提高乳聚丁苯橡胶单体转化率和环保性能新技术开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化、城镇化进程加快和消费结构持续升级,我国能源需求呈刚性增长,受国内资源保障能力与环境容量制约以及全球能源安全和应对气候变化的影响,资源环境约束日趋强化,加快建设资源节约型、环境友好型社会,是每个企业和科研工作者应尽责任。本论文从突破乳聚丁苯橡胶提高单体转化率的技术瓶颈与研发反应绿色终止剂两方面着手,对上世纪80年代引进的乳聚丁苯橡胶生产工艺进行技术创新,开展了提高乳聚丁苯橡胶转化率和环保性能新技术开发研究。
     论文首先采用乳聚丁苯橡胶生产用原配方,考察了延长反应时间提高聚合单体单程转化率对聚合产物的影响关系。结果表明,延长反应时间提高了单体转化率,聚合产物生成生胶性质如结合苯乙烯含量、有机酸含量、皂含量等均能满足国家标准GB8655-88规定的指标要求,但生胶门尼粘度超标,成为乳聚丁苯橡胶提高单体转化率的技术瓶颈;对提高单体转化率产物的胶乳粘度、生胶性质和分子量分布进行了考察。结果表明,随单体转化率提高,体系粘度增加,生胶的数均、重均分子量均增大,相对分子质量分布宽度指数变大,即分子量分布变宽。揭示出生胶门尼粘度超标是由于胶乳成核数目、聚合物分子的分子量及其分布引起的。
     其次,采用原配方,利用Monte carlo方法分别对生成一条链及成核阶段的乳液聚合过程进行模拟,找寻配方条件对乳液聚合丁苯橡胶微观结构的影响。结果表明,反应后期的苯乙烯的瞬时结合量增大,苯乙烯平均结合量迅速增加,乳聚丁苯橡胶单体转化率介于38%-74%之间,丁苯橡胶的平均结合苯乙烯含量在22.5%-24.5%之间;乳胶粒数目与乳化剂浓度的0.6062次方呈正比,与引发剂浓度的0.4055次方呈正比;若原配方中只改变乳化剂浓度与引发剂浓度配方将聚合单体的转化率提高至70%,模拟的理论计算结果表明引发剂的增加量应在13%-35%之间,乳化剂的增加量应在13%-22.2%之间。这为乳聚丁苯橡胶提高单体转化率配方调整指明了方向。
     在此基础上,实验考察了引发剂、乳化剂、分子量调节剂用量及其加料方式对乳聚丁苯橡胶产物的影响。结果表明:增加引发剂和乳化剂用量可以明显缩短聚合单体转化率达到70%的反应时间,与补加的分子量调节剂使聚合单体转化率达到70%的生胶门尼粘度达到国家标准的要求范围内,而通过适当增加电解质用量可以有效解决转化率提高而导致的胶乳粘度增加问题。在调整配方,即在引发剂中氧化剂和助还原剂用量为原配方的120%,还原剂用量不增加,乳化剂与分子量调节剂初始加入量为100%,补加量均为20%,补加时间均在聚合反应开始2小时后,电解质加入量为原配方的110%,乳液聚合反应8.5小时可使单体转化率达到约70%,且生胶各项指标符合国家标准指标。形成了短反应时间、高转化率乳聚丁苯橡胶合成新技术。并采用新配方考察了实验室聚合反应釜聚合反应转化率随反应时间的变化以及中间产物性能的变化,表明新配方可有效改善聚合生成的胶乳粒数目、粒径分布、聚合物分子的分子量及其分布。
     论文基于原配方和调整的配方为依据对神经网络进行训练,建立的BP神经网络模型可预测乳聚丁苯橡胶产物的苯乙烯结合率以及门尼粘度值。丰富了乳聚丁苯橡胶配方调整依据、产物性能预测等应用基础理论。
     接着,在分析了氧化还原型引发体系引发剂作用及引发机理的基础上,考察了原终止剂的终止机理,分析了原终止剂亚硝胺的产生及其来源母体。结果表明二乙基羟胺、二甲基二硫代氨基甲酸钠在凝胶的酸性条件下,易形成仲胺,仲胺与亚硝酸钠或空气中的氮氧化合物反应是丁苯橡胶形成亚硝胺的主要来源。选用在酸性条件下不形成仲胺类化合物的并具有终止自由基效果的母体作为终止剂并筛选,表明由N-异丙基羟胺与单甲基二硫代氨基甲酸钠构成主剂,并复配定伸应力增强剂为环保型终止剂,当环保型终止剂中主剂的添加量在0.6%o,定伸应力增强剂用量1.5%o-2.5%o之间时,丁苯橡胶的性能达到了优级品的技术标准,重复性能测定效果好,并通过了德国橡胶工业研究院(DIK)的环保性检测,可用于制备环保型丁苯橡胶。
     最后,以实验室小试结果为基础,对现有丁苯橡胶装置进行改造,对提高单体转化率至70%的乳聚丁苯橡胶生产试验,以及提高单体转化率至70%的环保型乳聚丁苯橡胶生产试验进行了考察。结果表明:生产控制指标稳定,与原有单体转化率为62%时生产乳聚丁苯橡胶基本一致,合成的生胶以及混炼胶均达到了优级品。
     论文还对工业试生产出的环保胶和原工艺生产的生胶进行了性能测试,两种胶的各项指标均达到了优级品的指标要求,环保胶门尼焦烧时间比传统胶长,有更好的加工安全性。环保胶经欧洲权威检测部门德国橡胶工业研究院(DIK)检测,未测到亚硝胺化合物,并经产品用户阜新环宇橡胶(集团)有限公司技术开发部检验,性能可完全取代原传统胶。
     本论文的研究结果提高了乳液聚合丁苯橡胶合成引进技术、消化、吸收、再创新的认知,形成了短反应时间、高转化率环保型乳聚丁苯橡胶合成新技术,丰富了乳聚丁苯橡胶合成的应用基础理论。
With the development of the industrialization, urbanization and continuous upgrade of consumptive structure, energy demand in China tends to grow rapidly. Because of constrains from domestic resources and environmental capacity, and the effect from global energy security and climate change, the restriction of resource and environment increases gradually. It is scientific researchers and enterprise employees'responsibility to accelerate the construction of a resource-saving, environment-friendly society. The technical bottleneck of increasing the monomer conversation rate in emusion polymerization of styrene butadiene rubber (SBR) and the green terminator was respectively focused on, technical innovation has been carried out for the process of SBR in emulsion polymerization which was introduced in80s of last century, increasing the monomer conversion rate of Styrene Butadiene Rubber in emulsion polymerization and environmental performance of new technology has been investigated.
     Firstly, Effect of prolonging the reaction time to icreasing the monomer conversion on the performances of (SBR) in emulsion polymerization was investigated with the industrial original formula. The results showed that the monomer conversion was increased by prolonging the reaction time, the SBR properties of production such as combination of the styrene content, organic acid content, soap content can meet up with the requirement of the national standard GB8655-88. But the Mooney viscosity of the rubber exceeded the standard slope, which is the technical bottleneck of increasing the monomer conversion. The latex viscosity, properties and molecular weight distribution of rubber synthesized by increasing the monomer conversion was also studied. It indicates that the latex viscosity, the number averge molecular weight and weight average molecular weight of rubber increased with increasing the monomer conversion, the relative molecular mass distribution width index is larger. That is to say, the molecular weight distribution broadens. It revealed that the exceeding of Mooney viscosity of SBR is caused by the latex number of nucleation, polymer molecules of molecular weight and its distribution.
     Secondly, one molecular chain propagation progress and the neacleation stage in emulsion polymerization for SBR was simulated by Monte Carlo method respetively with original formula. The influences of formulation conditions on the micro structure of the emulsion polymerization of SBR were researched. The results showed that in the later reaction stage the instantaneous combination styrene content increases and the average combination styrene content increased rapidly. The average combination styrene content ranged from22.5%to24.5%with the monomer coversion ranged between38%and74%. The Np is in proportion to [S]0.6062[I]0.4055for SBR emulsion polymerization what agrees well with the Smith-Ewart theory. If the target is to rate the monomer conversion up to70%only by changing the original formula of the emulsifier and the initiator concentration, and the product of latex particles and the polymer chains should be in keeping with what is in the62%of the monomer conversion of the original formula, the simulation results showed that the amount of initiator should be increased by13%-35%, and the amount of emulsifier should be increased by13%-22.2%. The established model gives the guidance of adjusting formula to increase the monomer conversion rate in emulsion polymerization of SBR.
     On this basis, effects of the amount of initiator, emulsifier, molecular weight regulator and its feeding method on the emulsion polymerization for SBR were studied in experiments. The results indicated that the reaction time of monomer conversion reaching up to70%can be shorten obviously by increasing the amount of initiator and emulsifier. The Mooney viscosity of rubber syntheised by the monomer conversion of70%meets the requirement of national standard range with the additional molecular weight regulator. The latex viscosity problem can be solved by properly increasing the amount of electrolyte solution. In the adjustment formula based on the original one, the amount of oxidant and reduction agent in the initiator is120%, the amount of reduction agent keeps the same, and the initialization amount of emulsifier and molecular weight regulator is100%, the additional amount is20%with the polymerization reaction time of2hours, the amount of electrolyte solution is110%. The monomer conversion rate reaches up to70%with the polymerization reaction time of8.5hours. The rubber performances meet the requirement of national standard. It is formed a new technology for SBR emulsion polymerization with short reaction time and high monomer conversion rate. And it also investigates the conversion rate with the changes of reaction time and the performance changes of intermediate product in laboratory polymerization reactor. It indicated that the new formula can effectively improve the latex number of nucleation, the latex particle size distribution, and polymer molecules of molecular weight and its distribution.
     Next, the back-propagation neural network was trained by the original formula and adjustment formula. The average combination styrene content and the Mooney viscosity of SBR can be effectively predicted by the BP neural network model. The application of basic theory for adjustment recipe and prediction the performance of SBR was enriched.
     Then, the termination mechanism and the nitrosamine source of the original terminator were studied based on the anlysis of initiator role and the trigger mechanism of the reduced oxidation initiator system. The results showed that the main resource of nitrosamine in SBR is the production reacted secondary amines, which was easily formed by diethyl hydroxylamine, dimethyl dithiocarbamate sodium formate under acidic conditions in the gel, with sodium nitrite or nitrogen oxides in the air. It screened the terminator without forming secondary amines and with the termination of free radical fuction. The results showed that the environment-friendly terminator was composition of the main agent, which was the mixture of N-isopropyl hydroxylamine and monomethyl dithiocarbamate sodium formate, with the auxiliary agent, which was the tensile stress intensifier. With the amounts of main agent0.6%o and the tensile stress intensifier between the amounts of1.5‰-2.5‰. The rubber performances can meet up with the requirements of the superior SBR product, the reproducible preparation was fairly well. The nitrosamine compounds of SBR were not detected by German Rubber Industry Institute (DIK). The environmental friendly terminator can be used for environmental friendly SBR
     Lastly, the transformation of the existing SBR industrial devices based on the laboratory results, the industrial experiment with increasing the monomer conversion to70%and increasing the monomer conversion to70%of environmental friendly SBR was done respectively. The results showed that the control indexes of the experiments were stable with the similarity of the original monomer conversion of62%, the properties of synthesis rubber and compound rubber can meet up with the requirements of the superior SBR product.
     The performances of environmental friendly SBR by industrial experiment and the original SBR was tested, the properties of two type rubber meet up with the requirements of the superior SBR product. The Mooney scorch time of environmental rubber was longer than original rubber, that is to say, the environmental friendly had a better processing security. The nitrosamine compounds of environmental friendly were not detected by European authorities inspection departments of German Rubber Industry Institute (DIK), the performances of the original SBR can be completely replaced environmental friendly by the product user of technology development department of Fuxin Huanyu Rubber (Group) Co., Ltd.
     The results enhanced a new cognition of the introduction technology of SBR in emulsion polymerization. A new technology in emulsion polymerization for SBR was formed by a short reaction time and high monomer conversion rate. The application of basic theory of SBR in emulsion polymerization was enriched.
引文
[1]赵玉中,贾刚治,刘永军,等.国外乳液聚合丁苯橡胶技术进展[J].合成橡胶工业,2001,24(4):244-248
    [2]崔小明.国内外丁苯橡胶的供需现状及发展前景[J].化学工业,2008,26(2):23-30
    [3]陈英林,张海涛,宁艳梅,等.丁苯橡胶胎面胶性能比较[J].合成橡胶工业,2004,27(3): 179-181
    [4]吴福生,王真琴.调节剂硫醇对高转化率丁苯橡胶性能的影响[J].石化技术与应用,2004,22(2):98-99
    [5]李明,伍小明.国内外丁苯橡胶的生产现状及发展前景[J].化工科技市场,2007,30(5):8-12
    [6]钱新华,邱建伟.乳聚丁苯橡胶国内外生产技术及进展[J].当代化工,2006,4,35(2): 8-12
    [7]Babbit R. O., The Vanderbilt rubber handbook[M]. Norwalk:R. T. Vanderbilt Company. Inc.,1978
    [8]Vatansever N., Polat S., Effect of zinc oxide type on ageing properties of Styrene Butadiene Rubber compounds [J]. Materials & Design,2010,31(3):1533-1539
    [9]关颖.环保型乳聚丁苯橡胶制备技术进展[J].合成橡胶工业,2006,29(6):476-479
    [10]赵天然.国外乳聚丁苯橡胶的生产技术及其发展趋势[J].合成橡胶工业,1989,12(1):60-65
    [11]European Chemicals Agency, Regulation concerning the Registration, Evaluation, Authorization and Restriction of Chemicals.2012-2-7. http://echa.europa.eu/home_en. asp
    [12]中国五矿化工进出口商会,欧盟化学品注册、评估、许可、限制法规咨询平台.2012-2-7, http://www.reach-helpdesk.cn/
    [13]王桂轮,胡杰.欧盟REACH法规及我国SR对策[J].橡胶工业,2008,55(3):186-189
    [14]刘登祥,刘世平译,丁苯橡胶加工技术[M].北京:化学工业出版社,1983
    [15]陈秋玲,姚自余.聚苯乙烯和乳聚丁苯橡胶长链支化度的测定[J].兰化科技,1990,8(4):275-279
    [16]马德柱,郝文涛,徐文总,等.不同链化学结构丁苯橡胶与天然橡胶混溶性研究[J].高分子学报,2001,4(2):153-156
    [17]赵枝昌,国内外丁苯橡胶供需现状及发展建议(一)[J].中国橡胶,2010,26(1):9-14
    [18]赵枝昌,国内外丁苯橡胶供需现状及发展建议(二)[J].中国橡胶,2010, 26(2):17-20
    [19]江镇海,丁苯橡胶市场分析及技术发展概述[J].现代橡胶技术,2011,37(1):9-13
    [20]夏斌,丁苯橡胶生产技术及市场分析(上)[J].上海化工,2010,35(7):32-33
    [21]夏斌,丁苯橡胶生产技术及市场分析(下)[J].上海化工,2010,35(8):31-33
    [22]李江利,王玉瑛,丁苯橡胶生产及市场分析[J].弹性体,2009,19(4):74-78
    [23]钱伯章IISRP发布中国丁苯橡胶市场报告[J].橡胶科技市场,2011,(11):32
    [24]阿枫,国内丁苯橡胶市场行情看好[J].橡胶科技市场,2010,(12):30
    [25]王金鹏,徐克琪,陈伟,等,我国丁苯橡胶市场分析及展望[J].橡胶科技市场,2011,(12):4-7
    [26]李玉芬.我国乳聚丁苯橡胶的生产消费现状及发展前景[J].广东橡胶,2006,(1):25-26
    [27]徐文英.2008-2009年我国主要橡胶产品进出口情况分析(一)[J].橡胶科技市场,2010,(1):1-5
    [28]徐文英.2008-2009年我国主要橡胶产品进出口情况分析(二)[J].橡胶科技市场,2010,(2):1-5
    [29]叶春葆,丁二烯苯乙烯系列共聚橡胶[J].天津橡胶,2002,(3):2-5
    [30]张洪涛,黄锦霞.乳液聚合新技术及应用[M].北京:化学工业出版社,2007
    [31]胡金生,乳液聚合[M].北京:化学工业出版社,1987
    [32]谢遂志,刘登祥,周鸣峦.橡胶工业手册[M].北京:化学工业出版社,1989
    [33]宋洪澎.国外乳聚丁苯橡胶生产技术进展及我国发展方向探讨[J].当代石油石化,2005,13(5):26-29
    [34]田文德.低温乳聚丁苯橡胶实时优化系统构造及模型研究[D].北京:北京化工大学,2001
    [35]曹建明,李晶,赵玉中.我国乳聚丁苯橡胶现状及发展建议[J].化工新型材料,2007,35(1):87-89
    [36]Offical Journal of the European Union, Amending for the 27th time Council directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the member states relating to restrictions on the marketing and use of certain dangerous substances and preparations(polycyclic aromatic hydrocarbons in extender oils and tyres),2005/69/EC, L323/51-54,2005-9-12
    [37]张洪林,于鹏.合成橡胶填充油概况[J].橡胶科技市场,2009,(2):4-8
    [38]Horpel G, Pangratz J. Process for deactivating polymerization inducing radicals[P]. US4965326,1990-10-23
    [39]de Vries S M, WillemBen J A M, Process for shortstopping an emulsion polymerization [P]. US5177164,1993-01-05
    [40]de Vries S M, WillemBen J A M, Process for shortstopping an emulsion polymerization [P]. EP437293A2,1991-07-17
    [41]Lattime R R, Shortstopping of free radical polymerizations[P]. US 5384372, 1995-01-24
    [42]Maestri P, Presti A L, Process for shortstopping emulsion polymerizaions which does not generate nitrosamines[P]. US 5504168,1996-04-02
    [43]Syrinek A R, Clever H A. Shortstop agents for vinyl polymerizations [P]. US 5880230,1999-03-09
    [44]王志勇,高增亮,李迎,等.不含亚硝基化合物的乳液聚合橡胶的制备方法[P].CN1429847A,2003-07-16
    [45]Lou J F, Buszta T S, Compositions for shortstopping of free radical emulsion polymerizations[P]. EP 1083185 Al,2001.03.14
    [46]lkuta M, Ueda M. Pneumatic tires with excellent thermal stability and adhesion of carcasses to other tire parts[P]. JPN:JP10193911,1998.07.28
    [47]Nosao G, Veno K. Pneumatic cushion tires for industrial vehiclesand manufacture thereof[P]. JPN:JP 08282206,1996
    [48]Komatsu H. Pneumatic tires with steady antistatic ability[P]. JPN:JP 01081110, 1998
    [49]Ajiro Y, Yamada T. Rubber compositions for tire tread with good resistance to biased abrasion loss[P]. JPN:JP 0525326,1993-02-02
    [50]Yamada T, Ajiro Y. Rubber compositions for tire treads with im. proved energy consumption[J]. JPN:JP0525327,1993-02-02
    [51]Muraoka K, Nakada Y, Kikuchi N, et al. Rubber compositions for tire treads[P]. JPN:JP 06240052,1994-08-30
    [52]Kimura S, Yagawa K, Hashimoto T, et al. Tire tread robber compositions with improved wet skid properties[J]. JPN:JP07149950,1995-06-13
    [53]Kikawa H, Yamagishi H, lnagaka T, et al. Dimer acids and their esters as softeners and tire tread rubber com po sitions withimproved grip property at low temperature[P]. JPN:JP08176351,1996-07-09
    [54]Takagishi Yukio, Nakamura Masao. Diene rubber[P]. USA:USP 6211321, 2001-04-03
    [55]Aibe Sadafumi. Rubber composition[P]. JPN:JP 2002003650,2002-01-09
    [56]Nakamura Masao. Conjugated diene rubber gel, rubber compositions containing the same and process for production of conjugated diene rubber[P]. WO 0194431, 2003-07-11
    [57]Colvin H A, Senyek M L Jr. Emulsion styrene-butadiene rubber[P]. USA:USP 6512 053,2003-01-28
    [58]Miyamoto Yoshiaki, Terakawa Katsumi, Sugitani Makoto, et al. Rubber composition[P]. JPN:JP09-176385,1997-07-08
    [59]Konno Tomohisa, Udagawa Yoshiyuki, Tadaki Toshihiro. Conjugated diene based polymer and method for producing the same[P]. JPN:JP2002-069106,2002-03-08
    [60]凌珑,焦书科,戚银城,等.单体转化率对乳液丁苯基本特性和微观结构的影响[J].弹性体,1994,4(3):17-20
    [61]凌珑,戚银城,罗斌,等.高转化率E-SBR1500生胶和硫化胶的性能研究[J].橡胶工业,1995,42(5):279-282
    [62]陆书来,付愉,张柳,等.实加乳化剂提高丁二烯/苯乙烯的聚合速率[J].合成橡胶工业,2007,30(6):408-412
    [63]陆书来,张欣颖.提高转化率对乳聚丁苯橡胶性能的影响[J].合成橡胶工业,2006,29(3):170-173
    [64]陆书来,段良伟.提高乳聚丁苯橡胶SBR1502的聚合转化率[J].弹性体,2007,17(1): 1-6
    [65]陆书来,宋岩,张柳,等.提高乳聚丁苯橡胶转化率的影响因素[J].合成橡胶工业,2006,29(4):245-249
    [66]陆书来,王秀芝,刘斌,等.提高乳聚丁苯橡胶SBR1502转化率工业化试验[J].弹性体,2008,18(1):62-66
    [67]宋立新.快速高转化率丁苯橡胶技术开发取得阶段性成果[J].弹性体,2003,13(5):20
    [68]尾见信三.乳化重合[J].高分子,1976,25(10):702-705
    [69]Uraneck C.K., Burieigh J.E. Molecular weigh distribution of polystyrene and of butadiene-styrene copolymers prepared in emulsion systems[J]. Journal of applied polymer science,1970,14(2):267-284
    [70]Uraneck C.K., Burieigh J.E. Modification of emulsion polymerization with blends of mercaptants[J]. Rubber chemistry and technology,1975,48(4):728-735
    [71]张昭达,焦书科.硫醇在Bd-St乳聚中的调节反应和调节指数[J].合成橡胶工业,1990,13(5):310-313
    [72]李崇杰,张国君,刘润祺,等.转化率为65%的SBR1500丁苯橡胶基本特性的研究[J]-弹性体,1992,2(3):7-10
    [73]梁玉华,王可信.单体转化率对SBR结构和性能的影响[J].橡胶工业,2002,49(3): 151-153
    [74]站德生,何承全.丁苯装置聚合釜更新改造[J].华工科技,2002,8(1):26-29
    [75]王东亮,金朝晖.乳聚丁苯橡胶装置生产的优化[J].弹性体,2003-10-25,13(5):35-38
    [76]王钧周.丁苯橡胶装置回收系统堵挂问题探讨[J].弹性体,2000,10(2):31-35
    [77]赵美玉.丁苯橡胶装置丁二烯回收单元技术改进[J].齐鲁石油化工,2002,30(3):226-229
    [78]Harkins W D.. A General Theory of the Mechanism of Emulsion Polymerization [J]. Journal of the American Chemical Society,1947,69(6):1428-1444
    [79]Harkins W D.. General theory of mechanism of emulsion polymerization. II [J]. Journal of Polymer Science,1950,5(2):217-251
    [80]Roe C P.. Surface chemistry aspects of emulsion polymerization[J]. Industrial & Engineering Chemistry,1968,60(9):20-33
    [81]胡金生,曹同玉,刘庆谱.乳液聚合,北京,化学工业出版社,1987
    [82]Gardon J L.. Emulsion polymerization. V. Lowest theoretical limits of the ratio kt/kp[J]. Journal of Polymer Science Part A-1:Polymer Chemistry,1968,6(10): 2853-2857
    [83]Smith W V.. The Kinetics of Styrene Emulsion Polymerization [J]. Journal of the American Chemical Society,1948,70(11):3695-3702
    [84]Smith W V, Ewart R H. Kinetics of Emulsion Polymerization[J]. Journal of Chemical Physics,1948,16(6):592-599
    [85]Harkins W D. A General Theory of the Reaction Loci in Emulsion Polymerization[J]. Journal of Chemical Physics,1945,13(9):381-382
    [86]Harkins W D. A General Theory of the Reaction Loci in Emulsion Polymerization. II [J]. Journal of Chemical Physics,1946,14(1):47-48
    [87]Harkins W D.. A General Theory of the Mechanism of Emulsion Polymerization [J]. Journal of the American Chemical Society,1947,69(6):1428-1444
    [88]Harkins W D.. General theory of mechanism of emulsion polymerization. II [J]. Journal of Polymer Science,1950,5(2):217-251
    [89]Gardon J L.. Emulsion polymerization. I. Recalculation and extension of the Smith-Ewart theory[J]. Journal of Polymer Science Part A-1:Polymer Chemistry, 1968,6(3):623-641
    [90]Gardon J L.. Emulsion polymerization. Ⅱ. Review of experimental data in the context of the revised Smith-Ewart theory[J]. Journal of Polymer Science Part A-1:Polymer Chemistry,1968,6(3):643-664
    [91]Barrett K E J. Dispersion Polymerization in Organic Media[M]. Wiley,1975, London
    [92]Ugelstad J, Hansen F K. Kinetics and Mechanism of Emulsion Polymerization [J]. Rubber Chemistry and Technology,1976,49(3):536-609
    [93]Hansen F K, Ugelstad J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation[J]. Journal of Polymer Science:Polymer Chemistry Edition,1978,16(8):1953-1979
    [94]Fitch R M, Shih, L B.. Emulsion polymerization:Kinetics of radical capture by the particles[J]. Progress in Colloid and Polymer Science,1975,56:1-11
    [95]Gatta G., Benetta G., Talamini G. P., and et al.. Addition and Condensation Polymerization[M]. Advances in Chemistry Series,1969,9:158-177
    [96]Ugelstad J., Mork P. C., Dahl P., et al.. A kinetic investigation of the emulsion polymerization of vinyl chloride[J]. Journal of Polymer Science Part C:Polymer Symposia,1969,27(1):49-68
    [97]Hansen F K, Ugelstad J. Particle nucleation in emulsion polymerization. Ⅱ. Nucleation in emulsifier-free systems investigated by seed polymerization [J]. Journal of Polymer Science:Polymer Chemistry Edition,1979,17(10): 3033-3045
    [98]焦书科,罗斌,吴明光,等.丁苯乳聚中不同引发体系的反应速度[J].弹性体,1993,3(2):1-7
    [99]杨会林,战德生,史晓萤.一种提高ESBR聚合设备生产能力的技术[J].石化技术与应用,2005,23(4):286-287
    [100]Ghafelebashi Zarand* S.M., Pourmahdian S., Afshar Taromi F., et al.. Modeling of Styrene/Butadiene Co-polymerization in Emulsion with Monte Carlo Simulation[J]. Chemical Engineering Technology,2003,9(26)
    [101]Junpo He, Hongdong Zhang, Jingming Chen, et al.. Monte Carlo Simulation of Kinetics and Chain Length Distribution in Living Free-Radical Polymerization[J]. Macro molecules,1997,30:8010-8018
    [102]黄宏新.共聚反应的Monte Carlo模拟[J].湖南师范大学自然科学学报,1991,14(2)
    [103]黄继红,焦书科.Bd-St低温乳液共聚合动力学数学模型[J].合成橡胶工业,1997-09-15,20(5):265-269
    [104]Kai Gu, Xiaodi Xu, Ming Zhao. Simulation for Polymerization Process of Styrene Butadiene Rubber(SBR)[J]. Advanced Materials Research,2010,10:1661-1667
    [105]Aspen Tech Co. Polymer Plus Reference[R]. Massachusetts:2003
    [106]Hompens G K. Polyolefins production technology advanced[J]. Chemical Week, 2002,164(13):35-36
    [107]Zuren Pan. Polymer Chemistry[M]. Edition 2. Beijing:Chemical Industry Press, 1997
    [108]Zijin Shi. Engineering basis for Polymerization[M]. Edition 1. Hangzhou. Zhejinang University Press,1991:186-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700