硝基苯加氢合成对氨基苯酚的反应及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对传统的氯苯经过硝化、水解、还原三步反应制备对氨基苯酚的路线,硝基苯在Pt/C催化下选择性加氢生成羟基苯胺、同时在稀硫酸中经Bamberge重排,一步法制备对氨基苯酚和副产苯胺的路线,具有原子经济性高、有很好的工业化前景。
     硝基苯在Pt/C催化剂和无机酸下加氢制备出对氨基苯酚,工业化要研究解决三类主要问题:硝基苯在Pt/C催化剂和无机酸下加氢的氢气相、硝基苯有机相、稀硫酸无机相、Pt/C催化剂固相的四相态(气-液-液-固)工程放大问题,工程上要设计出四相态的混合良好的大型反应器,需要解决四相态反应的工程或宏观动力学;贵金属Pt/C催化剂的寿命问题,工程上要设计试验出寿命满足经济要求Pt/C催化剂,需要解决加氢催化反应的催化剂失活动力学;反应温度下的稀硫酸的耐腐蚀设备材质选择问题。
     采用文丘里涡流自吸结构搅拌装置,逐步增大变频调节的转速,反应速率逐步增大直至不变,消除了相间构成外扩散阻力;采用筛分分级的逐步减小的Pt/C催化剂粒径,反应速率逐步增大直至不变,消除了催化剂颗粒的内扩散阻力;在无内外扩散阻力下,硝基苯浓度可以认为不变,改变另一反应组分—氢气的压力,得到不同压力下的对氨基苯酚和苯胺的生产反应速率,积分法得到反应速率相对氢气压力的级数;改变反应温度,得到不同温度下的反应速率,利用Arrenius方程得到反应的活化能。
     催化剂连续循环套用,反应速率随反应时间加长而减小,催化剂活性减小,利用Levenspiel的失活速率的模型方程拟合实验数据,得到失活速率对活性的级数;改变反应温度,得到不同温度下的失活速率,利用Arrenius方程得到失活速率的活化能。
     本论文创新性研究了在消除催化剂的内外扩散阻力下,得到硝基苯选择性催化加氢四相态反应的对氨基苯酚和苯胺生成速率宏观动力学;利用催化剂连续循环套用,得到Pt/C催化剂的失活动力学,同时分析了随着Pt/C催化剂的失活,对氨基苯酚相对苯胺的选择性改变机理。研究给出的提高催化剂寿命的制备和使用方法,能满足满足经济要求。研究试验出耐稀硫酸腐蚀的哈氏合金材质,并对四相态反应器进行了设计,进一步进行了工业放大试验。
     本研究的创新主要是建立了硝基苯选择性催化加氢四相态反应的对氨基苯酚和苯胺的生成速率宏观动力学,得到Pt/C催化剂的失活动力学,设计了经工业放大成功试验的四相态反应器。
As compared with the traditional processes of p-aminophenol from cholobenzene via three-step reaction of nitration and hydrolysis and reduction, the one-pot method for the preparation of p-aminophenol via hydroxylbenzeneamine precursor by Bamberge rearrangement from nitrobenzene in the presence of Pt/C catalyst appears of the atom economy towards an promising industrialization.
     For the industrial preparation of p-aminophenol from nitrobenzene with catalytic hydrogenation it is necessary to resolve the three main problems, which are engineering scale-up for four-phase involving hydrogen gas phase, nitrobenzene organic phase, sulfuric acid inorganic phase and Pt/C solid phase, a well-mixed reactor design as well as the macro-kinetics in engineering. The catalyst for noble metal Pt supported C could be met the economic demand on theoretical and practical resolutions for the catalyst activity and the catalytic reaction kinetics. Besides, the reactor equipment resistance to the dilute sulfuric acid corrosion must be selected.
     A Venturi mixer of vortex self-induction was employed to increase the rotating speed progressively by using frequency conversion equipment, since the rate could be increased correspondingly to a stable value so as to eliminate the exterior dispersion resistance from every phase. And with the decreasing the particle diameter progressively by a screening grading the rate was also increased correspondingly to a constant so that the interior dispersion resistance over the catalyst could be eliminated. The maintenance in constant concentration of nitrobenzene without the resistance from the interior and exterior dispersions the formation rate of p-aminophenol and aniline was varied with the hydrogen pressure and the reaction order could be obtained with an integration method. Moreover, the activation energy for the reaction can be obtained using the Arrenius equation by the formation rate of p-aminophenol and aniline with temperature variation.
     The catalyst efficacy was decreased with the increasing recycle times. The order for the catalyst deactivation rate can be obtained using the simple expression (SPLE) model proposed by Leivenspill fitting the experiment date. The activation energy for the deactivation was obtained by the Arrenius equation.
     Moreover, the four phase macro-kinetics for the formation of p-aminophenol and aniline by the selective catalytic hydrogenation of nitrobenzene without any resistance from the interior and exterior dispersion of catalyst, and deactivation kinetics for the Pt/C catalyst with the catalyst recycles were established. A plausible mechanism for the selective formation of p-aminophenol and aniline over Pt/C catalyst was suggested. The methodology for the preparation of Pt/C catalyst was developed to meet environmentally economic demand. Various technological parameters involving the Hastalloy resistant to the corrosion of the dilute sulfuric acid, the design for hydrogenation reactor for the four phases and the industrial scale experiment were discussed towards industrialization.
     Therefore, three novel results have been achived in this paper. The first is the four phase macrokinetics for the formation of p-aminophenol and aniline by the selective catalytic hydrogenation of nitrobenzene. The second is the deactivation kinetics for the Pt/C catalyst with the catalytic recycles. The third is the design for hydrogenation reactor for the four phases via successful industrial scale experiment.
引文
[1]Weast R.C. Handbook of Chemistry and Physics[M].57th ed,Cleveland:CRC Press Inc., 1976:428.
    [2]Budavari S. The Merck Index-An Encyclopedia of Chemicals, Drugs, and Biologicals[M]. Whitehouse Station, NJ:Merck and Co., Inc.,1996:81.
    [3]Othmer D. F., Kirk R. E. Kirk-Othmer Encyclopedia of Chemical Technology[M].4th ed, John Wiley & Sons. New York 1991,V1:92.
    [4]Ullmann F., Gerhartz W. Ullmann's Encyclopedia of Industrial Chemistry[M].5th ed, Wiley VCH,1985(85):100.
    [5]《化工百科全书》编委会.中国化工百科全书[M].北京:化学工业出版社.1994,V5:126.
    [6]李好管.对氨基苯酚的技术、应用及市场[J].上海化工,2001,30(18):33-36.
    [7]苏宇.对氨基苯酚制备条件的探讨[J].四川师范学院学报,1998,19(3):340-342.
    [8]高洪,袁华,喻宗沅.对氨基苯酚的合成及应用述评[J].湖北化工,2000,17(2):1-3.
    [9]林彬,王艳华,董中宁.对氨基苯酚的合成及其应用[J].沈阳化工,1997,26(4):35-38.
    [10]夏伶,殷坚毅.对氨基苯酚的合成路线选择及工业试验[J].江苏化工2001,29(3):46-48.
    [11]陈天生.对氨基苯酚的生产、应用及发展[J].精细化工原料及中间体,2007,7(5):29-32.
    [12]谢垣,刘嘉良,龙学礼.硝基苯催化加氢合成对氨基苯酚的研究评价[J].辽宁化工1998,27(2):65-67,91.
    [13]李静,侯端杰.对氨基苯酚生产新工艺[J].广州化学,1995,20(1):63-67.
    [14]Hsien-Cheng Y., Emmett P. H. Kinetics of liquid phase hydrogenation. iv. Hydrogenation of nitrocompounds over raney nickel and nickel powder catalysts[J]. Journal of the American Chemical Cociety,1962,84(7):1086-1091.
    [15]桂跃,马洪怡.液相催化加氢合成对氨基苯酚[J].淮海医药,1999,17(4):65-66.
    [16]路凤鸣,邵作庭,唐明生等.由对硝基苯酚制备对氨基苯酚的液相加氢新工艺:中国,1207267[P].2005-06-22.
    [17]Vaidya M. J., Kulkarni S. M., Chaudhari R. V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol[J]. Organic Process Research & Development,2003, 7(2):202-208.
    [18]Frefelder M., Robinson R. M. Catalytic hydrogenation of nitrophenol:US,3,079,435[P]. 1963-06-26.
    [19]赵秉儒.电解还原生产对氨基苯酚的工艺及其装置:中国,1023905[P].1994-03-02.
    [20]杨国华.从硝基苯电解制备对氨基苯酚的方法:中国,1061808[P].1992-06-10.
    [21]马淳安.对氨基苯酚的生产方法及设备:中国,1101951[P].1995-04-26.
    [22]张新胜,陈银生,张秋香等.硝基苯电解还原制备对氨基苯酚的方法:中国,1142325[P].2004-03-17.
    [23]咎福义.电解法生产对氨基苯酚的工业化方法:中国,1429932[P].2003-07-16.
    [24]马淳安,俞文国.对氨基苯酚电解合成的放大研究[J].精细化工,1995,12(1):39-44.
    [25]陈新志.电化学法合成对氨基苯酚的研究[J].青海大学学报,1997,15(4):26-28.
    [26]马淳安,褚有群,童少平等.对氨基苯酚的绿色电化学合成及其工业化[J].化工学报,2004,55(2):1971-1975.
    [27]马淳安,张文魁,黄辉.硝基苯电解合成对氨基苯酚的工业化试验[J].高校化学工程学报,2001,15(5):453-457.
    [28]许文林,丁平,袁渭康.硝基苯电解还原制备对氨基苯酚过程优化研究[J].化学工程,1994,22(4):35-41.
    [29]Harwood W. H. Process of preparing p-aminophenol by electrolytically reducing nitrobenzene:US,3,338,806.1967-08-29.
    [30]Norman R. D., Stanley R. P. Process for preparing_p-aminophenol:US,4,584,070[P]. 1986-04-22.
    [31]Kyung S. Y., Byung W. C. Process for preparing p-aminophenol:US,5,066,369[P]. 1991-10-19.
    [32]Polat K., Aksu M. L., Pekel A.T. Electroreduction of nitrobenzene to p-aminophenol using voltammetric and semipilotscale preparative electrolysis techniques[J]. Journal of applied electrochemistry,2002,32(2):217-223.
    [33]陈学梅.对氨基苯酚的合成工艺[J].化学工业与工程技术,1997,18(1):35-37.
    [34]Gilman H主编:南京大学化学系有机教研组译.有机合成[M].北京:科学出版社,1957:359-360.
    [35]韩广甸,赵树伟,李述文等编.有机制备化学手册,中卷[M].北京:化学工业出版社,1980:69-70.
    [36]黎耀忠,程溥明,陈华.硝基苯锌法合成对氨基苯酚的研究[J].石油化工1998,27(8):557-560.
    [37]李建生,张淑云,吴保庆.利用苯基羟胺重排制备对氨基苯酚[J].精细石油化工1992,19(6):23-25.
    [38]王赪胤,张明,杨继生.直接还原硝基苯生产对氨基苯酚新工艺[J].化工时刊,1998,12(10):26-28.
    [39]张明,王赪胤,杨继生.直接还原硝基苯制取对氨基苯酚[J].扬州大学学报,1999,12(2):17-18,37.
    [40]王兴国,王亚平.一种制取对氨基苯酚的方法(锌粉):中国,1105983[P].1995-08-02.
    [41]Bassford H. H. Manufacture of hydroxyl amino compounds:US,2,132,454[P]. 1938-10-11.
    [42]厉刚,许祥静.硝基苯还原制取对氨基苯酚的研究[J].贵州化工,2003,28(4):14-15.
    [43]吕九琢,具本植,钱建华.用铝粉还原硝基苯制取对氨基苯酚的研究[J].辽宁化工1993,22(1):35-36,6.
    [44]王晓艳.对氨基苯酚的合成方法及其工业应用[J].陕西化工,1995,24(2):21-24.
    [45]Frederic R. B. Process for preparing aminophenols:US,2,525,515[P].1950-10-10.
    [46]姜麟忠.催化氢化在有机合成中的应用[M].北京:化学工业出版社,1987:153-157.
    [47]李速延,周晓奇.苯胺生产技术研究进展[J].工业催化,2006,14(12):7-10.
    [48]Gharda K. H., Sliepcevich C. M. Hydrogenating nitrobenzene to aniline[J]. Industrial & Engineering Chemistry,1960,52(5):417-420.
    [49]Rihani D. N., Narayanan T. K., Doraiswamy L. K. Kinetics of catalytic vapor-phase hydrogenation of nitrobenzene to aniline[J]. Industrial & Engineering Chemistry: Process Design and Development,1965,4(4):403-410.
    [50]Komatsu T., Hirose T. Gas phase synthesis of para-aminophenol from nitrobenzene on Pt-zeolite catalysts[J]. Applied Catalysis:A General,2004,276(1-2):95-102.
    [51]赵磊,陈吉祥,刘迎新等.芳香族硝基化合物液相加氢制备芳胺催化剂概述[J].石油化工,2004,33(z1):1016-1019.
    [52]Haber F. Electroreduction of nitrobenzene[J]. Zeit Electrochem,1898,(4):506.
    [53]Larsen J. W. Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine[J]. Carbon,2000,38(5):655-661.
    [54]Burge H. D., Collins D. J. Intermediates in the raney nickel catalyzed hydrogenation of nitrobenzene to aniline[J]. Industrial & Engineering Chemistry: Product Design and Development,1980,19(3):389-391.
    [55]Karwa S. L., Rajadhyaksha R. A. Selective catalytic hydrogenation of nitrobenzene to hydrazobenzene[J]. Industrial & Engineering Chemistry Research,1988,27(1):21-24
    [56]Karwa S. L., Rajadhyaksha R. A. Selective catalytic hydrogenation of nitrobenzene to phenylhydroxylamine[J]. Industrial & Engineering Chemistry Research,1987, 26(9):1746-1750.
    [57]Rylander P. N., Karpenko I. M., Pond G. R. Process for preparing p-aminophenol:US, 3,715,397.1973-02-06.
    [58]Ternary A. L. Contemporary Organic Chemistry[M], Philadelphia,W B Saunders Co., 1976:661.
    [59]Juang T. M., Hwang J. C., Ho H. O., etal. Selectivity in the phase transfer catalytic hydrogenation of nitrobenzene by transition Ⅷ metals[J]. Journal of the Chinese Chemical Society,1988,35(2):135-140.
    [60]Chen C. Y., Yamamoto H., Kwan T. Selectivity in the catalytic hydrogenation of ethylene by transition metals[J]. Chemical & Pharmaceutical Bulletin,1969,17(12):2349-2352.
    [61]Caskey D. C., Chapman D. W. Process for preparing p-aminophenol and alkyl substituted p-aminophenol:US,4,415,753[P].1983-10-15.
    [62]傅时雨,李静,詹怀宇,余惠生.苯基羟胺的合成及其波谱分析[J].广州化学,1999,24(4):10-13.
    [63]韦少平,覃国红,韦志明,翁德洪.苯基羟胺在无机酸溶液中转位的研究[J].化学世界,2003,58(9):482-484.
    [64]Sone T., Tokuda Y., Sakai T., etal. Kinetics and mechanisms of the Bamberger rearrangement. Part 3. Rearrangement of phenylhydroxylamines to p-aminophenols in aqueous sulphuric acid solutions[J]. Journal of Chemical Society: Perkin Transactions 2,1981,981(2):298-302.
    [65]Sone T., Tokuda Y., Sakai T., etal. Kinetics and mechanisms of the Bamberger rearrangement. Part 4. Rearrangement of sterically hindered phenylhydroxylamines to 4-aminophenols in aqueous sulphuric acid solution[J]. Journal of Chemical Society: Perkin Transactions 2,1981,981 (12):1596-1598.
    [66]Shebaldova A. D., Kravtsova V. N., Bolshinskova T. A., etal. L. Selective hydrogenation of nitrobenzene to phenylhydroxylamine in presence of catalytic systems[J]. Russian Chemical Bulletin,1975,24(7):1556-1557.
    [67]Peureux J., Torres M. Nitrobenzene liquid-phase hydrogenation in a membrane reactor[J]. Catalysis today,1995(25):409-415.
    [68]Macias Perez M.C., Salinas Martinez de Lecea C., Linares Solano A. Platinum supported on activated carbon cloths as catalyst for nitrobenzene hydrogenation[J]. Applied Catalysis:A.General,1977,161 (3-4):461-475.
    [69]Rylander P. N., Karpenko I. M., Pond G. R. Selective hydrogenation of nitroaromatic to the corresponding N-arylhydroxylamine:US,3,694,509[P].1972-09-26.
    [70]Henke C. O., Vaughen J. V. Reduction of aryl nitro compounds: US, 2,198,249[P].1940-04-23.
    [71]Henke C. O., Benner R. G., Robert C. Noble matel catalyst and process for same:US, 2,285,277[P].1942-06-02.
    [72]Studer M., Pietrzyk J., Peters K., etal. Giaccari Studies on bridging tractions-simultaneous bridging tractions and COD measurements[J]. International Journal of Fracture,2002,114(4):379-399
    [73]Caskey D.C., Champman D.W. Process for preparing p-aminophenol and alkyl substituted p-aminophenol:US,4,571,437[P].1986-02-18.
    [74]Holmes C. W. N., Loudon J. D. The mobility of groups in certain benzonitriles[J]. Journal of Chemical Society.1940,25,(12):1521-1525.
    [75]尹春凯,王幸宜,卢冠忠.Pt/C催化剂催化硝基苯加氢制对氨基苯酚工艺过程剖析[J].工业催化,2000,8(5):13-17
    [76]刘天华,黄鹄,宋重民等.硝基苯在钯碳催化剂上选择加氢制对氨基苯酚的研究[J].江苏石油化工学院学报,1999,11(1):30-32
    [77]王晓兵,胡国强.以二硫化钼为催化剂硝基苯催化加氢制取对氨基苯酚[J].辽宁化工,1995,24(6):47-48
    [78]Nicholas P. G... Hydrogenation of nitrobenzene to p-aminophenol:US,3,953,509 [P].1976-04-27.
    [79]武森涛,储伟,崔名全.助剂改性活性炭担载Pt催化剂催化硝基苯加氢制对氨基苯酚[J].合成化学,2001,9(11):257-259,,266.
    [80]刘东志,陈昌藻.Pt/活性炭催化剂催化硝基苯加氢制备对氨基酚[J].催化学报,1996,17(6):544-546.
    [81]杜明显,顾小焱.Pt/C催化剂的改性制备及其在对氨基苯酚合成中的应用研究[J].上海化工,1993,22(1):20-22.
    [82]薛绿林,高雷,张超等.Pt/尼龙催化剂在硝基苯加氢中的应用[J].辽宁化工,2000,29(4):239-241.
    [83]S. Galvagno. Nitrobenzene hydrogenation on Pt-Sn catalysts. Journal of Molecular Catalysis,1987,42(3):379-387
    [84]刘竹青,胡爱琳,王公应.担载铂催化剂用于硝基苯催化加氢制对氨基苯酚的研究[J].分子催化,2000,14(2):97~102.
    [85]王公应,刘竹青,胡爱琳.改性γ-A12O3担载Pt催化剂用于硝基苯加氢制对氨基苯酚[J].催化学报,2000,21(5):428-430.
    [86]刘竹青,胡爱琳,王公应.硝基苯加氢制对氨基苯酚[J].催化学报,1999,20(2):183-184.
    [87]刘竹青,胡爱琳,周宗仁等.硝基苯加氢制对氨基苯酚Pt/C催化剂性能研究[C].第九届全国催化学术会议,2000,994-995.
    [88]郑纯智,张国华,刘丽荣.硝基苯催化加氢合成对氨基苯酚[J].精细石油化工2002,29(1):4-6.
    [89]王莲鸳,程振兴,薛勇等.硝基苯加氢合成对氨基酚用负载铂催化剂的制备[J].催化学报,2002,23(1):19-23.
    [90]王莲鸳,程振兴,董中朝等.氢化硝基苯合成对氨基酚中活性炭负载铂催化剂的新制备方法研究[J].分子催化,2002,16(5):355-358.
    [91]李喜飞,陈晓红,卢世刚.碳在氯铂酸水溶液中吸附行为的研究[J].稀有金属,2004,28(2):438-441
    [92]朱洪法.催化剂载体[M].北京:化学工业出版社,1980.
    [93]顾小焱,杜明显,樊萍.对氨基苯酚中试工艺[J].上海化工,23(1):32-33,40.
    [94]Torres G. C., Jablonski E.L., Baronetti G..T., etal. Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts[J]. Applied Catalysis:A General,1977,(161):213-226.
    [95]Rode C. V., Vaidya M. J., Jaganathan R. Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor reaction kinetics and mass transfer effects[J]. Chemical Engineering Science,2001,56 (4):1299-1304.
    [96]Zhao F. Y., Ikushima Y., Arai M. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide effects of pressure, solvent, and metal particle size[J]. Journal of Catalysis,2004,224(2):479-483.
    [97]Amon B., Redlingshofer H., Klemm E. Kinetic investigations of the deactivation by coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzene using a catalytic wall reactor[J]. Chemical Engineering and Processing,1999,38(4-6):395-404.
    [98]Brown O. W., Carrick L. Catalytic preparation of the amidophenols and the phenylenediamines[J]. Journal of the American Chemical Society,1919,41 (3):436-440
    [99]Brown O. W., Henke C. O. Catalytic preparation of aniline[J]. The Journal of Physical Chemistry,1922,26 (2):161-190.
    [100]Brown O. W., Henke C. O. Catalytic preparation of aniline. Ⅱ[J]. The Journal of Physical Chemistry,1922,26 (3):272-287.
    [101]Henke C. O., Brown O. W. Catalytic preparation of azobenzene and aniline[J]. The Journal of Physical Chemistry,1922,26 (4):324-348.
    [102]Henke C. O., Brown O. W. Catalytic preparation of azobenzene and aniline. Ⅱ.[J]. The Journal of Physical Chemistry,1922,26 (7):631-638.
    [103]Brown O. W., Henke C. O. Catalytic action of copper[J]. The Journal of Physical Chemistry,1922,26 (8):715-727.
    [104]Henke C. O., Brown O. W. Catalytic activity[J]. The Journal of Physical Chemistry., 1924,28(1):71-73.
    [105]Henke C. O., Brown O. W. Catalytic preparation of ortho-toluidine. The Journal of Physical Chemistry.,1923,27 (1):52-64.
    [106]Henke C. O., Brown O. W. Catalytic action of tin.The Journal of Physical Chemistry., 1923,27(8):739-760.
    [107]Madenwald F. A., Henke C. O., Brown O. W. Catalytic activity of lead[J]. The Journal of Physical Chemistry.,1927,31 (6):862-866.
    [108]Brown O. W., Brothers C., Etzel G. Catalytic activity of thallium[J]. The Journal of Physical Chemistry.,1928,32 (3):456-458.
    [109]Brown O. W., Etzel G., Henke C. O. Catalytic reduction of nitro-organic compounds in the liquid system.Catalytic reduction of nitro-organic compounds in the liquid system[J]. The Journal of Physical Chemistry.,1928,32 (4):631-635.
    [110]Hartman R. J., Brown O. W. Catalytic activity of cadmium[J]. The Journal of Physical Chemistry.,1930,34 (12):2651-2665.
    [111]Doyal H. A., Brown O. W. The catalytic activity of reduced nickel molybdate and reduced nickel chromate[J]. The Journal of Physical Chemistry.,1932,36 (5):1549-1561.
    [112]Griffitts F. A., Brown O. W. The catalytic activity of cobalt sulfide for the gas-phase reduction of nitrobenzene to aniline[J]. The Journal of Physical Chemistry,1937,41 (3):477-484.
    [113]Griffitts F. A., Brown O. W. The catalytic activity of cobalt mixed with certain metals for the gas-phase reduction of nitrobenzene to aniline[J]. The Journal of Physical Chemistry.,1938,42 (1):107-111.
    [114]Brown O. W., Raines E. D. Nickel, cadmium, and lead sulfides as catalysts in the vapor phase reduction of nitrobenzene[J]. The Journal of Physical Chemistry.,1939,43 (3):383-386.
    [115]Brown O. W., Borland J. B., Johnston R. A., etal. Catalytic activity of intermetallic compounds in the gas phase reduction of nitrobenzene[J]. The Journal of Physical Chemistry,1939,43 (6):805-807.
    [116]Grills R. C., Brown O. W. Catalytic reduction of nitrobenzene in the liquid phase[J]. The Journal of Physical Chemistry.,1941,45 (2):234-236.
    [117]Rohrer C. S., Rooley J., Brown O. W. The Catalytic Activity of Reduced Nickel Tungstate[J]. The Journal of Physical Chemistry,1951,55 (2):211-214.
    [118]Rohrer C. S., Christena R. C., Brown O. W. The Catalytic Activity of Some Reduced Vanadate Salts[J]. The Journal of Physical Chemistry,1952,56(5):662-664.
    [119]Rooley J., Rohrer C. S., Brown O. W. The Catalytic Activity of Reduced Nickel Molybdate and Reduced Nickel Chromate[J]. The Journal of Physical Chemistry,1952,56(9):1082-1084.
    [120]Sweeny N. P., Rohrer C. S., Brown O. W. Dinickel phosphide as a heterogeneous catalyst for the vapor phase reduction of nitrobenzene with hydrogen to aniline and water[J]. Journal of the American Chemical Cociety,1958,80 (4):799-800.
    [121]Kulkarni A. S., Jayaram R. V. Liquid phase catalytic transfer hydrogenation of aromatic nitro compounds on perovskites prepared by microwave irradiation[J]. Applied Catalysis:A.General,2003 (252):225-230.
    [122]Thomas J. D. Method for preparing p-aminophenol:US,4,264,529.1981-04-28
    [123]Derrenbacker E. L. Process for the selective preparation of p-aminophenol from nitrobenzene:US,4,307,249[P].1981-10-22
    [124]Lain-tze L., Mei H. C., Chun-Ning Y. Process for manufacturing p-aminophenol:US, 4,885,389[P].1989-10-05
    [125]Elbouazzaoui S., Courtois X., Marecot P., Duprez D. Characterisation by TPR, XRD and NOx Storage Capacity Measurements of the Ageing by Thermal Treatment and SO2 Poisoning of a Pt-Ba-Al NOx-Trap Model Catalyst[J]. Topics in Catalysis,2004,30 (4):493-496.
    [126]Sharad S. S. Process for preparing p-aminophenol in the presence of dimethyldodecylamine sulfate:US,4,176,138[P].1979-12-27
    [127]Z Sarbak. Characterization and infrared study of the effect of Cr, Mo and W on carbon deposition on platinum alumina[J]. Applied Catalysis:A General,1999,177(1):85-97.
    [128]Thomas J. D. Purification of p-aminophenol and direct conversion to N-acetyl-p-aminophenol:US,5,155,269.1992-10-13.
    [129]Willim R. C. Process for purification of p-aminophenol:US,4,440,954[P].1984-4-3.
    [130]Neri G., Donato A., Milone C., Pietropaolo R., Schwank J. Characterization of carbon supported catalysts by electron microscopy techniques[J]. Material Chemistry and Physics,1966,44(2):145-150.
    [131]Arnby K., Rahmani M., Sanati M., Cruise N., Carlsson A. A., Skoglundh M. Characterization of Pt γ-Al2O3 catalysts deactivated by hexamethyldisiloxane[J]. Applied Catalysis:B Environmental,2004,54(1):1-7.
    [132]Koponen U., Kumpulainen H., Bergelin M., etal. Characterization of Pt-based catalyst materials by voltammetric techniques[J]. Journal of Power Sources,2003,118 (1-2):325-333.
    [133]Vazquez-Zavala A., Ostoa-Montes A., Acosta D., etal. Characterization of structure and catalytic activity of Pt-Sn catalysts supported in Al2O3, SiO2 and TiO2[J]. Applied Surface Science,1998,136(1):62-72.
    [134]Arenas-Alatorre J., Avalos-Borja M., Diaz G. Microstructural characterization of bimetallic Ni-Pt catalysts supported on SiO2[J]. Applied surface science, 2002,189(1):7-17.
    [135]Hong S. T., Matsuoka M., Anpo M. Preparation and Characterization of Cu-Pt-BEA Catalyst for Low Temperature CO Oxidation[J]. Catalysis Letters, 2006,107(3-4):173-176.
    [136]Miguel S. R, Vilella J. I., Jablonski E. L., etal. Preparation of Pt catalysts supported on activated carbon felts (ACF) [J]. Applied Catalysis A:General,2002,232 (1-2): 237-246.
    [137]Mergler Y. J., Aalst A., Delft J., etal. Promoted Pt Catalysts for Automotive Pollution Control Characterization of Pt-SiO2, Pt-CoOx-SiO2, and Pt-MnOx-SiO2 catalysts[J]. Journal of Catalysis,1996,161(1):310-318.
    [138]Okhlopkova L. B., Lisitsyn A.S., Likholobov V.A., etal. Properties of PtC and PdC catalysts prepared by reduction with hydrogen of adsorbed metal chlorides Influence of pore structure of the support[J]. Applied Catalysis A, General,2000,204 (2):229-240.
    [139]Miguel S. R., Scelza O.A., RomaAn-MartoAnez M.C., etal. States of Pt in Pt C catalyst precursors after impregnation drying and reduction steps[J]. Applied Catalysis A: General,1998,170 (1):93-103.
    [140]Betrams T., Winkemann F., T Uttich., etal. Structural characterization of a model catalyst Pt-Al2O3-NiAl(110) [J]. Surface Science,1995:331-333.
    [141]Yu X. B., Wang M. H., Li H. X.. Study on the nitrobenzene hydrogenation over a Pd-B/SiO2 amorphous catalyst[J].Applied Catalysis A:General,2000,202 (1):17-22.
    [142]Arcoya A., Seoane X. L., Grau J. M. Surface characterization and dehydrocyclization activity of Pt-KL catalysts prepared by different methods[J]. Applied Surface Science, 2003,205 (1-4):206-211.
    [143]Yao N., Pinckney C., Lim S., etal. Synthesis and characterization of Pt MCM-41 catalysts [J]. Microporous and mesoporous materials,2001,44-45(6):377-384.
    [144]Aramendia M. A., Benitez J. A., Borau V., etal. Synthesis and characterization of Pt-MgO catalysts and their use in n-hexane conversion[J]. Colloids and Surfaces:A Physicochemical & Engieering Aspects,2003,225 (1-3):137-143.
    [145]Prabhuram J., Zhao T. S., Wong C. W., etal. Synthesis and physical-electrochemical characterization of Pt C nanocatalyst for polymer electrolyte fuel cells[J]. Journal of Power Sources,2004,134 (1):1-6.
    [146]Dolev A., Shter G. E., Grader G. S. Synthesis and structural characterization of Pt amorphous A12O3 catalyst [J]. Journal of Catalysis,2003,214 (1):146-152.
    [147]Srinivas1S. T., Rao P. K. Synthesis, Characterization and Activity Studies of Carbon Supported Platinum Alloy Catalysts [J]. Journal of Catalysis,1998,179(1):1-17.
    [148]Venezia A. M. X-ray photoelectron spectroscopy (XPS) for catalysts characterization[J].Catalysis Today,2003,77 (4):359-370.
    [149]Martinez R. Metal-support interaction in Pt C catalysts [J]. Carbon,1995,33(1):3-13.
    [150]Torres G. C., Jablonski E. L., Baronetti G. T., etal. Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt C catalysts[J]. Applied Catalysis, A General.1997, (161):213-226.
    [151]刘琳,仲崇民.硝基苯选择加氢制对氨基苯酚[J].抚顺石油学院学报,1999,19(3):19-23.
    [152]Deshpande A., Figueras F., Kantam M. L. Environmentally friendly hydrogenation of nitrobenzene to p-aminophenol using heterogeneous catalysts[J]. Journal of Catalysis, 2010,275(2):250-256.
    [153]张翼,王幸宜,沈永嘉.硝基苯催化加氢制对氨基苯酚[J].燃料工业1999,36(2):22-25.
    [154]李建生.分光光度法测定芳胺混合物中的对氨基苯酚[J].化学世界1991,32(8):357-359.
    [155]王稚琼.硝基苯电解还原液中对氨基苯酚的测定[J].山西化工,1993,13(2):31-32
    [156]Choudary V. R., Sane M. G., Tambe S. V. Kinetics of Hydrogenation of o-Nitrophenol to o-Aminophenol on Pd/Carbon Catalysts in a Stirred Three-Phase Slurry Reactor[J]. Industrial & Engineering Chemistry Research.1998,37(10):3879-3887.
    [157]Selvam P., Mohapatra S. K., Sonavane S.U. Chemo- and regioselective reduction of nitroarenes, carbonyls and azo dyes over nickel-incorporated hexagonal mesoporous aluminophosphate molecular sieves[J]. Tetrahedron Letters,2004,45(9):2003-2007.
    [158]Lamy-Pitara E., Nzemba B. Simple and competitive catalytic hydrogenation of nitrobenzene, allyl benzyl ether and benzyl crotyl ether in alkaline alcoholic media[J]. Journal of Molecular Catalysis A Chemical,1999,142(1):39-50.
    [159]Grewer T., Frurip D. J., Harrison B. K. Prediction of thermal hazards of chemical reactions[J]. Journal of Loss Prevention in the Process Industries,1999,12(5):391-398.
    [160]Kokkinidis G, Jannakoudakis P. The electrocatalytic influence of Pb and T1 adsorbates on the reduction of nitrobenzene and m-dinitrobenzene on platinum[J]. Electrochimica Acta,1984,29(6):821-828
    [161]Heyrovsky M., Vavricka S. The experience of parallel electrode reactions in the polarographic reduction of nitrobenzene in acidic media[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1970,28(2):409-420.
    [162]Tong W. R., Seagrave R. L., Wiederhorn R. Thermal decomposition of N-phenylhydroxylamine[J]. AICHE,1977(1):71-73.
    [163]Miller J. A. Carcinogenesis by Chemicals:An Overview—G. H. A. Clowes Memorial Lecture[J]. Cancer Research,1970,30(3):559-576.
    [164]Baunieister P., Blaser H.U., Studer M. Strong reduction of hydroxylamine accumulation in the catalytic hydrogenation of nitroarenes by vanadium promoters[J]. Catalysis Letters,1997,49(3-4):219-222.
    [165]Wpotts K. Processes of regenerating a noble metal catalyst used in the reduetion of orgnaienitro compounds:US,4,164,481 [P].1979-8-14.
    [166]Obert K., Roth D., Ehrig M., etal. Wasserscheid. Selectivity enhancement in the catalytic hydrogenation of propionitrile using ionic liquid multiphase reaction systems[J]. Applied Catalysis A:General,2009,356(1):43-51.
    [167]Nagahara H., Ono M., Konishi M. Partial hydrogenation of benzene to cyclohexene[J]. Applied Surface Science.1997,121/122 (1):448-451.
    [168]李绍芬.反应工程[M].北京:化学工业出版社,1990.
    [169]张成芳.气液反应和反应器[M].北京:化学工业出版社,1985.
    [170]Mears D. E. Tests for transport limitations in experimental catalytic reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1971,10(4):541-547.
    [171]张超,胥红玉,李文麾等.硝基苯催化氢化法合成对氨基苯酚的进展[J].辽宁化工,1997,26(3):120-122.
    [172]朱开宏,程迎生,范鸣歧等.AF-5分子筛催化剂上苯气相乙基化反应失活动力学研究(II)数学模型的建立和验证[J].化学反应工程与工艺,1994,10(3):254-259.
    [173]尹景锡,赵炳源.制备对氨基苯酚用方法:中国,1050057[P].1998-04-15
    [174]周宗仁,李再臣,胡爱琳等.硝基苯催化加氢制备对氨基苯酚的方法:中国,1167108[P].1997-12-10.
    [175]李文麾,王占宇,张超.一种对氨基苯酚的合成方法:中国,1257065[P].2000-06-21.
    [176]刘竹青,王公应,胡爱琳.中国科学院成都有机化学研究所一种硝基苯催化加氢制备对氨基苯酚的方法:中国,1283612[P].2001-02-14.
    [177]Benner R. G. Process for preparing p-aminophenol:US,3,383,416[P].1968-05-14.
    [178]James N. P., Orville A. W. Reduction of nitrobenzene:US,3,472,897[P].1969-10-14.
    [179]Rode C. V., Vaidya M. J., Chaudhari R. V. Single step hydrogenation of nitrobenzene to p-aminophenol US,6,403,833[P].2002-06-11.
    [180]Chaudhari R. V., Divekar S. S., Vaidya M. J., etal. Single step process for the preparation of p-aminophenol:US,6,028,227[P].2000-02-22.
    [181]储伟,武森涛,崔名全.一种硝基苯选择加氢重排制对氨基苯酚的催化剂:中国,1562465[P].2005-01-12.
    [182]M. Souders. Hydrogenation of nitro compounds:US,2,458,214[P].1949-01-04
    [183]Miller D. C. Surfactant improvement for para-aminophenol process:US,5,312,991 [P]. 1994-05-17.
    [184]Brown B. B., F rededck A. E. Aminophenol production:US,3,535,382[P].1970-10-20
    [185]Rode C. V., Vaidya M. J., Chaudhari R. V. Synthesis of p-Aminophenol by Catalytic Hydrogenation of Nitrobenzene[J]. Organic Process Research & Development.1999, 3(6):465-470.
    [186]Alexander V. T. Purified amino phenol and process:US,2,013,394[P].1935-09-03.
    [187]Vienne H. D., Gaominet M., Roussillon L. Process for the purification of p-aminophenol:US,3,658,905[P].1972-04-25.
    [188]Baron F. A., Benner R. G, Weinberg A. E. Purification of p-aminophenol:US, 3,694,508.1972-09-26.
    [189]F. A. Baron, S Hills. Purification of p-aminophenol:US,3,703,598[P].1972-12-21.
    [190]姜信真.气液反应理论与应用基础[M].北京:烃加工出版社,1989.
    [191]孙守华,仇勇,林军等GLS-LR中相含率与循环液速的研究进展[J].化工科技,2010,18(2):59-64.
    [192]Rice R. G. Approximate solutions for batch, packed tube and radial flow adsorbers-comparison with experiment[J]. Chemical Engineering Science. 1982,37(1):83-91.
    [193]Roeckel W., Scaccia C, Conti J. A. Apparatus for contacting a liquid with a gas:US, 4,328,175[P].1982-05-04.
    [194]Litz L. M. Process and appartus for contacting a liquid with a gas:US,4,454,077[P]. 1984-06-12.
    [195]Weise M. K., Kingsley J. P., Litz L. M. Broad liquid level gas-liquid mixing operation: US,5,009,816[P].1991-04-23.
    [196]Smith J. W., Ellenor D. T. R., Harbinson J. N. Method and apparatus for effecting gas-liquid contact: US,5,174,973[P].1992-12-29.
    [197]Smith J. W., David T. R. Method and apparatus for effecting gas-liquid contact: US, 5,352,421[P].1994-12-04.
    [198]Smith J. W., Ellenor D. T. R., Harbinson J. N. Apparatus for effecting gas-liquid contact: US,5,366,698[P].1994-11-22.
    [199]Smith J. W., Ellenor D. T. R., Harbinson J. N. Method and apparatus for effecting gas-liquid contact: US,5,413,765[P].1995-05-09.
    [200]Smith J. W., Ellenor D. T. R., Harbinson J. N. Method for effecting gas-liquid contact: US,5,500,130[P].1996-03-19.
    [201]Smith J. W., Ellenor D. T. R., Harbinson J. N. Method for effecting gas-liquid contact: US,5,500,135[P].1996-03-19.
    [202]Smith J. W., Ellenor D. T. R., Harbinson J. N. Method for effecting gas-liquid contact: US,5,520,818[P].1996-05-28.
    [203]Connolly J. R., Gibson D. E., Thompson R. G. Impeller tiplets for improving gas to liquid mass transfer efficiency in a draft tube submerged turbine mixer aerator: US, 5,525,269[P].1996-06-11.
    [204]Hsu Y. C. Gas induced reactor:US,5,711,902[P].1998-01-27.
    [205]Hills B.H. Gas-liquid vortex mixer and method:US,5,916,491 [P].1999-06-29.
    [206]Hills B.H. Gas-liquid venturi mixer: US,5,925,290[P].1999-07-20.
    [207]赵建明,黄宣东,冯连芳等.高效自吸式气液搅拌装置:中国,200320109378.2[P].2004-10-20.
    [208]邱永安.自吸循环深层分散加氢反应器:中国,87211458U[P].1988-07-13.
    [209]冯维精.气液反应加速增效装置:中国,99232050.X[P].2000-06-14.
    [210]Conway K., Kyle A., Rielly C. D. Gas-liquid-solid operation of a vortex-ingesting stirred tank reactor[J]. Chemical Engineering Research and Design,2002, 80(8):839-845.
    [211]王小芳.904L钢的特点及应用[J].化工装备技术,2000,21(1):45-48.
    [212]陈恭珉.哈氏合金及其应用[J].上海化工,2004,35(10):55-56.
    [213]张和照.液体搅拌的放大[J].化学工程,2004,32(6):38-43.
    [214]Veljkovic V. B., Bicok K. M., Simonovic D. M. Mechanism, onset and intensity of surface aeration in geometrically-similar, sparged, agitated vessels [J]. The Canadian Journal of Chemical Engineering,1991,69(4):916-926.
    [215]张成芳.气液反应和反应器[M].北京:化学工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700