合金化镀锌板镀层抗粉化性能及相关工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁材料工业上应用广泛,但在使用过程中,接触到大气、液态水、土壤及特种介质,会发生不同程度的腐蚀。为了防止钢铁材料腐蚀,常常采用涂镀保护层的方法将钢铁与其它腐蚀介质隔离开来。锌的最重要的应用是钢铁的防腐蚀,主要是以涂层的形式,因为涂锌的钢在自然环境中有出色的耐蚀性。最早采用电镀的方法,但电镀方法具有成本高,有逐渐为热镀锌取代的趋势。热镀锌是将金属产品浸入熔融锌液中从而获得锌镀层。
     锌是比铁更为活泼的一种金属元素,更容易被氧化腐蚀。锌在干燥的空气中不起变化。但在潮湿空气的腐蚀环境中,锌的表面会生成一层致密的耐腐蚀的碳酸锌薄膜,它能保护锌内部不再受到腐蚀,从而延长材料使用寿命。
     锌铁合金层电极电位(-0.59V--0.66V)介于铁和纯锌之间,所以电化学腐蚀速度比纯锌慢。锌铁合金通过在热浸镀后退火处理,镀层发生合金化形成多种合金相得到。另外,锌铁合金层具有更好的焊接性及涂装性,所以逐渐得到越来越广泛的应用。但其在冲压成型时,常常会出现粉化及脱落问题。镀层粉化及脱落降低镀层的耐蚀性能,影响涂装后的外观,而且因剥落的锌粉粘附于模具上,并在模具中积聚,影响模具的使用寿命。因此,提高合金化镀锌板镀层的抗粉化性能,一直是国内外镀锌学者的研究热点。而合金化镀锌板镀层的抗粉化性能,与镀层的相结构密切相关。
     为了研究合金化镀锌板镀层的相结构,以提高某钢厂现有产品抗粉化及剥落性能,进行了系统的比较及模拟研究,主要工作及结论如下:
     1)首次运用动态拉伸观察合金化镀锌板镀层在持续拉伸状态下的断裂演变过程。并通过扫描电镜及能谱仪分析,发现镀层和基板的剥离发生在基板/r相界面。r相断口呈锯齿状,约数百个纳米厚度。镀层厚度上主要为6相。
     2)通过对镀层抗粉化性及附着力的分析,发现某钢厂早期生产的合金化热镀锌钢板(主要是DX54D+ZF)镀层的抗粉化性能不稳定,部分产品的粉化量偏大。通过辉光光谱分析发现,原因是合金化钢板镀层中r相的含量较其它几种合金化钢板中的r相的含量要多。用扫描电镜观对比观察了不同合金化镀层的表面形貌,发现DX54D+ZF镀层表面的相结构是比较单一柱状锌铁合金相,并且镀层表面较脆,未见明显光整压痕,镀层内部在变形前已经产成了大量的合金化预裂纹。在此分析基础上提出了改进方法。
     3)通过对DX54D+ZF在不同温度、不同合金化时间下进行模拟合金化退火实验,并采用光学显微镜、扫描电镜、辉光光谱仪及XRD等方法揭示了DX54D+ZF抗粉化及剥落性能与相关工艺参数的对应规律:合金化温度在450℃时,在比较长的时间范围内,粉化量都比较小;合金化温度在500℃时,合金化温度在120s以内,粉化量随合金化时间的变化也不大;合金化温度超过550℃时,在极短的时间内,镀层的粉化量急剧增加。
     4)通过对DX56D+ZF在不同温度、不同合金化时间下进行模拟合金化退火实验采用光学显微镜、扫描电镜、辉光光谱仪及XRD等方法揭示了DX56D+ZF抗粉化及剥落性能与相关工艺参数的对应规律:在480℃左右合金化时,镀层粉化量很小,且随合金化时间的延长,镀层粉化量变化很小;在480℃合金化且时间不超过25s时,Zn/Fe界面A1元素富集明显,有利于抑制脆性相的形成,镀层抗粉化性能较好,当合金化温度更高,合金化时间更长时,镀层中开始出现脆性相,并不断增厚,镀层抗粉化性能逐渐下降。
     5)通过对H180BD+ZF在不同温度、不同合金化时间下进行模拟合金化退火实验采用光学显微镜、扫描电镜、辉光光谱仪及XRD等方法揭示了H180BD+ZF抗粉化及剥落性能与相关工艺参数的对应规律:合金化时间小于25s时,450℃、480℃合金化镀层的抗粉化性能均较好,较低温度450℃时效果更佳;大于25s时,480℃合金化镀层粉化量急剧增加;而450℃合金化镀层粉化量略有下降,当合金化时间超过30s时,镀层粉化量才开始较缓慢地增加;合金化温度为510℃及540℃时,即使合金化时间极短,粉化量也较大,且随合金化时间的延续,粉化量急剧增加。
     6)不同镀锌板在合金化刚开始时A1元素均富集于镀层/基体界面,随着合金化时间的延长,A1元素逐渐向镀层表面扩散,最终均匀分布于镀层中。且合金化温度越高,这一过程越显著。
     7)合金化温度越高,表面形貌变化也越显著,但当合金化完成后,增加合金化时间,表面形貌变化不明显。
The steel is used widely in industry, but it would be corroded often in some degree when it meets air, water, soil and other especial substance. In order to avoid corrosion, the steel is aften plated with protective layer to be insulated with corrosive substance. The most important use of Zinc is to mitigate corrosion by coating mainly, because it has excellent corrosion resisting property in nature environment. Electic plating method is used early, but the cost is very high and the hot galvanizing is replacing it gradually. Hot galvanizing is a method acquiring coating by immersing steel in the melting metal.
     Zinc is a more active element than Fe which could be oxidated more easily. Zinc is unconveted in dry air. But in moist air its surface would generate dense zinc carbonate film which could protect internal zinc from corrosion sequentially prolong steel service life.
     Electrode voltage of Zn-Fe alloy coating (-0.59V~-0.66V) is between the Zinc and Fe, so the corrosion rate of Zn-Fe alloy coating is more slowly than pure zinc. Galvannealed coatings are produced by a continuous hot dipping process followed by an in-line annealing cycle, during which alloying takes place and the different Fe-Zn phases are formed.Inadditon, it has excellent spot weldability and paintability,so Zn-Fe alloy coating is widely used gradually. But powdering and flaking of the coating often happen when the steel band is punched. Powdering and flaking make the coating's corrosion resisting property and appearance after painting worse and zinc powder hich comes from powdering and flaking adheres to the die would affect its life. So how to improve the powdering resisting property of coating is the research hotspot all along for galvannealed coating. The powdering resisting property of coating is correlative with the phase structure of galvannealed coating.
     In order to research the phase structure of galvannealed coatings made by some steel plant and improve its powdering and flaking resisting property, systemic research are made as follows:
     1) The fracture evolution of galvannealed coating is observed by dynamic tensility experiment in-situ SEM observation for the first time. It is thought that flaking takes place at the interface of substrate/Γ phase by SEM and EDX analysis. The Fracture of Γ phase is serrated and its thickness is hundreds of nano-metres.δphase is main in the coating.
     2) The powdering resisting property of coatings and adhesive power is analysed and it is found that the performance of early galvannealed coating of galvannealed steel sheet(mainly DX54D+ZF) made in some steel plant is instable, the quantity of powdering is a little more than other products.It is found by Glow Discharge Spectrometer that Γ phase in the coating of DX54D+ZF is more than in other products coating.The surface topography of DX54D+ZF is simple columnar Zn-Fe Alloy phases in SEM and its surface is more brittle than others,no indentation by skin rolling could be found, there are many early cracks before deforming.Improved methods are brought forward.
     3)Simulation annealing experiments are made to DX54D+ZF at different annealing temperatures and different annealing times and the powdering resisting property of coatings with different processing parameters is discovered by OM, SEM,GDS and XRD:The quantity of powdering is little in a long annealing time at the temperature of450℃. The quantity of powdering dose not change within120s at the temperature of500℃.The quantity of powdering increases quickly in a short time at the temperature of550℃.
     4) Annealing experiments for simulating DX56D+ZF production are made at different annealing temperature and different annealing time and the powdering resisting property of coatings with different processing parameters is discovered by OM, SEM,GDS and XRD:The quantity of powdering is little for a long annealing time at the temperature of480℃. If the annealing time is no more than25s, Al is aggregate at the interface of coating/substrate and it is advantageous to inhibit brittle phase forming. When the annealing temperature is higher and the annealing time is longer, the brittle phases appears and its thickness become more and more thick, the powdering resisting property of coatings is descending.
     5) Annealing experiments for simulating H180BD+ZF production are made at different annealing temperature and different annealing time and the powdering resisting property of coatings with different processing parameters is discovered by OM, SEM,GDS and XRD:The quantity of powdering is little for a less annealing time than20s at the temperature of450℃or480℃and the effect is better at the temperature of450℃. The quantity of powdering increases quickly when the annealing time is more than25s at the temperature of480℃, but at the same annealing time the quantity of powdering is descending a little at the temperature450℃and the quantity of powdering is increased slowly until the annealing time more than30s. The powdering resisting property of coatings increases fast at the temperature of510℃or540℃,even in a short annealing time.
     6) In the beginning of annealing, Al enrichs interface of coating/substrate for all coatings of galvannealed steel sheets. With the time prolonged, Al diffuses to the surface of coating continuously and it would evenly distributed to the whole coating in the end.The process is more notable when the annealing temperature is higher.
     7)The surface appearance of coatings would change remarkably when the annealing temperature is higher, but when the galvannealed coatings has formed, the surface appearance of coating would not change remarkably if the annealing time is increased.
引文
[1]卢锦堂.热浸镀技术与应用[M].北京:机械工业出版社,2006.
    [2]余金山,张津徐,吴建生.汽车用热镀锌钢板镀层的性能综述[J].理化检验-物理分册2005;41:325.
    [3]许秀飞.钢带热镀锌技术问答[M].北京:化学工业出版社,2007.
    [4]章小鸽.锌和锌合金的腐蚀(一)[J].腐蚀与防护2006;27:41-50.
    [5]朱立.钢材热镀锌[M].北京:化学工业出版社,2006.
    [6]吴光治.带钢连续热镀锌及其退火炉的技术进步[J].国外金属热处理2005;26:1.
    [7]符寒光吴建中.汽车用镀锌板的现状与发展[J].钢铁研究1998;6:58.
    [8]张毅,陈英颖,张志颖.辉光放电光谱法分析镀锌钢板[J].理化检验-化学分册2004;40:191.
    [9]李锋,姜成林,孙宇,于宁.汽车用钢板镀锌技术[J].鞍钢技术2001;1:26.
    [10]王丽娟.对我国镀锌板发展的思考[J].冶金管理2003:17.
    [11]张益民,马荣贵,符寒光.耐蚀热镀锌钢板在汽车汽车工业中应用的进展[J].腐蚀与防护1999;20:483.
    [12]宋加.涂镀层钢板技术发展[J].中国冶金2002;3:13.
    [13]魏元生.镀锌板种类及其在车身上的应用[J].材料应用2011;9:51.
    [14]彭曙,卢锦堂,车淳山.热镀锌用Zn-(0-6.0%)A1-4.0% Sb合金的凝固组织[J].中南大学学报(自然科学版)2010;41:931.
    [15]张理扬,李俊,左良.国内外合金化热镀锌汽车外板表面粗糙度对比分析[J].材料与冶金学报2005;4:245.
    [16]Dionne Sylvie. The Characterization of Continuous Hot-Dip Galvanized and Galvannealed Steels[J]. Electron Microscopy 2006;3:32.
    [17]吴斌,陈海耿,李本文.连续加热炉三元在线控制数学模型[J][J].工业炉1999;21:34.
    [18]刘邦津,张启富仲海峰,.国外钢板热镀锌技术进展[J].腐蚀与防护2002;23:476.
    [19]李九龄.从热镀锌史看美钢联法的发展[J].武钢技术1995;1:10~13.
    [20]张启富,刘邦津,仲海峰.热镀锌技术的最新进展[J].钢铁研究学报2002;14.
    [21]李慧,李运刚,高建新.热镀锌工艺及锌镀层钝化的研究现状[J].电镀与精饰2008;30.
    [22]李慧远.汽车用热镀锌钢板的生产及应用[J].材料应用2011;6:44.
    [23]李元亭,王业科.镀锌和退火两用热镀锌机组[J].世界钢铁2010;2:50.
    [24]杨春峰.冷轧带钢连续热镀锌连续退火兼容机组的开发[J].金属材料与冶金工程2008;36:62.
    [25]张启富,刘邦津.IF钢合金化镀锌板镀层相结构对其性能影响研究的新进展[J].钢铁2002;37:65~68.
    [26]郝晓东,程东妹,张启富.超轻汽车车体用钢热镀锌的研究及应用现状[J].中国冶金2006;16:5-8.
    [27]陈宇,张彦文,王立辉.超深冲合金化热镀锌钢DX53D+ZF的组织结构分析[J].武汉工程职业技术学院学报2009;21:1.
    [28]C.S.Lin M.Meshll, C.C.Chen. Microstructural Characterization of Galvanneal Coatings by Transmission Electron Microscopy[J]. ISIJ International 1995;35:494.
    [29]张理扬,李俊,左良.带钢连续热镀锌工艺技术的现状[J].轧钢2005;22:39.
    [30]许秀飞.钢带连续涂锌和退火疑难对策[M].北京:化学工业出版社,2010.
    [31]石焕荣,魏无际,丁毅,鲁钢.热镀锌和锌铝合金镀层的微观组织及盐雾腐蚀行为[J].材料保护2002;35:35.
    [32]张红,袁明生,温乃盟,程国平.合金化热镀锌镀层结构的电化学研究[J].腐蚀与防护2002;123:423.
    [33]Motaigne Jean-Michel汽车用合金化热镀锌钢板的最佳镀层微观结构[J].世界钢铁2001:19.
    [34]Moon-Hi Hong. Correlation between tile Microstructure of Galvannealed Coatings and the Defoliation during Press Forming[J]. ISIJ International 2005;45:896.
    [35]X.Hu G.Zou, S.J.Dong. Effects of Steel Coatings on Electrode Life in Resistance Spot Welding of Galvannealed Steel Sheets[J]. Materials Transactions 2010;51:2237.
    [36]吴光治,陈志远.带钢热镀锌及其保护气体的技术发展[J].四川冶金2010;32:25.
    [37]张理扬,李俊,左良.汽车用合金化热镀锌钢板的发展趋向[J].钢铁钒钛2004;25:15.
    [38]徐秀清,王顺兴.连续热镀锌工艺进展与展望[J][J].表面技术2007;36:71.
    [39]宋加.国内外宽带热镀锌生产发展现状及市场需求(一)[J].轧钢1997:48.
    [40]周艳文.热镀锌技术浅析及有关建议[J].鞍钢技术1998:9.
    [41]边军,刘相华,王国栋.我国热镀锌钢板生产现状及展望[J].钢铁研究2002.
    [42]刘忠诚,刘灿楼,俞钢强.冷轧带钢连续热镀锌立式还原退火炉研究开发[J].钢铁2006;41:77.
    [43]郝晓东,张启富.铁含量对高强度IF钢合金化镀层的抗粉化性能和耐腐蚀性能的影响[J].腐蚀与防护2008;29:736.
    [44]程东妹,郝晓东,俞钢强.合金化热镀锌钢板抗粉化性能的研究进展[J].腐蚀与防护2007;28:83.
    [45]郭太雄,金永清,张勇.热镀锌板镀层耐剥离性研究[J].钢铁钒钛2010;31:30.
    [46]S.I.Kim, J.U.Her,Y.C.Jang,Y.Lee. Experimental and finite element analysis for fracture of coating layer of galvannealed steel sheet[J]. Transactions. Nonferrous Metals Society China 2011;21:112.
    [47]徐春,林忠钦,夏年炯等.镀层粉化的自动识别与等级评价[J].中国机械工程2006;17:625.
    [48]Kyung-Keun Lee in-Hwan Lee, Cheul-Ro Lee, Haeng-Keun Ahn. In-situ observation in a scanning electron microscope on the exfoliation behavior of galvannealed Zn-Fe coating layers[J]. Surface & Coatings Technology 2007;201:6261.
    [49]刘俊亮,钱华,李俊.热镀锌钢板镀层相结构研究[J].表面技术2005;34:41.
    [50]茹铮Fe-Zn合金化镀层板的生产及其影响因素[J].轧钢1998:36.
    [51]C. Xhoffer H. Dillen, B. C. De Cooman. Quantitative phase analysis of galvannealed coatings by coulometric stripping[J]. JOURNAL OF APPLIED ELECTROCHEMISTRY 1999;29:209.
    [52]C.Xhoffer, H.Dillen,B.C.De Cooman. Quantitative phase analysis of galvannealed coatings by coulometric stripping[J]. JOURNAL OF APPLIED ELECTROCHEMISTRY 1999;29:209.
    [53]谭娟王俊,高海燕,孙宝德.高强钢合金化热镀锌研究进展[J].材料导报2008;22:66.
    [54]T. Kato, M.H.Hong,K.Nunome, K. Sasaki, K. Kuroda, H. Saka. Cross-sectional TEM observation of multilayer structure of a galvannealed steel[J]. Thin Solid Films 1998;319:132.
    [55]黄先明,刘立斌,黄国幸.热镀锌烘烤硬化钢板合金化退火过程中镀层表面合金相形成过程的研究[J].矿冶工程2007;27.
    [56]高仑.锌与锌合金及应用[M].北京:化学工业出版社,2011.
    [57]P.Schmid K.Uran, F.Macherey,M.Ebert. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel[J]. Anal Bioanal Chem 2009;393:1863-1870.
    [58]Paul Johann Gellings, Gerrit Gierman,Dick Koster. Systhesis and characterization of homogeneous intermetallic Fe-Zn compounds[J]. Z Metallkde 1980;71:70.
    [59]Mardera R. The metalurgy of zinc-coated steel[J]. Progress in Materials Science 2000;45:191-271.
    [60]余金山,张津徐,吴建生.合金化热镀锌镀层组织中r1相的有序结构[J].机械工程材料2006;30:20.
    [61]Hong M H, Saka H. Transmission electron microscopy of the iron-zincδ1 intermetallic phase[J][J]. Scripta Materialia 1997;36:1423.
    [62]Hong M H, Kato T, Saka H. Identification of the Fe-Zn intermetallic phases by TEM[J][J]. Tetsu-to-Hagane 1997;83:25.
    [63]Jordan Ce, Marder Ar. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450℃, Part 10.00 wt% AI-Zn baths[J]. Mater.Sci 1997;32:5593.
    [64]庞华,赵秉军,陈秀芳.合金化热浸镀锌板镀层组织结构及性能的研究[J].材料科学与工艺1997;5:64.
    [65]Brown P J. The structure of transition metal zinc alloy systems[J]. Acta Crystall 1962;15:608.
    [66]Yu Xuebin, Li Mangmang. Research on the lack of alloying in the galvannealed coating of automotive sheet steel[J]. Baosteel Technical Research 2008;2:17.
    [67]喻学斌,李茫茫.热镀锌汽车板镀层欠合金化研究[J].上海金属2008;30:59.
    [68]张理扬,左良,李俊.汽车用合金化热镀锌IF钢表面摩擦系数[J].特殊钢2005;26:9.
    [69]Rangarajan V, Giallourakis Nm,Matlock Dk, Krauss G. The effect of texture and microstructure on deformation of zinc coatings[J]. Mater Shap Technol 1989;6:217.
    [70]张理扬,李俊,张红,刘俊亮.合金化热镀锌镀层相结构的研究方法[J].物理测试2007;25:31.
    [71]Yamaguchi H, Hisamatsu Y. Reaction mechanism of the sheet galvanizing[J]. Trans ISIJ 1979; 19:649.
    [72]Link L. Growth Behavior and Corrosion Resistance of 5% AI-Zn Coating[J]. Corrosion Science 1993;49:759.
    [73]杨志刚.连续热浸镀锌锌锅参数的控制[J].昆钢科技2007;4:17.
    [74]张静,刘洪兵,姚连胜,齐长发.热轧热镀锌板锌层脱落原因分析[J].上海金属2007;29:189.
    [75]卢锦堂,车淳山,孔纲.硅对活性钢热镀锌组织的影响[J].材料科学与工程学报2005;23:822.
    [76]车淳山,卢锦堂,孔纲,许乔瑜,眭润舟.热镀锌钢Sebisty现象的研究[J].材料保护2005;38:28.
    [77]Porter F. Zinc Hanel BooK[M]. New York:Marcel Dekker,1991.
    [78]朱立.钢材热镀锌.北京:化学工业出版社,2006.
    [79]史正良,刘金龙.镀锌层附着性分析[J].2007;22:51-52.
    [80]陈新.热镀锌中主要合金元素的作用及机理研究[J].云南冶金2009;38:45.
    [81]孔纲,卢锦堂,陈锦虹.热镀锌浴中少量铝对镀层性能的影响[J][J].材料保护2002;35:17.
    [82]Syahbuddin P R, Munroe C S,Laksmi. Effects of 0.1 and 0.2wt% aluminium addition to zinc on the interdiffusion between zinc and iron at 400℃[J][J]. Materials Science and Engineering A 1998;251.
    [83]Hirose S Itoht, Makitam I. Defect structure of deformed Fe2AI5 interm etallic compound[J][J]. Intermetallic 2003;11:633.
    [84]Kato T Nunome K, Kaneko K. Form ation of the E-phase at an interface between an Fe substrate and a molten 0.2 mass% Al-Zn during galvannealing[J][J]. Acta Materialia 2000;48:2257.
    [85]周亚梅.影响IF钢合金化热镀锌钢板成型性和抗粉化性因素的研究[J].钢铁研究2001;5:49.
    [86]李正明,张伟,张德晶.热镀锌镀层合金最新研究进展和发展趋势[J].湖南有色金属2011;27:35.
    [87]马伟民,钱存富,赵秉军.汽车用热镀锌板Fe-AI合金层的研究[J].材料科学与工艺1997;5:50.
    [88]吕家舜,李锋,刘仁东.合金化热镀锌钢板的性能影响因素及研究进展[J].热加工工艺2010;39:158.
    [89]张海尉.热镀锌机组锌锅有效铝含量精确控制技术[J].宝钢技术2009;1:39.
    [90]张召恩,杨瑞枫,滕华湘.热镀锌板表面控制技术[J].首钢科技2009;1:1—4.
    [91]朱久发.国外汽车用热镀锌板生产技术综述[J].冶金信息导刊2007.
    [92]梁爱国,邓永存.锑元素对镀锌板镀层组织结构的影响[J].河北冶全2011;2:31.
    [93]R.Brisberge生产因素对镀锌板质量的影响[J].钢铁译文集2004;2:55.
    [94]Alpas a T Inagaki J. Effect of microstructure on fracture mechanisms in galvannealed coatings[J][J]. IS IJ International 2000;40:172.
    [95]A. Chakraborty R.K. Ray, and S. Sangal. Structural and Textural Characterization of the Substrate and Coated Layer in an Industrial Galvannealed Interstitial-Free Steel[J]. Metallurgical and Materials Transactions 2008;39A:2416.
    [96]A.Chakraborty D.Bhattacharjee, R.Pais and R.K.Ray. Effect of galvannealing power on the texture and powdering resistance of industrially produced galvannealed coating on interstitial free steel[J]. Scripta Materialia 2007;57:718.
    [97]张红,袁明生,胡凡,季思凯,程国平.合金化热镀锌微观组织对镀层抗粉化性能的影响[J].宝钢技术2002;3:44.
    [98]张理扬,李俊,左良.合金化热镀锌高强IF钢镀层分析[J].东北大学学报(自然科学版)2005;26:232.
    [99]土歧保.钢中S对合金化热镀锌钢板镀层界面结合强度的影响[J][J].世界钢铁2003;3:26.
    [100]Jordan Ce, Marder Ar. Morphology development in hot-dip gaivanneal coatings[J]. Met Mater Trans 1994;25a:937.
    [101]Jordan Ce, Goggins Km,Marder Ar. Inteffacial layer development in hot-dip galanneal coatings on interstitial free(IF)steel[J]. Met Mater Trans 1994;25a:2101.
    [102]Jean-Michel Motaigne汽车用合金化热镀锌钢板的最佳镀层微观结构[J].世界钢铁2001;6:22.
    [103]Sohei Iwamoto, Shojiro Ochiai, Hiroshi Okuda. Influence of the Crack Spacing in the Coating Layer on the Progress of Interfacial Debonding in Galvannealed Steel Pulled in Tension[J]. ISIJ International 2009;49:432.
    [104]Zhang Yan-Wen Wang Ji-Hui, Chen Yu. The Coating Fragile Phase Thickness Measure methods of Galvannealed Steel Sheet[J]. Adveranced Materials Research 2011;239-242:1707.
    [105]徐春.汽车用合金化热镀锌板镀层剥离行为的分析[J].材料保护2009;42:15.
    [106]Zhang Yan-Wen, Wang Ji-Hui, Chen Yu. Galvanneal Coating of Galvannealed Steel Sheet Fracture Research by Dynamic Tensility[J]. Adveranced Materials Research 2011;152-153:623.
    [107]Jun-Ichi Inagaki.Michitaka Sakurai, Toyofumi Watanabe. Alloying Reactions in Hot Dip Galvanizing and Galvannealing Processes[J]. ISIJ International 1995;35:1388-1393.
    [108]A.T.Alpas, J.Inagaki. Effect of Microstructure on Fracture Mechanisms in Galvannealed Coatings[J]. ISIJ International 2000;40:180.
    [109]余金山.IF钢合金化热镀锌镀层显微组织及界面特性的研究.vol.D.上海:上海交通大学,2006.p.69.
    [110]A.Chattopadhay工艺参数和镀层显微组织对热浸镀锌板抗粉化性能的影响[J].钢铁译文集2009;2:62.
    [111]金鑫焱,刘听,王利Ti-IF钢基板晶粒对合金化热镀锌镀层的影响[J].宝钢技术2011;2:47~53.
    [112]曲家惠,金浩,王福等.镁对IF钢热镀锌镀层的组织和性能的影响[J].腐蚀科学与防护技术2008;20:8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700