全氢罩式炉退火工艺设备的仿真与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全氢炉是一种使用很广泛的用于带钢冷轧后退火处理的工业炉,自从我国从二十世纪五十年代引进制造第一台冷轧钢卷罩式炉以来,罩式炉在国内经历了由引进消化国外产品,变成现在的自主设计制造生产。但是全氢炉在国内的设计应用以及自行改造等方面仍然存在一些制约性的难题:带钢退火质量不好,容易出现钢卷的粘结和氧化色现象,钢卷的全氢炉退火工艺曲线目前大部分只能依靠生产经验来制定,没有一个科学合理的制定与评价方法。针对这些问题,本文以全氢炉为对象,对全氢炉退火工艺的仿真与优化进行了研究。
     本文首先对国内外全氢炉的发展过程进行了综述,并对国内外全氢炉在退火工艺曲线的制定方法、退火过程中出现的问题等各方面的研究工作进行了分析和评价,为本文的后续研究工作奠定了基础,本文从以下方面进行了研究:
     首先对全氢炉的结构进行了介绍,并分析了全氢炉的工作流程,以及全氢炉的使用中经常出现的内罩破损等现象,然后使用计算机数值模拟的方法对全氢炉内加热过程的燃烧空间进行了数值仿真,数值仿真的结果显示,常见全氢炉加热罩中,燃烧器分两层均匀布置在加热罩下部,这使全氢炉燃烧空间下部对应高度位置出现局部高温区,这使得内罩温度分布不均匀,下部高温区对应的位置容易损坏,如果将燃烧器分为多排,均匀分散布置在加热罩上,则可以减小加热空间内不同高度位置的温差,使温度分布更加均匀,有利于内罩向钢卷的传热。
     本文接着对全氢炉工作过程进行了能量耦合分析,然后根据其工作过程的特点分别建立了全氢炉炉气传热模型、全氢炉加热罩传热模型、全氢炉内罩传热模型、全氢炉保护性氢气传热模型与流动模型、全氢炉冷却罩传热模型和全氢炉钢卷温度计算模型。接着本文根据建立的全氢炉退火过程中的各个数学模型,设计了全氢炉数字化仿真平台,该仿真平台可根据已有的钢卷退火过程各阶段的时间计算得到钢卷在退火过程中的温度场变化,或者根据钢卷退火的温度需求计算得到钢卷退火过程各阶段的时长。本文用现场试验数据对程序计算的结果进行了检验,结果表明,该全氢炉数字化仿真平台计算得到的结果是可靠合理的。
     针对目前在冷轧厂广泛存在的全氢炉退火后钢卷粘结与氧化色缺陷,本文对其产生的原因分别进行了分析和总结,并结合在某冷轧厂的现场插片试验数据进行了分析,结果表明,钢卷退火工艺曲线设置不合理,钢卷退火过程中热应力过大是造成钢卷粘结的主要原因,钢卷出炉过早是引起氧化色的主要原因。
     在本文最后,将蓄热式燃烧技术应用到全氢炉上,设计了一种新型的全氢炉加热罩。将全氢炉上原有的燃烧器系统、热管式换热器系统更改为蓄热式燃烧器,分散布置在加热罩上。该新型全氢炉加热罩的优点是节省燃料,燃烧室温度均匀,钢卷退火质量好,内罩寿命长。
The full-hydrogen annealer furnace is a widely used industrial furnace for steel stripannealing after cold rolling. Since the first rolled scroll bell furnace was introduced andmanufactured in the1950s, bell furnace in our country has changed from introducing andassimilate foreign products to independent design and manufacture. But some restrictiveproblem still exists in design and application as well as improvement of full-hydrogenannealer furnace: pool annealing quality, prone to appear bonding and oxidation colorphenomenon of the steel coil, the full-hydrogen annealer furnace annealing curve of thesteel coil can only rely on production experience to formulate at present, without a scientificand reasonable formulation and evaluation method. To solve these problems, studies areconducted on simulation and optimization of annealing process of full-hydrogen bellfurnace.
     The development of the full-hydrogen bell furnace domestic and overseas was reviewed inthis paper, and various aspects of the research work are analyzed and assessed, such asannealing process curve formulation method, problems occur in the annealing process andso on, which laid the foundation for the subsequent research. Then, studies are conductedfrom the following aspects:
     First the structure of the full-hydrogen annealer furnace is introduced and the workingprocess of the full-hydrogen annealer furnace and phenomenons often appear during usagesuch as inner cover breakage is analysised. Then the computer numerical calculationmethod was used to simulate the combustion space of the heating process of thefull-hydrogen annealer furnace. Numerical simulation results show that the existingcommon full-hydrogen annealer furnace burner is divided into two layer uniformarrangement in the burner lower, this causes full-hydrogen annealer furnace combustionspace corresponding lower appear local high temperature region, which makes the innercover uneven distribution of temperature, easy to cause damage. If the burner is divided intomultiple rows of evenly dispersed layout in heating hood, then can reduce the temperaturedifference in different height position of the furnace, make temperature distribution moreuniform, which is good for the inner cover to transfer heat to steel coil.
     Then the energy coupling analysis has been made on the working process of thefull-hydrogen annealer furnace, and temperature calculation model, heating covertemperature calculation model, cover temperature calculation model, protective hydrogen temperature calculation model, cooling cover temperature calculation model and steel rolltemperature calculation model of the full-hydrogen annealer furnace are establishedaccording to the characteristics of its working process. Then according to all kinds of theestablished full-hydrogen annealer furnace mathematical model of annealing process,designed annealing curve formulate program, this program can be realized on the basis ofthe existing steel coil annealing process each phase time calculation for steel coil in theprocess of annealing temperature, or according to the steel coil annealing temperaturecalculated demand of steel coils annealing process of each stage duration. This article testedthe result of the computation program with the field test data, and the results indicate that,this full-hydrogen annealer furnace annealing curve formulate program for the calculationof the result is reliable and reasonable.
     For the steel roll bonding and oxidation color defect that is now widely existing in thefull-hydrogen annealer furnace, the reasons were analyzed and summarized in this paper,and analyzed with the test data got in a insert experiment, indicate that, steel coil annealingprocess curve set is not reasonable, and steel coil annealing process of thermal stress is themain reason cause steel roll bonding. And steel roll are premature is the main reason causeoxidation color.
     In the end of this article, regenerative cross combustion technology is applied tofull-hydrogen annealer furnace, a new type of full-hydrogen annealer furnace heating coveris designed. The original burner system, heat pipe heat exchanger system of thefull-hydrogen annealer furnace is changed to regenerative burner, scattered layout in heatinghood. The advantages of the new full-hydrogen annealer furnace heating cover are save fuel,combustion chamber temperature uniformity, steel coil annealing are of good quality andinner covers have long life.
引文
[1]殷瑞钰.中国钢铁业发展与评估.金属学报,2002,38(6):561-567.
    [2] Han J T. Steel Industry Technology Roadmap. American Iron and Steel Institute.Beijing: Science Press,2000.
    [3]高洪成,娄成武.“十二五”期间中国钢铁工业发展的战略思考与路径选择.中国软科学,2012,(6):6-14.
    [4]谭一宁.冷轧薄板生产计划与调度系统的研究与应用:[博士学位论文].大连:大连理工大学,2006.
    [5]傅作宝.冷轧薄钢板生产.北京:冶金工业出版社,2006.
    [6]刘国权,胡梦怡.工程材料学——原理与应用.北京:北京科技大学校内教材,1993.
    [7] HPH bell-type annealing plants for recrystallizing and bright annealing steel coils in ahydrogen atmosphere. LOI ESSEN Industrie of enanlagen.1996.
    [8]范玉飞.连续退火炉加热段过程带温模型建立:[硕士学位论文].上海:上海交通大学,2006.
    [9] Schriefer J. Batch vs. continuous annealing. Iron Age New Steel,1996,12(5):60-64.
    [10] Mcmanus G J. Batch annealing stages comeback, but continuous annealing gainsground too. Iron and Steel Engineer,1997,74(9),58-59.
    [11] Albert R.Perrin, Brian F.Johnston. Batch anneal modeling study. Iron and SteelEngineer,1983,60(6):39-45.
    [12] Helio Rodrigues, Guilherme Klaus Pfeilsticker, Alberto da Silva Lago. The highconvection and100%hydrogen bell annealer at COSIPA-one year of operation.EBNER-industrieofenbau,2000.
    [13] Ahmad Saboonchi, Saeid Hassanpour. Heat transfer analysis of hot-rolled coils inmulti-stack storing. Journal of Materials Processing Technology,2007,182:101-106.
    [14]孙蓟泉.冷轧钢卷粘结成因及其消除措施的研究:[博士学位论文].哈尔滨:燕山大学,2000.
    [15]赵兰萍,徐烈.固体界面间接触导热的分形模型.同济大学学报,2003,31(3):296-299.
    [16] Herlbert Lochner. The HICON/H2bell annealer of1989. Iron and Steel Engineer,1990.67(3):43-45.
    [17] Karen Boiko. Hydrogen batch annealing on-line at USS Irvin Plant. Heat Treating,1989,10:24-27.
    [18]陈光,张丽薇,戴学成,郑炜.宝钢HPH全氢罩式退火炉钢卷加热时间的研究.冶金能源.24(9):24-28.
    [19]杨连宏.罩式炉对流板.中国,发明专利,200710100357.7,2008.
    [20]孙晨,姜泽毅,刘志成,张欣欣,刘华飞,董刚.全氢罩式炉钢卷退火过程在线数值仿真.工业加热.2007,36(2):22-24.
    [21]胡洪旭.罩式退火炉用对流板.中国,实用新型专利, CN200820011840.8.
    [22]张西合,陈光,杨进.东网格技术在罩式炉流场模拟中的应用.工业加热.2008,37(2):37-40.
    [23]鲁逸凡,姜泽毅,张欣欣,刘华飞.全氢罩式退火炉内罩温度数值分析.工业加热.2008,37(2):24-26.
    [24]蒋岳峰.罩式炉堆垛用平式对流板.中国,实用新型专利, CN200520040523.5.
    [25]张丽微,陈光.基于Matlab环境的全氢罩式炉退火过程模拟研究.冶金能源,2008,27(4):17-19.
    [26] Ahmad Saboonchi. New heating schedule in hydrogen annealing furnace based onprocess simulation for less energy consumption, Energy Conversion and Mnagement,2008,49:3211-3216.
    [27] Yi Zuo, Lin Lin. A Study of Heat Transfer in High-Performance Hydrogen Bell-TypeAnnealing Furnace. Heat Transfer—Asian Research,2001,30(8):615-623.
    [28] Lixin Tang. Scheduling of a single crane in batch annealing process, Computers&Operations Research.2009,36:2853-2865.
    [29]朱小兵.炉台紧急吹扫故障判断方法.工业炉,2003,25(3):19-21.
    [30] Sungdeuk Moon, Andrew N. Hrymak. Scheduling of the batch annealing process–deterministic case. Computers and Chemical Engineering,1999,23:1193-1208.
    [31] Quanli Liu, Wei Wang, Hongren Zhan, Zhigang Wang, Ruiguo Liu. Optimalscheduling method for a bell-type batch annealing shop and its application.
    [32] Sungdeuk Moon, Andrew N. Hrymak. Scheduling of the batch annealing process–deterministic case. Computers and Chemical Engineering,1999,23:1193-1208.
    [33]艾厚庄,徐泽宁,孙岩.基于频谱分析的罩式炉风机故障诊断.冶金设备,2006,2(1):72-75.
    [34]吴峥,杨福雁.多晶莫来石纤维复合制品真空成型块在全氢罩式炉上的应用.工业炉.1996,4:26-27.
    [35] Power D. High performance hydrogen annealing technology. Iron Steel Engineer.1998,43(9):369-373.
    [36]孙大山,赵荣国,褚烈青,耿富.冷轧罩式热处理炉改用波纹形保护罩.鞍钢技术.1992,1:16-19.
    [37]张海涛.全氢罩式退火炉不同型式内罩工作性能的研究:[硕士学位论文].北京:北京科技大学,2005.
    [38]黄天国.长钢400/390型罩式炉热工分析与工艺优化:[硕士学位论文].重庆:重庆大学,2004.
    [39]工业炉通讯编辑部.英国新型罩式炉简介.1979,1:47-53.
    [40]李钧. HPH罩式炉的特点及在不锈钢生产中的应用.工业加热.2007,36(7):59-60.
    [41]潘景新.罩式炉在机械行业中的应用与推广.第八届全国工业炉学术会议.2011.
    [42]方珺,杨进,郑剑辉,冀勇.强对流循环全氢罩式退火炉的国产化实践.工业炉,2010,32(3):10-13.
    [43] Thekdi AC and Womer JL. Improvements with an advanced cooling cover in batchcoil annealing. Iron and Steel Engineer.1994,71(9):27-31.
    [44]崔嘉华.强对流全氢罩式退火炉.冶金设备.1994,(2):34-36.
    [45]田士海.新型罩式退火技术.北戴河,2007年河北省轧钢技术与学术年会论文集.
    [46]王国栋,刘相华,王军生.冷连轧生产工艺的进展.轧钢.2003,20(1):37-41.
    [47]史海波,马玉林,刘爱国.冶金冷轧薄板企业生产计划调度体系结构及方法研究.信息与控制.2004,33(1):31-35.
    [48]李勇.介绍计算流体力学通用软件--Fluent.水动力学研究与进展.2001,16(2):255-259.
    [49]姚征,陈康明. CFD通用软件综述.上海理工大学学报.2002,24(2):137-144.
    [50] Fluent帮助文档.
    [51]陈庆光,徐忠,张永建. RNG k-ε在工程湍流数值计算中的应用.力学季刊.23(1):2003.
    [52] D. Choudhury. Introduction to the Renormalization Group Method and TurbulenceModeling. Fluent Inc. Technical Memorandum TM-107,1993.
    [53] A. J. Chorin. Numerical solution of navier-stokes equations. Mathematics ofComputation.1968,22:745-762.
    [54]李嘉.波形板汽水分离器的理论和试验研究:[博士学位论文].武汉:华中科技大学,2007.
    [55]王玉君,张欣,李从心.耦合CFD和详细化学动力学的燃烧模拟及其并行计算的实现.燃烧科学与技术.2008,14(5):474-479.
    [56]王应时,周力行.燃烧过程数值计算.北京:科学出版社,1986.
    [57] Lochner H, Schweiger G. Annealing cold rolled strip in HICON/H2bell annealers.Iron and Steel Engineer.1988,65(4):47-51.
    [58]徐兆康.工业炉设计基础.上海:上海交通大学出版社.2004.
    [59] Chamber B, Lee T Y T. A numerical study of local and average natural convectionNusselt numbers for Simulataneously convection above and below a uniformlyheated horizontal thin plane. ASME J Heat Transfer,1997,119:102-108.
    [60]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    [61]任泽霈.对流换热.北京:高等教育出版社出版社,1998.
    [62] Yang S M, Zhang Z Z. An experimental study of natural convection heat transferfrom a horizontal cylinder in high Rayleigh number laminar and turbulent regions.Hewitt G F. ed. Processing of the10th international heat transfer conference.Brighton,1994,7:185-189.
    [63] Yang S M, Jiang C J. criterion of transition to transitional correlation of naturalconvection heat transfer from horizontal cylinder in air. In: Wang B X. ed. Heattransfer science and technology. Beijing: Higher education press,1996.181-186.
    [64]陶文铨,林汉涛,李长发,等.传热学的研究与进展.北京:高等教育出版社,1995.
    [65] Reo T K, Barth G J, Miller J R. Computer model prediction of heating,soaking andcooling time in batch annealing. Iron and Steel Engineer,1983,60(9):22-33.
    [66] Heisler M P. Temperature charts for conduction and constant temperature heating.Trans ASME,1947,69(1):227-236.
    [67] Wolfgang P, Rudulf J, Geofge K. Heat transport during annealing of coils in abell-tpye furnace with hydrogen as protecting gas. Stahl u Eisen,1998,12(108):581-585.
    [68]危日光,刘伟,朱光明等.冷轧钢卷在罩式炉中退火过程的数值模拟.济南,中国工程热物理学会传热传质学术会议论文集,2000.
    [69]王家楣,张志宏,马乾初.流体力学.大连:大连海事大学出版社,2010.
    [70]王承尧.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000.
    [71]刘荣杰.化学设计.北京:中国石化出版社,2010.
    [72]王能超.数值算法设计.武汉:华中理工大学出版社,1988.
    [73] Xin R C. Analytical solution for transient heat conduction in two semi-infinite bodiesin contact. ASME J Heat Transfer,1994,116(1):224-228.
    [74] Kang H J. Tao W Q. Discussion on the network method for calculating radiantinterchange within an enclosure. J Thermal Science,1994,3(2):130-135.
    [75] Oppenheim A K. Radiation analysis by network method. Trans ASME,1956,65(3):725-735.
    [76] Bruno Chatelsin, Vincent Leroy. Gas-metal reactions during batch annealing ofcold-rolled steels. Steel Research,1986,57(1):13-17.
    [77] S. Yanagi, S. Hattori. Analysis model for deformation of coil of thin strip undercoiling process. J.JSTP,1998,39(3):42-46.
    [78] V.L. Mazur, V.V> Kostyakov. Efficient schedules for forced rapid cooling of coils ofhot rolled strip. Steel USSR,1989,19:162-165.
    [79] Peter Zylla, Messer Griesheim, Krefeld.Hydro-Clean process for controlling the useof hydrogen in batch annealing furnaces. MPT International,1996,3:80-84.
    [80] Park S J, Hong B H, Baik S C et al.Finite Element Analysis of Hot Rolled CoilCooling. ISIJ International,1998,38(11):1262-1269.
    [81]吴清松.计算热物理引论.合肥:中国科学技术大学出版社,2009.
    [82]何光辉,董海云,魏曙光.数值计算.重庆:重庆大学出版社,2009.
    [83]彭玉成.有限元方法及其应用.西安:西北工业大学,2008.
    [84]石东洋.数值计算方法,郑州:郑州大学出版社,2007.
    [85]李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社,2000.
    [86] Kakac S, Yener Y. Heat Conduction.2nd ed. Washington: Hemisphere PublishingCorporation,1986.
    [87] Carslaw H S, Jaeger J C. Conduction of heat in solids.2nd ed. Oxford: ClarendonPress,1986.
    [88]奥奇西克M. N.热传导.北京:高等教育出版社,1984.
    [89]许亮.绕组内部非稳态温度场建模及其应用:[硕士学位论文].武汉理工大学,2009.
    [90]崔永红. Visual C#.NET程序设计.北京:清华大学出版社,2011.
    [91]贾玲. XML技术应用.北京:清华大学出版社,2007.
    [92]谢建强,张杰,王聪,扈非.冷轧带钢粘结原因分析与解决.冶金设备,2006,(2):75-61.
    [93]邓菡.冷轧钢卷粘结缺陷产生原因及预防措施.轧钢,2006,23(4):61-63.
    [94]刘文. CSP冷轧基板罩式炉退火粘结研究.甘肃冶金,2010,32(5):10-11.
    [95]金梨.硅钢卷粘结成因及消除对策浅析.武钢技术,2008,46(3):30-33.
    [96]张选峰,关淑巧,张文亮.冷轧板退火过程中的粘结问题及解决措施.轧钢,2010,27(3):65-67.
    [97]刘丽.冷轧带钢表面氧化缺陷的控制实践.金属世界,2010,(6):45-47.
    [98]张勇. LOI退火炉退火过程中氧化色缺陷的形成与控制.2008年(第十届)中国科协年会,郑州.
    [99] J. R. Cornforth. Combustion Engineering and Gas Utilization.3rd edition, New York:E&FN Spon,1992.
    [100]王博.陶瓷蜂窝蓄热体传热过程数学模型的研究:[硕士学位论文].哈尔滨:东北大学,2006.
    [101] Tsuji H, Gupta A K, Hasegawa T, et al. High Temperature Air Combustion: fromenergy conservation to pollution reduction, Boca Raton F L: CRC Press,2003.
    [102]侯长连,胡和平,董伟明,唐献红,张军,李领.高效蓄热式工业炉的开发与应用.钢铁,2002,37(1):65-68
    [103] Edward W. Grandmaison, Ibrahim Yimer, Henry A. Becker, et al.. TheStrong-Jet/Weak-Jet Problem and Aerodynamic Modeling of the CGRI Burner.Combustion and flame.1998,114:381-396.
    [104]武骎明,段玲玲,李平.采用高温空气蓄热烧嘴改造轧钢加热炉.能源技术,2002,23(6):255-258.
    [105]黄发明.混合双预热蓄热技术在加热炉上的应用.南方金属,2007,(1):48-50.
    [106]赵博宁.蓄热式燃烧技术在洛铜熔铝炉改造中的应用.洁净煤技术,2004,10(2):34-36.
    [107]方会斌.天然气在蓄热式锻造加热炉上的应用及模拟:[硕士学位论文].西安:西北工业大学,2007.
    [108]张喜来,靳世平,杨益,黄素逸.蓄热式燃烧技术在梭式窑上的工业应用.中国陶瓷,2012,48(6):63-66.
    [109]林林.全氢罩式退火炉退火热过程的研究:[博士学位论文].北京:北京科技大学,2003.
    [110]李卫杰.全氢炉退火过程在线优化控制及退火性能评估诊断策略研究[博士学位论文].武汉:华中科技大学,2009.
    [111]欧阳德刚,张奇光,周明石等.罩式炉内保护气体流场测试与分析.武钢技术,1998,5:16-20.
    [112]祁卫东.HPH罩式退火炉钢卷退火工艺研究:[硕士学位论文].沈阳:东北大学,2004.
    [113]刘澄.导热理论基础.北京:中国铁道出版社,1988.
    [114] Wendt P, Maschler F, Witerler P. Modem technology for cooling during coverannealing using the hydrogen. Stal’(Russia),2001, No(8):96-101.
    [115] Rovito A J, Aiello W M, Voss G F. Batch anneer coil cold spot temperature predictionusing on-line modeling at LTV. Iron and Steel Engineer,1991,9(68):31-37.
    [116] Heisler M P. Temperature charts for conduction and constant temperature heating.Trans ASME,1947,69(1):227-236.
    [117] Siegel R, Howell J R. Thermal radiation heat transfer. New York: John Wiley&Sons,1996.
    [118] Holman J P. Heat transfer. New York: McGraw-Hill Company,1997.
    [119]殷晓静, Degiovanni A.接触热阻的三维数学模型的研究(一):数学模型.北京科技大学学报,1996,18(4):384-386.
    [120]殷晓静, Degiovanni A.接触热阻的三维数学模型的研究(二):参数影响分析.北京科技大学学报,1996,18(5):464-467.
    [121]陈光,汪国宏,江青阳,张丽徽.全氢罩式炉的发展与现状.安徽工业大学学报.2007,24(1):79-83.
    [122] Meyer U. Theoretical fundamentals for the development of a mathematical model ofthe tight-coil bell type furnace. Steel Res,1974:45(3):207-212.
    [123] Kondili, E, Pantelides, C C. A general algorithm for scheduling batch operations.Computers&Chemical Engineering,1993,211(17):79-86.
    [124] Wenfei Wu, Fan Yu, Xinxin Zhang et al. Mathematical Model and Its Application ofRadial Effective Thermal Conductivity for Coil Heat Transfer in HPH Furnace.Journal of Thermal Science,2000,11(2):678-683.
    [125] Peter Seemann, Heribert Lochner. Possibilities technology and know-how forannealing steel strip. EBNER HICON/H2bell annealers,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700