Chain-growth control in free radical polymerization[J]. Progress in PolymerScience.1997,22(8):1649-1720.
    [8] Tobolsky H M A A.Physical Chemistry of High Polynieric Materials[M]. New York:Interscience,1950:416.
    [9] Christie D I, Gilbert R G.Transfer constants from complete molecular weight distributions[J].Macromolecular Chemistry and Physics.1997,198(2):663.
    [10] Tobita H, Mima T, Okada A, et al.Molecular weight distribution formed during free-radicalpolymerization in the presence of polyfunctional chain transfer agents[J]. Journal of PolymerScience Part B: Polymer Physics.1999,37(12):1267-1275.
    [11] Smith W V.Regulator Theory in Emulsion Polymerization. II. Control of Reaction Rate byDiffusion for High Molecular Weight Mercaptans[J]. Journal of the American ChemicalSociety.1946,68(10):2064-2069.
    [12] Smith W V.Regulator Theory In Emulsion Polymerization.1. Chain Transfer of Low MolecularWeight Mercaptans In Emulsion And Oil-Phase[J]. Journal of The American Chemical Society.1946,68(10):2059-2064.
    [13] Frank R L, Blegen J R, Deutschman A.Aroyl Disulfides As Promoter-Modifiers ForCopolymerization Of Butadiene And Styrene[J]. Journal Of Polymer Science.1948,3(1):58-65.
    [14] Alfrey T, Hardy V.Chain Transfer In Copolymerization Reactions[J]. Journal of PolymerScience.1948,3(4):500-502.
    [15] Frank R L, Drake S S, Smith P V, Et Al.Mercaptan Derivatives As Modifiers In TheCopolymerization of Butadiene And Styrene[J]. Journal of Polymer Science.1948,3(1):50-57.
    [16] Frank R L, Smith P V, Woodward F E, Et Al.Mercaptan Structure And Regulator Activity InEmulsion Polymerizations[J]. Journal of Polymer Science.1948,3(1):39-49.
    [17] Uraneck C A, Burleigh J E.Modification of butadiene-acrylonitrile and styrene-acrylonitrilecopolymerizations in emulsion systems[J]. Journal of Applied Polymer Science.1968,12(5):1075.
    [18] Uraneck C A, Burleigh J E.Molecular weight distribution of polystyrene and ofbutadiene-styrene copolymers prepared in emulsion systems[J]. Journal of Applied PolymerScience.1970,14(2):267-284.
    [19] Scott G P, Elghoul A M R.Telomerization by free-radical mercaptan chain transfer. IV. Effectsof structure, solvent and initiator variation on the stereochemistry of acrylate ester-mercaptantelomers[J]. Journal of Polymer Science Part A-1: Polymer Chemistry.1970,8(8):2255-2263.
    [20] Hawker C J.“Living” Free Radical Polymerization: A Unique Technique for the Preparation ofControlled Macromolecular Architectures[J]. Accounts of Chemical Research.1997,30(9):373-382.
    [21] Smeets N M B, Heuts J P A, Meuldijk J, et al.Effect of catalyst partitioning in Co(II) mediatedcatalytic chain transfer miniemulsion polymerization of methyl methacrylate[J]. Journal ofPolymer Science Part A: Polymer Chemistry.2008,46(17):5839-5849.
    [22]Barson C A, Bevington J C, Hunt B J.Iodoform as a transfer agent in radical polymerizations[J].1996,37(25):5699-5702.
    [23] Chiefari J, Chong Y K B, Ercole F, et al.Living Free-Radical Polymerization by ReversibleAddition Fragmentation Chain Transfer: The RAFT Process[J]. Macromolecules.1998,31(16):5559-5562.
    [24] Suddaby K G, Haddleton D M, Hastings J J, et al.Catalytic chain transfer for molecular weightcontrol in the emulsion polymerization of methyl methacrylate and methylmethacrylate-styrene[J]. Macromolecules.1996,29(25):8083-8091.
    [25] Gridnev A A.Kinetics of alpha-methylstyrene oligomerization by catalytic chain transfer[J].Journal of polymer science part a-polymer chemistry.2002,40(9):1366-1376.
    [26] Smeets N M B, Heuts J P A, Meuldijk J, et al.Evidence of Compartmentalization in CatalyticChain Transfer Mediated Emulsion Polymerization of Methyl Methacrylate[J]. Macromolecules.2009,42(19):7332-7341.
    [27] Smeets N M B, Jansen T G T, Sciarone T J J, et al.The Effect of Different Catalytic ChainTransfer Agents on Particle Nucleation and the Course of the Polymerization in Ab Initio BatchEmulsion Polymerization of Methyl Methacrylate[J]. Journal of Polymer Science PartA-Polymer Chemistry.2010,48:1038-1048.
    [28] Hawker C J, Bosman A W, Harth E.New polymer synthesis by nitroxide mediated livingradical polymerizations[J]. Chemical Reviews.2001,101(12):3661-3688.
    [29] Wang J, Matyjaszewski K.Controlled/"Living" Radical Polymerization. Halogen AtomTransfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process[J].Macromolecules.1995,28(23):7901-7910.
    [30] Gaynor S G, Wang J S, Matyjaszewski K.Controlled radical polymerization by degenerativetransfer-effect of the structure of the transfer agent[J]. Macromolecules.1995,28(24):8051-8056.
    [31] Monteiro M J, de Barbeyrac J.Preparation of reactive composite latexes by 'living' radicalpolymerization using the RAFT process. A new class of polymer materials[J]. MacromolecularRapid Communications.2002,23(5-6):370-374.
    [32] David G, Boyer C, Tonnar J, et al.Use of iodocompounds in radical polymerization[J].Chemical Reviews.2006,106(9):3936-3962.
    [33] David G, Boyer C, Tayouo R, et al.A process for polymerizing vinyl phosphonic acid withC6F13I perfluoroalkyl iodide chain-transfer agent[J]. Macromolecular Chemistry And Physics.2008,209(1):75-83.
    [34] Iovu M C, Matyjaszewski K.Controlled/living radical polymerization of vinyl acetate bydegenerative transfer with alkyl iodides[J]. Macromolecules.2003,36(25):9346-9354.
    [35] Lansalot M, Farcet C, Charleux B, et al.Controlled free-radical miniemulsion polymerization ofstyrene using degenerative transfer[J]. Macromolecules.1999,32(22):7354-7360.
    [36] Goto A, Ohno K, Fukuda T.Mechanism and kinetics of iodide-mediated polymerization ofstyrene. Macromolecules[J].1998,31(9):2809-2814.
    [37] Lacroix-Desmazes P.Reverse iodine transfer polymerization of methyl acrylate and n-butylacrylate. Macromolecules[J].2005,38:6299-6309.
    [38] Boyer C, Lacroix-Desmazes P, Robin J, et al.Reverse Iodine Transfer Polymerization (RITP) ofMethyl Methacrylate[J]. Macromolecules.2006,39(12):4044-4053.
    [39] Tonnar J, Lacroix-Desmazes P, Boutevin B.Controlled Radical-Ab Initio-EmulsionPolymerization of n-Butyl Acrylate by Reverse Iodine Transfer Polymerization (RITP): Effectof the Hydrolytic Disproportionation of Iodine[J]. Macromolecular Rapid Communications.2006,27(20):1733-1738.
    [40] Pouget E, Tonnar J, Eloy C, et al.Synthesis ofpoly(styrene)-b-poly(dimethylsiloxane)-b-poly(styrene) triblock copolymers by iodine transferpolymerization in miniemulsion[J]. Macromolecules.2006,39:6009-6016.
    [41] Lacroix-Desmazes P, Tonnar J, Boutevin B.Reverse iodine transfer polymerization (RITP) inemulsion[J]. Macromolecular Symposia.2007,248:150-157.
    [42] Tonnar J, Lacroix-Desmazes P, Boutevin B.Living radical ab initio emulsion polymerization ofn-butyl acrylate by reverse iodine transfer polymerization (RITP): Use of persulfate as bothinitiator and oxidant[J]. Macromolecules.2007,40:6076-6081.
    [43] Tonnar J, Lacroix-Desmazes P, Boutevin B.Controlled Radical Polymerization of Styrene byReverse Iodine Transfer Polymerization (RITP) in Miniemulsion:Use of Hydrogen Peroxide asOxidant[J]. Macromolecules.2007,40(2):186-190.
    [44] Tonnar J, Pouget E, Lacroix-Desmazes P, et al.Synthesis of Poly(vinylacetate)-block-poly(dimethylsiloxane)-block-poly(vinyl acetate) Copolymers by IodineTransfer Photopolymerization in Miniemulsion[J]. Macromolecular symposia.2009,281:20-30.
    [45] H. G. Oh H S H J.Control of Molecular Weight of Polystyrene Using the Reverse IodineTransfer Polymerization (RITP)-Emulsion Technique[J]. Journal of Colloid and InterfaceScience.2009.
    [46] Shin H C, Oh H G, Lee K, et al.Emulsion polymerization of methyl methacrylate using thereverse iodine transfer polymerization (RITP) technique[J]. Polymer.2009,50:4299-4307.
    [47] Adamy M, van Herk A M, Destarac M, et al.Influence of the chemical structure of MADIXagents on the RAFT polymerization of styrene[J]. Macromolecules.2003,36(7):2293-2301.
    [48] Moad G, Rizzardo E, Thang S H.Living Radical Polymerization by the RAFT Process[J].ChemInform.2005,36(40).
    [49] Prescott S W, Ballard M J, Rizzardo E, et al.Rate Optimization in Controlled Radical EmulsionPolymerization Using RAFT[J]. Macromolecular Theory and Simulations.2006,15(1):70-86.
    [50] Moad G, Rizzardo E, Thang S H.Radical addition-fragmentation chemistry in polymersynthesis[J]. Polymer.2008,49(5):1079-1131.
    [51] Meijs G F, Rizzardo E, Thang S H.Preparation of controlled-molecular-weight,olefin-terminated polymers by free radical methods. Chain transfer using allylic sulfides[J].Macromolecules.1988,21(10):3122-3124.
    [52] Yagci Y, Reetz I.Addition-fragmentation reactions in polymer chemistry[J]. Reactive&Functional Polymers.1999,42(3):255-264.
    [53] Yamada B, Zetterlund P B, Sato E.Utility of propenyl groups in free radical polymerization:Effects of steric hindrance on formation and reaction behavior as versatile intermediates[J].Progress In Polymer Science.2006,31(10):835-877.
    [54] Sato E, Zetterlund P B, Yamada B.Macromonomer synthesis usingalpha-(2-methyl-2-phenylpropyl)acrylates as addition-fragmentation chain transfer agentsexpelling the cumyl radical[J]. Journal of Polymer Science Part A-Polymer Chemistry.2004,42(23):6021-6030.
    [55] Sato E, Zetterlund P B, Yamada B.Macromonomer synthesis using oligomers ofomega-unsaturated methacrylate as addition-fragmentation chain transfer agents: Increasedefficiency by manipulation of steric hindrance[J]. Macromolecules.2004,37(7):2363-2370.
    [56] Gordon F. Meijs E R A S.Chain transfer activity of some activated allylic compounds[J].Polymer Bulletin.1990,24:501-505.
    [57] Meijs G F, Morton T C, Rizzardo E, et al.The use of substituted allylic sulfides to prepareend-functional polymers of controlled molecular weight by free-radical polymerization[J].Macromolecules.1991,24(12):3689-3695.
    [58] Rizzardo G F M.Thiohydroxamic esters A new class of polymerization regulator[J]. PolymerBulletin.1991,26:291-295.
    [59] Colombani D, Chaumont P.Chain transfer by addition-substitution-fragmentation mechanism. I.End-functional polymers by a single-step free radical transfer reaction: Use of a new allyliclinear peroxyketal[J]. Journal of Polymer Science Part A: Polymer Chemistry.1994,32(14):2687-2697.
    [60] Sato T, Seno M, Kobayashi M, et al.Radical polymerization of vinyl monomers in the presenceof ethyl [alpha]-benzene-and [alpha]-p-toluenesulfonylmethylacrylates[J]. European PolymerJournal.1995,31(1):29-34.
    [61]Colombani D, Chaumont P.Chain transfer by addition-substitution-fragmentation mechanism:3.Access to low-molecular-weight telechelic polymers using ethyl2-[1-(1-methoxy-1-cyclohexylperoxy)-ethyl]propenoate[J].1995,36(1):129-136.
    [62] Jiang S, Viehe H G, Oger N, et al.New chain transfer agents for radical polymerization basedon the addition-fragmentation mechanism[J]. Macromolecular Chemistry and Physics.1995,196(7):2349-2360.
    [63] Nair C P R, Chaumont P, Charmot D.Diene-functional macromonomers by a single-step freeradical addition-fragmentation reaction. Syntheses and kinetics[J]. Journal of Polymer SciencePart A: Polymer Chemistry.1995,33(16):2773-2783.
    [64] Colombani M Z A D.Chain transfer by addition-fragmentation mechanism[J].1997.
    [65] Nair C.Addition-fragmentation of5-bromopenta-1,3-diene in free radical polymerization ofmethyl methacrylate[J]. Polymer International.1998,46(4):313-319.
    [66] Yamada B, Tagashira S, Aoki S.Preparation of polymers with substituted allyl end group usingdimer of alpha-methylvinyl monomer as addition fragmentation chain transfer agent at hightemperatures[J]. Journal of Polymer Science Part A: Polymer Chemistry.1994,32(14):2745-2754.
    [67] Watanabe Y, Ishigaki H, Okada H, et al.New method in free radical chemistry using2,4-diphenyl-4-methyl-1-pentene as radical trapping agent[J]. Polymer Journal.1997,29(4):366-369.
    [68] Zetterlund P B, Yamazoe H, Yamada B.Addition-fragmentation chain transfer involving dimersof alpha-methylvinyl monomers studied by ESR spectroscopy: Competition betweenfragmentation and bimolecular termination[J]. Macromolecular Rapid Communications.2003,24(2):197-201.
    [69] Evans R A, Rizzardo E.Free-Radical Ring-Opening Polymerization of Cyclic AllylicSulfides[J]. Macromolecules.1996,29(22):6983-6989.
    [70] Moad C L, Moad G, Rizzardo E, et al.Chain Transfer Activity of ω-Unsaturated MethylMethacrylate Oligomers[J]. Macromolecules.1996,29(24):7717-7726.
    [71] Meijs G F, Rizzardo E, Le T P T, et al.Influence of thionoesters on the degree ofpolymerization of styrene, methyl acrylate, methyl methacrylate and vinyl acetate[J]. DieMakromolekulare Chemie.1992,193(2):369-378.
    [72] Tanaka K, Yamada B.Product and kinetic analysis of oligomerization byaddition-fragmentation chain transfer using methyl alpha-bromomethylacrylate[J]. Polymerjournal.2002,34(8):608-617.
    [73] Krstina J, Moad G, Rizzardo E, et al.Narrow Polydispersity Block Copolymers by Free-RadicalPolymerization in the Presence of Macromonomers[J]. Macromolecules.1995,28(15):5381-5385.
    [74]安粒,惠嘉,宋犇.基于加成-断裂型链转移机理的自由基聚合反应[J].中国印刷与包装研究.2011,03(5):12-21.
    [75] By Stephen W. Lansdowne R G G A.Relaxation Studies of the Seeded EmulsionPolymerization of Styrene Initiated by y-Radiolysis[J]. J.C. S. Faraday I.1980,76:1344.
    [76] By Brian S. Hawkett D H N A.Seeded emulsion polymerization of styrene[J]. J.C.S. Faraday I.1980,76:1323-1343.
    [77] Ballard M J, Napper D H, Gilbert R G.Kinetics of emulsion polymerization of methylmethacrylate[J]. Journal of Polymer Science: Polymer Chemistry Edition.1984,22(11):3225-3253.
    [78] Guo J S, Sudol E D, Vanderhoff J W, Et Al.Kinetics And Mechanism of StyreneMicroemulsion Polymerization Washington[J]. Amer Chemical Soc,1992:99-113.
    [79] Wang X, Sudol E D, El-Aasser M S.Emulsion polymerization of styrene using a reactivesurfactant and its polymeric counterpart: Kinetic studies[J]. Macromolecules.1981,34(22):7715-7723.
    [80] Maxwell I A, Morrison B R, Napper D H, Et Al.Entry of Free-Radicals Into Latex-Particles InEmulsion Polymerization[J]. Macromolecules.1991,24(7):1629-1640.
    [81] Nomura M, Ikoma J, Fujita K.Kinetics And Mechanisms Of Particle Formation And Growth InThe Emulsion Polymerization Initiated By The Oil-Soluble Initiator,2,2'-Azobisisobutyronitrile[J]: Amer Chemical Soc,1992:55-71.
    [82] Kusters J, Napper D H, Gilbert R G, Et Al.Kinetics of Particle Growth In EmulsionPolymerization Systems With Surface-Active Initiators[J]. Macromolecules.1992,25(25):7043-7050.
    [83] Cheong I W, Kim J H.Investigation of seeded emulsion polymerization using a calorimetricmethod: effects of the surface charge density on polymerization rate and average number ofradicals per particle[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects.1999,153(1-3):137-142.
    [84]Butté A, Storti G, Morbidelli M.Miniemulsion Living Free Radical Polymerization by RAFT[J].Macromolecules.2001,34(17):5885-5896.
    [85] Nozari S, Tauer K, Ali A M I.RAFT Agent Concentration in Polymer Particles duringEmulsion Polymerization[J]. Macromolecules.2005,38(25):10449-10454.
    [86] Peklak A D, Butté A.Kinetic model of reversible addition fragmentation chain transferpolymerization of styrene in seeded emulsion[J]. Journal of Polymer Science Part A: PolymerChemistry.2006,44(20):6114-6135.
    [87] Tobita H.RAFT Miniemulsion Polymerization Kinetics,1-Polymerization Rate[J].Macromolecular Theory and Simulations.2009,18(2):108-119.
    [88] Suzuki S S K K, Nomura T O M.Effect of chain transfer agents on the kinetics and andmechanism of particle nucleation in the emulsion polymerization of vinyl pivalate[J]. ColloidPolym Sci.2007,285:523-534.
    [89] Oh J K.Recent advances in controlled/living radical polymerization in emulsion anddispersion[J]. Journal of Polymer Science Part A: Polymer Chemistry.2008,46(21):6983-7001.
    [90] Prescott S W, Ballard M J, Rizzardo E, et al.Radical Loss in RAFT-Mediated EmulsionPolymerizations[J]. Macromolecules.2005,38(11):4901-4912.
    [91] Luo Y W, Cui X F.Reversible addition-fragmentation chain transfer polymerization of methylmethacrylate in emulsion[J]. Journal of Polymer Science Part A-Polymer chemistry.2006,44(9):2837-2847.
    [92] Smeets N M B, Heuts J P A, Meuldijk J, et al.The effect of Co(II)-mediated catalytic chaintransfer on the emulsion polymerization kinetics of methyl methacrylate[J]. Journal of PolymerScience Part A: Polymer Chemistry.2009,47(19):5078-5089.
    [93] Smeets N, Jansen T, Sciarone T, et al.The Effect of Different Catalytic Chain Transfer Agentson Particle Nucleation and the Course of the Polymerization in Ab Initio Batch EmulsionPolymerization of Methyl Methacrylate[J]. Journal of Polymer Science Part A-PolymerChemistry.2010,48(5):1038-1048.
    [94] Monteiro M J, Hodgson M, De Brouwer H.The influence of RAFT on the rates and molecularweight distributions of styrene in seeded emulsion polymerizations[J]. Journal of PolymerScience Part A: Polymer Chemistry.2000,38(21):3864-3874.
    [95] Pepels M P F, Holdsworth C I, Pascual S, et al.RAFT-Mediated Emulsion Polymerization ofStyrene with Low Reactive Xanthate Agents: Microemulsion-like Behavior[J]. Macromolecules.2010,43(18):7565-7576.
    [96] Nomura M, Minamino Y, Fujita K, et al.The role of chain transfer agents in the emulsionpolymerization of styrene[J]. Journal of Polymer Science: Polymer Chemistry Edition.1982,20(5):1261-1270.
    [97] Ma J W, Cunningham M F.Measuring the effectiveness of n-dodecanethiol as a chain transferagent in styrene emulsion polymerization[J]. Macromolecular Symposia.2000,150(1):85-93.
    [98] Dietrich B K, Pryor W A, Wu S J.Chain transfer constants of mercaptans in the emulsionpolymerization of styrene[J]. Journal of Applied Polymer Science.1988,36(5):1129-1141.
    [99] Harelle L, Pith T, Hu G, et al.Chain transfer behavior of fractionated commercial mercaptans inemulsion polymerization of styrene[J]. Journal of Applied Polymer Science.1994,52(8):1105-1113.
    [100] Nomura M, Suzuki H, Tokunaga H, et al.Mass transfer effects in emulsion polymerizationsystems. I. Diffusional behavior of chain transfer agents in the emulsion polymerization ofstyrene[J]. Journal of Applied Polymer Science.1994,51(1):21-31.
    [101] Salazar A, Gugliotta L M, Vega J R, et al.Molecular Weight Control in a Starved EmulsionPolymerization of Styrene[J]. Industrial&Engineering Chemistry Research.1998,37(9):3582-3591.
    [102] Mendoza J, De La Cal J C, Asua J M.Kinetics of the styrene emulsion polymerization usingn-dodecyl mercaptan as chain-transfer agent[J]. Journal of Polymer Science Part A: PolymerChemistry.2000,38(24):4490-4505.
    [103] Gugliotta L M, Salazar A, Vega J R, et al.Emulsion polymerization of styrene. Use of n-nonylmercaptan for molecular weight control[J]. Polymer.2001,42(7):2719-2726.
    [104]陆书来,宋岩,张柳,东升魁,李永茹,隋军,张冠英,王军.提高乳聚丁苯橡胶转化率的影响因素[J].合成橡胶工业.2006(04).
    [105]陆书来,张欣颖,东升魁,张柳,李永茹,隋军,张冠英,王军.提高转化率对乳聚丁苯橡胶性能的影响[J].合成橡胶工业.2006(03).
    [106]李永茹,陆书来,张欣颖,张柳,林志勇,东升魁,周兴佳.提高丁苯橡胶聚合转化率过程中胶乳粘度的控制[J].弹性体.2006(01).
    [107]陆书来,王秀芝,刘斌,付愉,祝君,李永茹,殷兰,隋军,张伟,张冠英.提高乳聚丁苯橡胶SBR1502转化率工业化试验[J].弹性体.2008(01).
    [108]陈秋玲,姚自余.聚苯乙烯和乳聚丁苯橡胶长链支化度的测定[J].兰化科技.1990(04).
    [109]李金山,仇国贤,吴福生.高转化率丁苯橡胶SBR1500门尼黏度的影响因素及控制方法[J].化工新型材料.2006(10).
    [110]黄朝.丁苯橡胶胶浆门尼黏度影响因素分析及对策[J].甘肃科技.2008(23).
    [111] Murthy K S, Ganesh K, Kishore K.Poly(styrene disulfide) and poly(styrene tetrasulfide) aschain transfer agents in the radical polymerization of styrene[J]. Polymer.1996,37(24):5541-5543.
    [112] A D Y B, Da Y S A, Seunghwa L B M.Characterization of functionalized styrene–butadienerubber by flow field-flow fractionationlight scattering in organic solvent[J].2007.
    [113] Henriquez C, Bueno C, Lissi E A, et al.Thiols as chain transfer agents in free radicalpolymerization in aqueous solution[J]. Polymer.2003,44(19):5559-5561.
    [1] Yagci Y, Reetz I.Addition-Fragmentation Reactions In Polymer Chemistry[J]. Reactive&Functional Polymers.1999,42(3):255-264.
    [2] Yamada B, Zetterlund P B, Sato E.Utility of Propenyl Groups In Free Radical Polymerization:Effects Of Steric Hindrance On Formation And Reaction Behavior As VersatileIntermediates[J]. Progress In Polymer Science.2006,31(10):835-877.
    [3] Moad G, Rizzardo E, Thang S H.Radical Addition-Fragmentation Chemistry In PolymerSynthesis[J]. Polymer.2008,49(5):1079-1131.
    [4] Meijs G F, Rizzardo E, Thang S H.Preparation of Controlled-Molecular-Weight,Olefin-Terminated Polymers By Free Radical Methods. Chain Transfer Using AllylicSulfides[J]. Macromolecules.1988,21(10):3122-3124.
    [5] Meijs G F, Rizzardo E.Chain Transfer By An Addition-Fragmentation Mechanism. The Use OfAlpha-Benzyloxystyrene For The Preparation of Low-Molecular-Weight Poly(MethylMethacrylate) And Polystyrene[J]. Die Makromolekulare Chemie, Rapid Communications.1988,9(8):547-551.
    [6] Gordon F. Meijs E R A S.Chain Transfer Activity of Some Activated Allylic Compounds[J].Polymer Bulletin.1990,24:501-505.
    [7] Meijs G F, Morton T C, Rizzardo E, Et Al.The Use of Substituted Allylic Sulfides To PrepareEnd-Functional Polymers of Controlled Molecular Weight By Free-Radical Polymerization[J].Macromolecules.1991,24(12):3689-3695.
    [8] Meijs G F, Rizzardo E, Le T P T.New Chain Transfer Agents For Free RadicalPolymerizations[J]. Polymer International.1991,26(4):239-244.
    [9] Meijs G F, Rizzardo E, Le T P T, Et Al.Influence of Thionoesters On The Degree ofPolymerization of Styrene, Methyl Acrylate, Methyl Methacrylate And Vinyl Acetate[J]. DieMakromolekulare Chemie.1992,193(2):369-378.
    [10] Sato T, Seno M, Kobayashi M, Et Al.Radical Polymerization of Vinyl Monomers In ThePresence Of Ethyl [Alpha]-Benzene-And [Alpha]-P-Toluenesulfonylmethylacrylates[J].European Polymer Journal.1995,31(1):29-34.
    [11] Control Of Molecular Weight And End Group of Polymer By Addition-Fragmentation ReactionWith Α-(Bromomethyl)Acrylate And Allyl Bromide[J].1991.
    [12] Bon S, Morsley S R, Waterson C, Et Al.Use of Methyl2-(Bromomethyl)Acrylate As AChain-Transfer Agent To Yield Functionalized Macromonomers Via Conventional And LivingRadical Polymerizations[J]. Macromolecules.2000,33(16):5819-5824.
    [13] Timothy J. Donohoe, Lisa P. Fishlock, Procopiou A P A.A Metathesis-Based Approach To TheSynthesis Of2-Pyridones And Pyridines[J]. Organic Letters.2007,10(2):285-288.
    [14] Reed S F.Allylic Halogenation of Α-Methylstyrene. Preparation of Α-Chloromethylstyrene[J].The Journal of Organic Chemistry.1965,30(9):3258.
    [15] Ramband J. Villeras And M. Wittig-Horner reaction in heterogeneous media[J]. Synthesis924.1982.
    [16]陈韶蕊,吴立红,马吉海等.溴甲基丙烯酸乙酯的合成[J].2005.
    [17]丁金昌,吴华悦,谢晓红.微波辐射下苯亚磺酸钠的S-烃基化[J].合成化学.2002(06).
    [1] H. G. Oh H S H J.Control of Molecular Weight of Polystyrene Using the Reverse IodineTransfer Polymerization (RITP)-Emulsion Technique[J]. Journal of Colloid and InterfaceScience.2009.
    [2] Fowler C I, Muchemu C M, Miller R E, et al.Emulsion Polymerization of Styrene and MethylMethacrylate Using Cationic Switchable Surfactants[J]. Macromolecules.2011,44(8):2501-2509.
    [3] Oh J K.Recent advances in controlled/living radical polymerization in emulsion anddispersion[J]. Journal of Polymer Science Part A: Polymer Chemistry.2008,46(21):6983-7001.
    [4] Meijs G F, Rizzardo E, Thang S H.Preparation of controlled-molecular-weight,olefin-terminated polymers by free radical methods. Chain transfer using allylic sulfides[J].Macromolecules.1988,21(10):3122-3124.
    [5] Gordon F. Meijs E R A S.Chain transfer activity of some activated allylic compounds[J].Polymer Bulletin.1990,24:501-505.
    [6] Sato T, Seno M, Kobayashi M, et al.Radical polymerization of vinyl monomers in the presenceof ethyl [alpha]-benzene-and [alpha]-p-toluenesulfonylmethylacrylates[J]. European PolymerJournal.1995,31(1):29-34.
    [7] Moad G, Rizzardo E, Thang S H.Radical addition-fragmentation chemistry in polymersynthesis[J]. Polymer.2008,49(5):1079-1131.
    [8] Monteiro M J, Adamy M M, Leeuwen B J, et al.A "living" radical ab initio emulsionpolymerization of styrene using a fluorinated xanthate agent[J]. Macromolecules.2005,38(5):1538-1541.
    [9] Suzuki S S K K, Nomura T O M.Effect of chain transfer agents on the kinetics and andmechanism of particle nucleation in the emulsion polymerization of vinyl pivalate[J]. ColloidPolym Sci.2007,285:523-534.
    [10] Smeets N, Jansen T, Sciarone T, et al.The Effect of Different Catalytic Chain Transfer Agentson Particle Nucleation and the Course of the Polymerization in Ab Initio Batch EmulsionPolymerization of Methyl Methacrylate[J]. Journal of polymer science part a-polymerchemistry.2010,48(5):1038-1048.
    [11] Smeets N M B, Heuts J P A, Meuldijk J, et al.The effect of Co(II)-mediated catalytic chaintransfer on the emulsion polymerization kinetics of methyl methacrylate[J]. Journal of PolymerScience Part A: Polymer Chemistry.2009,47(19):5078-5089.
    [12] Nomura M, Minamino Y, Fujita K, et al.The role of chain transfer agents in the emulsionpolymerization of styrene[J]. Journal of Polymer Science: Polymer Chemistry Edition.1982,20(5):1261-1270.
    [13] Ma J W, Cunningham M F.Measuring the effectiveness of n-dodecanethiol as a chain transferagent in styrene emulsion polymerization[J]. Macromolecular Symposia.2000,150(1):85-93.
    [14] Christie D I, Gilbert R G.Transfer constants from complete molecular weight distributions[J].Macromolecular Chemistry and Physics.1997,198(2):663.
    [15] Cunningham M F, Ma J W.Calculating molecular weight distributions in emulsionpolymerization under conditions of diffusion limited chain transfer[J]. Journal of AppliedPolymer Science.2000,78(1):217-227.
    [16] J BRANDRUP E H I A.Polymer Handbook[M]. New York:1999.
    [17] Mendoza J, De La Cal J C, Asua J M.Kinetics of the styrene emulsion polymerization usingn-dodecyl mercaptan as chain-transfer agent[J]. Journal of Polymer Science Part A: PolymerChemistry.2000,38(24):4490-4505.
    [18] Prescott S W, Ballard M J, Rizzardo E, et al.Radical Loss in RAFT-Mediated EmulsionPolymerizations[J]. Macromolecules.2005,38(11):4901-4912.
    [19] Pusat Pengajian Sains Gunaan us m m.dependence of viscosity of polystyrene solutions onmolecular weight and concentration[J]. Eur. Polvm. J.1984,20(10):975-978.
    [20] Tobolsky H M A A.Physical Chemistry of High Polynieric Materials[M]. New York:Interscience,1950:416.
    [21] Vaclavek V.regulation of molecular weight of styrene-butadiene rubber.i. Choice of regulatorfrom homologous series of xanthogen disulfides[J]. Journal of applied polymer science.1967,11(10):1881.
    [1] Nomura M, Minamino Y, Fujita K, et al.The role of chain transfer agents in the emulsionpolymerization of styrene[J]. Journal of Polymer Science: Polymer Chemistry Edition.1982,20(5):1261-1270.
    [2] Suzuki S S K K, Nomura T O M.Effect of chain transfer agents on the kinetics and andmechanism of particle nucleation in the emulsion polymerization of vinyl pivalate[J]. ColloidPolym Sci.2007,285:523-534.
    [3] Smeets N M B, Heuts J P A, Meuldijk J, et al.The effect of Co(II)-mediated catalytic chaintransfer on the emulsion polymerization kinetics of methyl methacrylate[J]. Journal of PolymerScience Part A: Polymer Chemistry.2009,47(19):5078-5089.
    [4] Smeets N, Jansen T, Sciarone T, et al.The Effect of Different Catalytic Chain Transfer Agentson Particle Nucleation and the Course of the Polymerization in Ab Initio Batch EmulsionPolymerization of Methyl Methacrylate[J]. Journal of polymer science part a-polymerchemistry.2010,48(5):1038-1048.
    [5] Ugelstad J.Kinetics of Emulsion Polymerization[J]. Journal of polymer science: part a.1967,5:2281-2288.
    [1] Pavlyuchenko V N, Kolsova T O, Gromov Y V, et al.Features of the emulsion synthesis ofABS copolymers in the presence of tertiary dodecylmercaptan[J].1987,29(4):948-953.
    [2] Deibert S, Bandermann F, Schweer J, et al.Propagation rate coefficient of free-radicalpolymerization of1,3-butadiene[J]. Die Makromolekulare Chemie, Rapid Communications.1992,13(7):351-355.
    [3] Henriquez C, Bueno C, Lissi E A, et al.Thiols as chain transfer agents in free radicalpolymerization in aqueous solution[J]. Polymer.2003,44(19):5559-5561.
    [4] Bagdasaryan R V, Mkrtchyan R A.Control of the molecular-weight distribution ofpolychloroprene by a mixed regulator system (Tert.dodecylmercaptan and sulphur)[J].1974,16(2):287-291.
    [5]陆书来,张欣颖,东升魁,张柳,李永茹,隋军,张冠英,王军.提高转化率对乳聚丁苯橡胶性能的影响[J].合成橡胶工业.2006(03).
    [6]李永茹,陆书来,张欣颖,张柳,林志勇,东升魁,周兴佳.提高丁苯橡胶聚合转化率过程中胶乳粘度的控制[J].弹性体.2006(01).
    [7]陆书来,王秀芝,刘斌,付愉,祝君,李永茹,殷兰,隋军,张伟,张冠英.提高乳聚丁苯橡胶SBR1502转化率工业化试验[J].弹性体.2008(01).
    [8]李金山,仇国贤,吴福生.高转化率丁苯橡胶SBR1500门尼黏度的影响因素及控制方法[J].化工新型材料.2006(10).
    [9] Uraneck C A, Burleigh J E.Modification of emulsion polymerization by multiple addition ofmodifier[J]. Journal of Applied Polymer Science.1971,15(7):1757-1768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700