软测量模型自适应校正与高温场软测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保证生产的安全进行,提高产品质量和产量,实现节能降耗,需要对工业生产过程中的关键参数进行测量。软测量技术利用能够测量或能够精确测量的过程参数作为辅助变量,基于辅助变量和主导变量的数学模型,实现传统仪表无法测量的过程参数的在线预测,因而成为检测领域研究的热点。
     但是,目前软测量技术研究缺乏系统规范的理论框架;而在实际应用中,软测量模型性能随着过程特性的变化而逐渐恶化,因此需要通过在线校正来维护模型的测量性能,但传统的大多数软测量模型校正方法因存在“盲目校正”问题,其校正效果和实时性有待提高。
     温度是高温生产中重要的过程参数,但传统的接触式测温方法存在响应时间长、无法在线连续测量、不能给出对象温度场等缺点。基于彩色CCD图像传感器的高温场非接触测温方法虽能实现高温场的在线测量,但作为其测温理论基础的大多是基于理想化假设而推导出的比色测温公式,实际应用中,因理想化假设不能满足,导致其测温误差较大,测量精度不足。
     论文针对上述问题进行研究,构建了系统规范的软测量技术理论框架,该框架由软测量技术定义、实现步骤、实施方法(辅助变量选择、数据预处理、建模、模型维护)三部分构成;提出了一种目的性和针对性较强的软测量模型性能监测、评价及其自适应校正方法;开发了基于彩色CCD图像传感器的高温场软测量系统。主要研究内容及成果如下:
     (1)提出了一种新型的软测量模型性能评价指标。与传统的基于预测均方误差或均方根误差的指标相比,该指标具有两个优点:①采用加权均值滤波减小离线测量噪声对模型性能评价的影响,避免由于离线噪声导致校正功能的误触发;②基于模型的设计性能对其当前性能进行客观地评价,使评价指标具有更为明确的物理意义。利用这一指标可对软测量模型性能进行有效的监测,从而提高了模型校正的目的性和针对性,解决了“盲目校正”问题。
     (2)提出了一种基于频谱特征分析的过程特性变化类型判别方法。首先采集生产过程中稳态、渐变和突变工况下软测量模型性能评价指标数据,然后使用不同工况下评价指标曲线的频谱特征训练过程特性变化类型分类器,并利用该分类器判别过程特性变化类型。
     (3)提出了一种基于离线测量数据和工况判别的软测量模型自适应校正方法。当在线监测的模型性能评价指标超过预定统计限时,才触发软测量模型校正功能;然后利用过程特性变化类型分类器判别工况变化类型并采取相应的模型校正措施:若过程特性渐变,则利用新的离线测量值对模型进行递推校正;若过程特性突变,则在历史数据中选取与当前测量点相似的样本构建局部建模样本集,进行模型重构。通过对不同类型的过程特性变化类型采用不同的模型校正方法,在保证测量实时性的同时,有效地解决了传统校正方法的“盲目校正”和校正缺乏针对性的问题,校正频率明显低于传统校正方法,而校正效果则优于传统方法,显著提高了软测量系统对过程特性变化的适应能力。
     (4)提出了一种新型的适用范围广泛的比色测温公式,建立了带有烟雾干扰补偿和模型自校正功能的基于彩色CCD的高温场软测量模型。通过对比色测温原理和CCD工作原理进行深入的分析和严谨的数学推导,提出了不含任何理想化假设的改进的CCD比色测温公式,据此实现的比色测温方法的测量精度、可靠性及对不同被测对象的适应能力都优于传统的比色测温方法;针对工业现场普遍存在的烟雾干扰,构建了一种能对测温结果进行补偿校正的烟雾干扰补偿器,提高了测温结果的精度和可靠性;通过对高温场软测量模型进行在线校正,提高了其对不同测量对象的适应能力。
     (5)提出了一种基于干扰源辐射体颜色信息的高温辐射体图像识别方法。能够有效克服现场各种光辐射干扰的影响,准确识别待测高温目标。
     (6)提出了一种基于两级模板的CCD图像噪声滤波方法。利用一级模板识别图像边缘和脉冲噪声,利用二级模板滤除高斯噪声。该方法能够在尽可能保留图像细节、避免图像边缘模糊的同时滤除CCD图像噪声。
     (7)开发了基于彩色CCD的高温场软测量系统。该系统能够实时在线测量高温辐射体的表面温度场,并提供详细的温度信息供操作者进行分析决策。实验结果表明,所开发的高温场软测量系统测温范围广,测温精度高,响应时间短,抗干扰性强,可靠性好,对不同被测对象的适应性强,能够满足工业生产的应用要求,性价比优势突出,具有较强的实用性和推广价值。
Industrial processing plants are generally instrumented with a large number of traditional hardware sensors with the primary purpose to collect and deliver data for process modeling, monitoring and control. Although these hardware sensors have been widely used in industry, they have many disadvantages such as time-consuming maintenance, aged deterioration, insufficient accuracy, slow dynamics, large noises and low reproducibility. Meanwhile, some critical variables, such as biomass concentration in bioprocess, cannot be measured online by hardware sensors. As a result, it is crucial to develop soft sensors to infer some critical variables of industrial process.
     Unfortunately, development of soft sensors is lack of holistic direction by the framework of soft sensor techniques. Furthermore, the estimation performance of soft sensors is deteriorated with the changes of the process characteristics, especially for data-driven modeling approaches. For the time-varying processes, soft sensors need to be updated online to maintain their performance. However, the traditional correction methods update soft sensors whenever new measurements arrive. This blind correction would lead to drastic fluctuations of estimations and large computational load.
     Temperature is one of the important process parameters which need to be measured and controlled in high-temperature industry. The widely applied technique for temperature measurements is contact thermography technology. But it has slow response and can't online real time measure the temperature distribution for measurement targets. The temperature contactless measurement technology based on colored CCD enables the online real time measurement of temperature fields with a good accuracy. However, the traditional measurement technologies are based on the formulas deduced in terms of idealization and hypothesis which have low accuracy and precision, and are very sensitive to the influence of the locale interference.
     In the paper, based on the discussion and review of algorithms for soft sensing, the framework of soft sensor techniques has been summarized. The framework proposes the definition, implementation procedure of the soft sensors and the popular algorithms for soft sensing. Then, an approach for accessing, monitoring and maintaining the performance of soft sensors is proposed. Finally, the high-temperature field soft sensing technique based on colored CCD has been developed. The major research contents and results are as follows:
     (1) A novel performance index of soft sensors is designed to evaluate the performance of soft sensors. Comparing with the traditional performance index based on the prediction errors, the proposed performance index has two main advantages:(i) the influence of offline measurement noises is decreased by weighted mean filter, which could avoid the offline measurement noises to trigger the adaptation mechanism.(ii) the index objectively evaluates the current performance of soft sensors based on their design performance with more clear physical significance. The statistic confidence limit of the performance index is determined by the index series under the normal operation condition. If the index is outside the predefined limit, the soft sensor adaptation mechanism would be triggered. The method can avoid the soft sensor being updated blindly by the traditional soft sensor adaptation method.
     (2) For diagnosing the types of the process characteristics changes which cause the deterioration of soft sensors, a detection method of the type of process characteristics change is proposed. At first, a series of the performance indexes under the normal operation condition, the gradual change condition and the abrupt change condition are collected, respectively. Then, the amplitude of the Discrete Fourier transforms (DFT) of the series are used as feature vectors to train an operation condition classifier. The state classifier is used to judge the type of process characteristics changes according to the amplitude of the DFT of the indexes series.
     (3) An adaptive correction of soft sensors using offline measurements and based on the operation condition classifier is proposed. When the adaptation mechanism is triggered, the current operation condition is diagnosed by the classifier. When the process characteristics gradually change, the soft-sensor would be updated recursively. When process characteristics have an abrupt change, the soft sensor would be reconstructed from past data in a neighbor around the query point. The adaptive correction uses the different adaptation methods to the different types of operation condition, which can cope with the changes in process characteristics and achieve high estimation performance with high instantaneity.
     (4) A new type of two-color thermometry formula is proposed, which contains the coefficients of emissivity change and CCD response bandwidth. Based on the formula, a high-temperature field soft sensor using colored CCD with smog disturbance compensation and adaptive correction mechanism is proposed. The proposed two-color thermometry formula has not any idealization hypothesis, which is deduced by the mechanism of the CCD imaging and radiation temperature measurement theory. The two-color thermometry based on the formula has advantages such as higher precision, reliability and strong adaptability compared to the traditional methods. Furthermore, the measured results interfered by the smog are corrected by a radiant energy attenuation compensator. Finally, the soft sensor would be online updated using the measurement by other thermodetector, which improves the adaptability to different measured targets.
     (5) In order to decrease the influence of industrial interferences, a high-temperature radiator image recognition method based on the color information of the interference radiator is developed. By segmenting the red and green color images and using the mathematics morphology method, the measured targets can be recognized accurately.
     (6) An improved mean filter algorithm based on two templates is developed. The edge of the target image and the impulse noises are recognized in the first level of template. Then, the Gaussian noises are filtered in the second level of template. The method could reduce Gaussian noises and Salt and Pepper noises and keep the major details of the original images and clear target image border.
     (7) Based on the research above, a high-temperature-field soft sensing system is developed. The soft sensing system could online detect the surface high-temperature fields of high-temperature radiators and provide temperature information to operators for analysis and decision. The experimental results show that the measurement range of the soft sensing system could cover the dynamic range of temperature in common high-temperature production. It also has advantages such as high precision, short response time and strong anti-interference ability, which meets the need of the actual industry and has high practicability and promotional value.
引文
[1]Manabu Kano, Yoshiaki Nakagawa.Data-based process monitoring, process control, and quality improvement:recent developments and applications in steel industry. Computers and Chemical Engineering,2008,32:12-24
    [2]王孝红,刘文光,于宏亮.工业过程软测量研究.济南大学学报(自然科学版),2009,23(1):80-86
    [3]Casali A., Conzalez G, Torres F., et al. Particle size distribution soft-sensor for a grinding circuit. Powder technology,1998,99(1):15-21
    [4]S. Park, C. Han. A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns. Computers and Chemical Engineering,2000, 24:871-877
    [5]P. Kadlec, B. Gabrys. Adaptive local learning soft sensor for inferential control support. In Proceedings of the CIMCA 2008, Vienna,2008
    [6]Dayal, J.F. MacGregor. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. Journal of Process Control,1997,7(3):169-179
    [7]S.J. Qin. Recursive PLS algorithms for adaptive data modeling. Computers and Chemical Engineering,1998,22(4-5):503-514
    [8]S.J. Qin, H. Yue, R. Dunia. Self-validating inferential sensors with application to air emission monitoring. Industrial & Engineering Chemistry Research,1997,36: 1675-1685
    [9]汪小勇,梁军,刘育明,等.基于递推PLS的自适应软测量模型及其应用.浙江大学学报(工学版),2005,30(5):676-680
    [10]徐欧官,陈祥华.移动窗递推PLS软测量建模及其工业应用.高校化学工程学报,2009,23(6):1044-1050
    [11]宋凯,王海清,李平.折息递推PLS算法及其在橡胶混炼质量控制中的应用.化工学报,2004,55(6):942-946
    [12]L.A.C. Meleiro, R.M. Finho. A self-tuning adaptive control applied to an industrial large scale ethanol production. Computers and Chemical Engineering,2000,24:925-930.
    [13]V.R. Radhakrishnan, A.R. Mohamed. Neural networks for the identification and control of blast furnace hot metal quality. Journal of Process Control,2000,10(6):509-524.
    [14]D. Devogelaere, M. Rijckaert, O.G. Leon, et al. Application of feedforward neural networks for soft sensors in the sugar industry. In Proceedings of the VII Brazilian symposium on neural networks,2002:2-6
    [15]王小刚,李春柏,胡轮.基于智能计算策略的电解液成分软测量方法.东北大学学报(自然科学版),2010,31(11):1554-1557
    [16]黄丽,孙玉坤,嵇小辅,等.基于tPSO-BPNN的赖氨酸发酵软测量.仪器仪表学报,2010,31(10):2317-2321
    [17]L. Wang, C. Shao, H. Wang, H. Wu. Radial basis function neural networks-based modeling of the membrane separation process:Hydrogen recovery from refinery gases. Journal of Natural Gas Chemistry,2006,15 (3):230-234
    [18]H.B. Su, L.T. Fan, J.R. Schlup. Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor. Engineering Applications of Artificial Intelligence,1998,11 (2):293-306
    [19]L. Chen,O. Bernard, G. Bastin, et al. Hybrid modeling of biotechnological processes using neural networks. Control Engineering Practice,2000,8 (7):821-827
    [20]X. Chen, F. Gao, G. Chen. A soft-sensor development for melt-flow-length measurement during injection mold filling. Materials Science & Engineering A,2004,384 (1-2): 245-254.
    [21]张海传,刘钟阳,许东卫,等.基于RBF神经网络模型的臭氧浓度软测量研究.大连理工大学学报,2010,50(5):1020-1023
    [22]S.H. Yang, B.H. Chen, X.Z. Wang. Neural network based fault diagnosis using unmeasurable inputs. Engineering Applications of Artificial Intelligence,2000,13 (3): 345-356
    [23]Wang Y., Rong G. A self-organizing neural-network-based fuzzy system. In Proceedings of the fifth international conference on artificial neural networks, Cambridge, U.K.,2009: 106-110.
    [24]J. X. Luo, H. H. Shao. Developing soft sensors using hybrid soft computing methodology: A neurofuzzy system based on rough set theory and genetic algorithms. Soft Computing-A Fusion of Foundations Methodologies and Applications,2006,10(1):54-60
    [25]Merikoski S., Laurikkala M., Koivisto H. An adaptive neuro-fuzzy inference system as a soft sensor for viscosity in rubber mixing process. Tech. rep. WSEAS NNA-FSFS-EC, Puerto de la Cruz, Tenerife, Spain,2001:446-473
    [26]Warne K., Prasad G, Siddique N. H., et al. Development of a hybrid PCA-ANFIS measurement system for monitoring product quality in the coating industry. In Proceedings of the 2004 IEEE international conference on systems, man and cybernetics (Vol.4).
    [27]V.N. Vapnik. Statistical learning theory. Wiley, New York,1998.
    [28]K. Desai, Y. Badhe, S.S. Tambe, B.D. Kulkarni. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochemical Engineering Journal,2006,27 (3):225-239
    [29]W. Yan, H. Shao, X. Wang. Soft sensing modeling based on support vector machine and Bayesian model selection. Computers and Chemical Engineering,2004,28 (8): 1489-1498
    [30]Feng R., Shen W., Shao H. A soft sensor modeling approach using support vector machines. In Proceedings of the 2003 American control conference,2003:5-9.
    [31]汤健,赵立杰,岳恒,等.基于多源数据特征融合的球磨机负荷软测量.浙江大学学报(工学版),2010,44(7):1406-1413
    [32]S. James, R. Legge, H. Budman. Comparative study of black-box and hybrid estimation methods in fed-batch fermentation. Journal of Process Control,2002,12 (1):113-121
    [33]A.K. Kordon. Hybrid intelligent systems for industrial data analysis. International Journal of Intelligent Systems,2004,19 (4):367-383
    [34]P. Nomikos, J.F. MacGregor. Multivariate SPC charts for monitoring batch processes. Technometrics,1995,37 (1):41-59
    [35]W. Li, H.H. Yue, S. Valle-Cervantes, et al. Recursive PCA for adaptive process monitoring. Journal of Process Control,2000,10 (5):471-486
    [36]X. Wang, U. Kruger, G.W. Irwin. Process monitoring approach using fast moving window PCA. Industrial & Engineering Chemistry Research,2005,44(15):5691-5702
    [37]Amazouz, M., Pantea, R. Use of multivariate data analysis for lumber drying process monitoring and fault detection. In Crone, S. F.,& Stahlbock, S. L. (Eds.), Proceedings of the international conference on data mining,2006:329-332
    [38]H. Zhang, B. Lennox. Integrated condition monitoring and control of fed-batch fermentation processes. Journal of Process Control,2004,14 (1):41-50
    [39]葛志强,刘毅,宋执环,等.一种基于局部模型的多工况过程监测方法.自动化学报,2008,34(7):792-797
    [40]R. Dunia, S.J. Qin. Joint diagnosis of process and sensor faults using principal component analysis. Control Engineering Practice,1998,6 (4):457-469
    [41]胡暾,赵哲身,郑毅.基于主元分析的传感器故障检测与诊断.仪表技术,2005,6:30-32
    [42]李果,张鹏,李学仁,等.基于动态主元分析法的传感器故障检测.数据采集与处理,2008,23(3):338-341
    [43]何慧娟,陈健,邹宇华.基于DPCA方法的传感器故障检测与诊断.传感器与微系 统,2009,28(12):35-38
    [44]毕小龙,王洪跃,司风琪,等.基于核主元分析的传感器故障检测.动力工程,2007,27(4):555-559
    [45]仇韬,张清峰,丁艳军,等.PCA在非线性系统传感器故障检测和重构中的应用.清华大学学报(自然科学版),2006,46(5):708-711
    [46]彭红星,陈祥光,徐巍,等.多变量过程传感器故障检测的SVM方法.北京理工大学学报,2008,28(8):727-731
    [47]刘剑,张大为,李多颖,等.一种基于自适应神经网络的传感器故障检测方法.电气传动自动化,2006,28(2):22-24
    [48]Hiromasa Kaneko, Masamoto Arakawa, Kimito Funatsu. Development of a new soft sensor method using independent component analysis and partial least squares. American Institute of Chemical Engineers,2009,55(1):87-98
    [49]杨竹青,李勇,胡德文.独立成分分析方法综述.自动化学报,2002,28(5):762-772
    [50]张会清,王普,高学金,等.生物发酵参数相关性及菌体浓度软测量技术的研究.计算机工程与应用,2006,30:215-217
    [51]潘立登,李大字,马俊英.软测量技术原理与应用.中国电力出版社,2008.81
    [52]杨慧中,钟豪,丁锋.基于多重小波变换的信号去噪及其在软测量中的应用.仪器仪表学报,2007,28(7):1245-1249
    [53]黄洪宇,林甲祥,陈崇成.离群数据挖掘综述.计算机应用研究,2006,(8):8-12
    [54]俞琳琳,吉根林.离群数据挖掘方法研究.信息技术,2005,(11):86-89
    [55]Rosner, Bernard. Percentage points for a generalized ESD many-outlier procedure. Technometrics,1983,25(2):165-172
    [56]S. R. Paul, Karen Y. Fung. A generalized extreme studentized residual multiple outlier-detection procedure in linear regression. Technometrics,1991,33 (3):339-348
    [57]Yamanishi K, Takeuchi J, Williams G. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. Boston, MA, USA:In Proceedings of the Sixth ACM SIGKDDOO,2000:320-324
    [58]Brito M. R., Chavez E. L., Quiroz A. J., et al. Connectivity of the mutual-nearest-neighbor graph in clustering and outlier detection. Statistics Probability Letters,1997,35(1):33-42
    [59]Ville Hautamaki, Ismo Karkkainen, Pasi Franti. Outlier detection using k-nearest neighbour graph. In Proceedings of the 17th International Conference on Pattern Recognition,2004:430-433
    [60]Breunig M. M., Kriegel H. P., Ng R. T., et al. LOF:Identifying density-based local outliers.Dallas, Texas, U.S.A:In Proceedings of ACMSIGMOD International Conference on Management of Data,2000:93-104
    [61]Dongmei Ren, Baoying Wang, William Perrizo. RDF:A density-based outlier detection method using vertical data representation. Brighton, UK, In Proceedings of the Fourth IEEE International Conference on Data Mining,2004:503-506
    [62]Knorr, Edwin M, Raymond T. Ng. Algorithms for mining distance-based outliers in large datasets. Very Large Data Bases Conference Proceedings,1998:24-27
    [63]Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. Texas, USA. Proc. Int'l Conf. Management of Data (SIGMOD'00),2000: 427-438
    [64]Dongmei Ren, Imad Rahal, William Perrizo. A vertical outlier detection algorithm with clusters as byproduct. Florida, USA.IN Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence,2004:22-29
    [65]Zhang Hongyi, Wu Qingtao, Pu Jiexin. A novel fuzzy kernel clustering algorithm for outlier detection. Harbin, China:IN Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,2007:2378-2382
    [66]Graham Williams, Rohan Baxter, He Hongxing, et al. A comparative study of RNN for outlier detection in data mining. Maebashi City, Japan:In Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM02),2002:709-712
    [67]I.T. Jolliffe. Principal component analysis. Springer,2002.
    [68]K. Warne, G. Prasad, S. Rezvani, et al. Statistical and computational intelligence techniques for inferential model development:A comparative evaluation and a novel proposition for fusion. Engineering Applications of Artificial Intelligence,2004,17 (8): 871-885
    [69]G. D. Gonzalez. Soft sensors for processing plants. Proceedings of the second international conference on intelligent processing and manufacturing of materials,1999. IPMM'99,1:59-61
    [70]H. Hotelling. The generalization of student's ratio. The Annals of Mathematical Statistics, 1931,2 (3):360-378
    [71]J.E. Jackson, G.S. Mudholkar. Control procedures for residuals associated with principal component analysis. Technometrics,1979,21 (3):341-349
    [72]王玉乔,程光旭,汤杰国.基于KPCA的连续重整催化剂结焦碳含量软测量模型.高校化学工程学报,2009,23(5):852-857
    [73]孙光民,张程,王鹏,等.基于非线性PCA神经网络的手写体字符识别.北京工业 大学学报,2007,33(9):915-919
    [74]秦浩,陈景武.主成分分析与因子分析的关系剖析.数理医药学杂志,2006,19(2):152-154
    [75]陈军才.主成分与因子分析中指标同趋势化方法探讨.统计与信息论坛,2005,20(2): 19-23
    [76]王芳.主成分分析与因子分析的异同比较及应用.统计教育,2003,(5):14-17
    [77]刘春生,胡寿松.一类基于状态估计的非线性系统的智能故障诊断.控制与决策,2005,20(5):557-561
    [78]Julier S.J. Uhlmann J.K., Durran-Whyte H.F.A new approach for the nonlinear transformation of means an covariance in linear filters.IEEE Transactions on Automatic Control,1996
    [79]周桃庚,郝群,沙定国.U-卡尔曼滤波在状态估计中的应用.仪器仪表学报,2003,24(4):410-412
    [80]Zadeh, L.A. From circuit theory to system theory. Proc. IRE,1962,50(5):856-865
    [81]王晓刚,刘玉生.非线性系统辨识.微计算机信息,2009,25(3-3):166-204
    [82]徐小平,钱富才,王峰.非线性系统辨识方法研究.计算机工程与应用,2010,46(6):19-25
    [83]J. E. Jackson, G. S. Mudhalkar. Control procedures for residuals associated with principal component analysis. Technometrics,1979,21:341-349
    [84]W. Li, H.H. Yue, S. Valle-Cervantes, et al. Recursive PCA for adaptive process monitoring. Journal of Process Control,2000,10 (5):471-486
    [85]S. Wang and J. Cui. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method. Applied Energy,2005,82 (3): 197-213
    [86]S. Wold, N. Kettanch, K. Tjessem. Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection. J. Chemometrics,1996, 10:463-482
    [87]S.J. Qin. Recursive PLS algorithms for adaptive data modeling. Computers and Chemical Engineering,1998,22 (4-5):503-514
    [88]Y.P. Dua, Y.Z. Liangb, J.H. Jiang, et al. Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Analytical Chemical Acta, 2004,501(2):183-191
    [89]E. Zamprogna, M. Barolo, D.E. Seborg. Development of a soft sensor for a batch distillation column using linear and nonlinear PLS regression techniques. Control Engineering Practice,2004, (12):917-929
    [90]S.J. Qin, T.J. McAvoy. Nonlinear PLS modeling using neural networks. Computers & Chemical Engineering,1992,16 (4):379-391
    [91]曹先庆.基于PCA-改进算法BP神经网络的软测量技术.仪器仪表学报,2006,27(6):2342~2343
    [92]D. Nauck, F. Klawonn, R. Kruse, et al. Foundations of neuro-fuzzy systems. New York: John Wiley & Sons, Inc,1997
    [93]V. Vapnik. The nature of statistic learning theory. New York:Cambridge University Press, 1999
    [94]苏志刚,王培红,于向军,等.中储式制粉系统出力在线监测软测量建模.中国电机工程学报,2007,27(29):90-95
    [95]杨希,钱锋,张兵.基于核函数主元分析的SVM建模方法及应用.华东理工大学学报(自然科学版),2007,33(2):259-270
    [96]桑海峰,何大阔,张大鹏.基于支持向量机与遗传算法的发酵过程软测量建模.东北大学学报(自然科学版),2007,28(6):781-784
    [97]于涛.基于混合模型的软测量方法研究及其在发酵过程中的应用[博士学位论文].北京:北京化工大学,2006
    [98]杜文莉,官振强,钱锋.一种基于时序误差补偿的动态软测量建模方法.化工学报,2010,61(2):439-443
    [99]Petr Kadlec, Ratko Grbic, Bogdan Gabrys. Review of adaptation mechanisms for data-driven soft sensors. Computers and Chemical Engineering,2011, (35):1-24
    [100]苏宏业,牟盛静,王长明,等.基于工业软测量模型的离线化验值双重校正方法.中国专利,CN1570627A,2005-1-26
    [101]W. Zhong, J. S. Yu. MIMO soft sensors for estimating product quality with online correction. Institution of Chemical Engineers,2000,78:612-620
    [102]Fortescue T., Kershenbaum L. Ydstie B.. Implementation of self-tuning regulators with variable forgerring factors. Automatica,1981,17(6):831-835
    [103]Petr Kadlec, Bogdan Gabrys. Adaptive local learning soft sensor for inferential control support. CIMCA 2008:243-248
    [104]Petr Kadlec, Bogdan Gabrys. Local Learning-based adaptive soft sensor for catalyst activation prediction. American Institure of Chemical Engineers,2001,57(5):1288-1301
    [105]K. Chen, J. Ji, H. Q. Wang, et al. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chemical Engineering Research and Design,2011, 10(89):2117-2124
    [106]俞金寿,刘爱伦,张克进.软测量技术及其在石油化工中的应用.化工工业出版社,2000
    [107]De Moor B.L.R. (ed.). DaISy:Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium, URL: http://homes.esat.kuleuven.be/-smc/daisy/, [Used dataset:Data from an industrial evaporator, Process Industry Systems,1994:96-100
    [108]Ming-da MA, Jing-Wei Ko, San-Jang Wang, et al. Development of adaptive soft sensor based on stastical identification of key variables. Control engineering practice, 2009,17:1026-1034
    [109]Young-Hak Lee, Minjin Kim, Young-Hwan Chu, Chonghu Han. Adaptive mtltivariate regression modeling based on model performance assessment. Chemometrics and intelligent laboratory systems,2005,78:63-73
    [110]Jie Yu. A nonlinear kernel Caussian mixture model based inferential monitoring approach for fault detection and diagnois of chemincal processes. Chemical Engineering Science,2012,68(1):506-519
    [111]Cheng, C., Chiu, M.S.. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science,2004,59(13):2801-2810.
    [112]Kun C., Jun J., Haiqing W., et al. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chemical Engineering Research and Design,2011, 10(89):2117-2124
    [113]Jiri Vojtesek, Petr Dosal. From steady-state and dynamic analysis to adaptive control of the CSTR reactor. Proceedings 19th European Conference on Modelling and Simulation, Yuri Merkeuyev, Richard Zobel, Engene Kerchhoffs,2005
    [114]Ivan Zelinka, Jiri Vojtesek, Zuzana Oplatkova. Simulation study of the CSTR reactor for control purposes. Proceedings 20th European Conference on Modelling and Simulation, Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel,2006
    [115]Jiann-long Chen, Shafiqul Islam, Pratim Biswas. Nonlinear dynamics of hourly ozone cencentrations:nonparameteric short term prediction. Atmospheriv Enviroment, 1998,32(11):1839-1848
    [116]张建波,韩崧.浅谈温度测量的发展现状.计量与测试技术,2001,(2):14-15
    [117]王飞.基于计算机图像处理技术的火焰温度场测量和燃烧诊断.杭州:浙江大学,2000
    [118]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005:3-4
    [119]王魁汉.温度测量技术的现状及展望(上).基础自动化,1997,(1):1-6
    [120]王魁汉.温度测量技术的现状及展望(下).基础自动化,1997,(2):1-6
    [121]王庆有.CCD应用技术.天津:天津大学出版社,2000:173~183
    [122]刘征,彭小奇,丁剑,等.国外CCD检测技术在工业中的应用与发展.工业仪表与自动化装置,2005,(4):65-69
    [123]R.G.. Keanini, C.A. Allgood. Measurement of time varying temperature fields using visible imaging CCD cameras. Heat Mass Transfer,1996,23 (3):305-314
    [124]K.Y. Hsu, L.D. Chen. An experimental investigation of LI and SF6 wick combustion. Combustion and Flame,1995,102 (1-2):73-86
    [125]Takeshi Azami, Shin Nakamura, Taketoshi Hibiya. Observation of periodic thermocapillary flow in a molten silicon bridge by using non-contact temperature measurements. Journal of Crystal Growth,2001,231 (1-2):82-88
    [126]D. Manca, M. Rovaglio. Infrared thermographic image processing for the operation and control of heterogeneous combustion chambers. Combustion and Flame,2002,130 (4):277-297
    [127]G. Sutter, L. Faure, A. Molinari, N. Ranc, V. Pina. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining. International Journal of Machine Tools and Manufacture,2003,43 (7):671-678
    [128]B. Skarman, J. Becker, K. Wozniak. Simultaneous 3D-PIV and temperature measurements using a new CCD-based holographic interferometer. Flow Measurement and Instrumentation,1996,7 (1):1-6
    [129]B. Skarman, J. Becker, K. Wozniak. Digital in-line holography for the analysis of B enard-convection. Flow Measurement and Instrumentation,1999,10 (2):91-97
    [130]C. Hohmann, P. Stephan.Microscale temperature measurement at an evaporating liquid meniscus. Experimental Thermal and Fluid Science,2002,26 (2-4):157-162
    [131]Alaa Omrane, Frederik Ossler, Marcus Alden. Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence. Experimental Thermal and Fluid Science,2004,28 (7):669-676
    [132]Y.Huang, Y.yan, GRiley. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-color method.Measurement,2000,28:75-183
    [133]王补宣,李天铎,吴占松.图像处理技术用于发光火焰温度分布测量的研究.工程热物理学报,1989,10(4):446-448
    [134]徐伟勇,余岳峰,孙江.数字图像处理技术在火焰检测上的应用.中国电力,1994,(10):41-44
    [135]余岳峰,赵铁成,徐伟勇.煤粉燃烧火焰的三色法温度测量.上海交通大学学报,2000,Vo1.34(9):1257-1260
    [136]周怀春,娄新生,尹鹤龄,等.单色火焰图像处理技术在锅炉燃烧监控中的应用研究.电力系统自动化,1996,20(10):18-22
    [137]娄春,周怀春.DSP嵌入式炉膛火焰图像检测处理系统.中国电力,2002,35(10): 62-64
    [138]祖春光,周怀春,娄春,等.基于火焰图像的燃烧稳定性诊断和分析.湖北电力,2006,30(2):39-41
    [139]姚斌,姜志伟,周怀春,等.W型火焰锅炉炉膛温度场的可视化试验研究.热能动力工程,2006,21(1):35-38
    [140]卫成业,王飞,马增益,等.运用彩色CCD测量火焰温度场的校正算法.中国电机工程学报,2000,20(1):70-76
    [141]李进军,赵春晖,梁彦,等.基于面阵CCD比色测温方法的研究改进.计算机测量与控制,2005,13(7):650-652
    [142]张玉杰,吕岑.基于彩色CCD炉膛火焰温度场测量方法研究.量子电子学报,2004,21(5):674-678
    [143]张玉杰,吴平林.基于CCD图像处理的炉膛温度测量与燃烧诊断系统.华北电力技术,2004,(6):25-28
    [144]彭小奇,周海叶,宋海鹰.CCD三色测温的插值修正方法.中国电机工程学报,2004,24(8):166-169
    [145]符泰然,程晓舫,钟茂华.谱色测温法相关应用问题的理论预测分析.中国科学G,1008,38(2):194-205
    [146]崔尚志.常用辐射测温仪器及其检定.计量出版社,1986:1-84
    [147]由富恩,张存芳,付乐勇.辐射测温仪原理及其检定.北京:中国计量出版社,1990:115-203
    [148]王庆有.CCD应用技术.天津:天津大学出版社,2000:173-183
    [149]卫成业,严建华,商敏儿,等.利用面阵CCD进行火焰温度分布测量(Ⅰ).热能动力工程,2002,17(97): 58-61
    [150]王飞,薛飞,马增益,等.运用彩色CCD测量火焰温度场的试验研究及误差分析.热能动力工程,1998,13(74):81-84
    [151]R. G. Keanini, C. A. Allgood. Measurement of time varying temperature fields using visible imaging CCD cameras. Int. Comm. Heat Mass Transfer,1996,23(3):305-314
    [152]李汉舟,潘泉,张洪才,等.基于数字图像处理的温度检测算法研究.中国电机工程学报,2003,23(6):195-199
    [153]刘辉,张云生,王帅.基于广义回归神经网络的图像测温方法.2009 Chinese Control and Decision Conference, CCDC2009:2992-2996
    [154]丛大成,何瑾,戴景民,等.基于径向基函数网络多光谱辐射测温技术理论研究.仪器仪表学报,2000,21(5):481-484
    [155]孙元,彭小奇,唐英.基于彩色CCD的比色测温校正方法.仪器仪表学报,2008,29(1):49-54
    [156]孙晓刚,戴景民,褚载祥.多光谱辐射测温的理论研究:发射率模型的自动判别.红外与毫米波学报,1998,17(3):221-225
    [157]孙元,彭小奇.CCD比色测温中烟雾干扰的滤波与温度校正算法.仪器仪表学报,2009,30(4):292-295
    [158]章毓晋.图像分割.科学出版社,2001.84-88
    [159]宋海鹰,彭小奇,刘征,等.基于非接触式温度测量中的高温熔体识别方法.中南大学学报(自然科学版),2005,36(3):426-430
    [160]丁剑,彭小奇,刘征.Bubble小波在高温辐射体图像分割中的应用.能源技术,2005,26(4):139-154
    [161]彭小奇,孙元,王一丁.基于高温辐射体颜色信息的目标图像识别方法.中国图象图形学报,2008,13(2):238-241
    [162]张宇,王希勤,彭应宁.自适应中心加权的改进均值滤波算法[J].清华大学学报(自然科学版),1999,39(9):76~78
    [163]Sun T, Neuvo Y. Detail-preseving median based filters in image processing. Pattern Recognit. Lett.,1994,15:341-347
    [164]Brownrigg D R K. The weighted meadian filter. Commun. Ass. Comput. Mach., 1984,27(8):807-818
    [165]Wangwang Jung-Hua, Lin Lian-DA. Improved median filter using minmax algorithm for image processing. Electronics Letters,1997,33(16):235-246
    [166]刑藏菊,王守觉,邓浩江,等.一种基于极值中值的新型滤波算法.中国图象图形学报,2001,6(6):533-536
    [167]彭小奇,严军,孙元.基于CCD图像传感器的高温场测量仪设计与实现.传感技术学报,2010,23(3):354-358
    [168]宋海鹰,彭小奇,周海叶.非接触式温度测量系统中固体摄像器件的选择.传感器技术,2004,23(8):71-73
    [169]凌云光视数字图像公司.CCD&CMOS图像和机器视觉产品手册.17-91
    [170]严军.基于CCD图像传感器的高温场测量仪研发.硕士学位论文,长沙:中南大学,2010
    [171]校准证书.河南省计量科学研究院,2010.4,1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700