FT基因转化白杨杂种促进其早期开花的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是世界范围内广泛栽培的林业和能源农业首选树种,是我国重要的短周期工业用材林树种,新品种杨树的选育一直是林木育种学者研究的热点。但杨树有较长的幼年期,许多性状在成年期才才能表现出来,这在很大程度上限制了该树种遗传育种及相关研究工作进展。因此,促进杨树提早开花,缩短其幼年期,对加速杨树遗传改良周期具有积极作用。近年来,许多与植物花发育相关基因的克隆与在部分植物中的转化成功,为人们通过转基因技术来改造植物花期奠定了基础。FT(Flowering Locus T)是在拟南芥中克隆得到的促花基因,FT基因的表达产物就是人们长期寻找的“成花素”,转FT基因的植物大都能表现明显的早花性。
     本论文在克隆毛果杨(Populus trichocarpa)中FT的同源基因FT1和FT2,以及黄豆热激启动子(HSP)控制下的FT基因植物表达载体PHSP::FT基础上,构建了热激启动子控制下的FT1和FT2基因植物表达载体PHSP::FT1和PHSP::FT2;建立了白杨杂种无性系717-1B4(雌株,P. tremula x P. alba ,以下简称717)和353-53(雄株,P. tremula x P. tremuloides,以下简称353)的高效遗传转化受体系统;采用农杆菌克隆AGL1介导的叶盘转化方法,优化了FT基因转化2种杨树无性系的遗传转化条件,获得了191个转FT基因的PCR阳性植株;并利用热激诱导处理成功诱导了转基因植株早期开花,筛选了可用于2杨树无性系的FT基因,探讨了影响FT基因热激诱导表达促进杨树开花的各种因素,阐述了热激诱导条件下产生的花的发育过程,并对FT促花信号嫁接转移进行了初探。
     论文主要取得了如下结果。
     1、构建了杨树FT1和FT2基因热激启动子控制下的植物表达载体PHSP::FT1和PHSP::FT2。
     2、通过系统试验,研究了生长素NAA、细胞分裂素6-BA和TDZ、叶片刻伤方式、接种方式、培养条件等对717、353白杨杂种无性系离体叶片再生的影响。同时研究了两无性系离体叶片再生和不定芽生根的卡那霉素临界浓度。结果表明,同时适合717、353白杨杂种无性系离体叶片再生的培养基组成为MS+0.10 mg/L NAA+ 0.5 mg/L 6-BA+ 0.05 mg/L TDZ。在该培养基中,适合两无性系叶片再生的处理是:叶片用打孔器打成4mm的叶盘、叶正面接触培养基、5d暗培养后每天16h光照培养。此离体再生系统下717和353无性系的离体叶片不定芽再生频率分别为85.6%和77.5%,叶片分化的平均不定芽数分别为12.4各8.6个。适合717、353杨树无性系离体叶片不定芽再生的卡那霉素敏感临界浓度为100 mg/L,不定芽生根卡纳霉素敏感临界浓度为25 mg/L。
     3、研究了影响PHSP::FT基因转化717无性系的各种因素,优化了转化条件,并用该优化条件,实现了PHSP::FT1和PHSP::FT2基因对717无性系,以及三种基因载体对353无性系的转化,获得了转PHSP::FT、PHSP::FT1、PHSP::FT2三种基因的717、353无性系PCR阳性植株191个。结果表明,短时间的预培养有利于提高PHSP::FT基因对717无性系的转化率;PHSP::FT基因载体转化717无性系,需要较高的AGL1菌液浓度、较长时间的AGL1浸染、以及较短的共培养时间;乙酰丁香酮(AS)对PHSP::FT基因转化717无性性转化率无明显影响;优化的AGL1介导的FT基因转化717无性系的条件是:预培养3d、菌液活化至OD600=0.5-0.6、浸染60min、共培养2d、不添加AS,在该条件下转化率为31.7%,优化的转化条件适用于其他FT基因对353无性系的转化。
     4、筛选了能在杨树无性系717和353中顺利表达促进其开花的FT基因,探讨了影响FT基因热激诱导表达的各种因素,得到了能顺利诱导FT基因表达的热激条件,并对转FT基因的杨树产生的花发育过程进行了详细观察。
     结果表明,热激启动子控制的FT基因在转基因植株中不存在基因的泄漏表达情况;不同来源的FT基因诱导杨树早期开花效果差异较大,来自拟南芥的FT基因促花效果优于来自毛果杨的FT1和FT2基因,任何基因对353无性系的促进开花效果优于717无性系;影响FT基因热激诱导表达的主要因素有:受体基因型、同一基因型的不同转基因植株、热激植株的年龄与高度、热激处理的条件等;FT基因与受体基因型之间互作明显,开花最好的3个基因与受体基因型组合是353/PHSP::FT、717/PHSP::FT和353/PHSP:: FT1;FT基因的热激诱导效果在转基因克隆间和克隆内均存在差异,且这种差异会随着热激材料的年龄与大小而发生变化。
     热激材料的高度与开花率成正比关系,高的植株比低的更倾向于开花;且不同的基因-受体组合,对热激材料高度的要求不一样,353/PHSP:: FT (或FT1)组合要求热激植株的高度大于20cm,717 /PHSP::FT组合要求热激植株高度大于30cm;热激材料的年龄主要影响转基因植株初始花发生时间,对基因-受体组合的终开花率影响不显著,但影响同一基因不同克隆的开花率。
     每天的热激时间对转基因克隆开花率没有显著影响,热激持续的时间对花序的正常发育影响较大,较长时间的持续热激,可以抑制花序回复营养生长,增加正常花序数目;较高的热激温度(40℃)可以提前转基因植株的初始花发生时间,促进FT基因表达,增加花序数目,抑制花序回复营养生长。
     热激时较低的环境温度有利于FT基因的热激诱导表达;热激后,FT基因诱导的花芽均产生于热激后枝条顶端延伸的新生枝条叶腋处,FT基因不能促使热激前已有的叶芽转变成花芽;花芽分化的花器官存在广泛变异,花器官的类型取决于其花芽在枝条上的位置或花芽产生的时间。热激诱导产生的花芽只有20-40%最终分化成花序,5%的花序、花序上30%的花朵有花药散粉。花序中的两性花较单朵花中的两性花发育正常。
     5、劈接的转基因植株未能引起非转基因接穗开花,但转基因砧木同对照相比开花率下降,说明嫁接导致转基因砧木中FT信号部分转移。
Poplar(Genus Populus)is a preferred tree species in forestry and engery agriculture and has planted worldwide, is a major timber wood species for short peroiod industry in China, also is a hot interesting sopts for tree breeders to select and cultivate new species . Poplar has a long juvenile period , whereas many traits only express when adult , which resulting in limitation of progress in genetics and breeding and associated researches around this species. Therefore, stimulate precocious flowering and shorten breeding period will play a positive role in poplar genetic improvement. In recent years, successful of cloning and transfermation of many genes associated with flower development, laying foundation for plant flowering stage modification through transgenic technology. FT(Flowering Locus T)is a floral stimulating gene isolated from Arabidopsis thaliana, the expression product of FT gene is the“florigen”that researchers seeked over a long period. Researchs about FT transgenic plants mostly showed early flowering ability. In this paper , based on sucessfully cloning of Arabodipsis FT gene homologs FT1 and
     FT2 from Populus trichocarpa , and construct of PHSP::FT driven by a heat shock promoter(HSP)from Soybean, we created constructs of PHSP::FT1 and PHSP::FT2 of FT1 and FT2 genes driven by the same heat shock promoter, developed effencient transfation system on hybird aspens either from Section Leuce including 717-1B4( female ,Populus. tremula x P. alba, following Abbreviated as 717)or 353-53(male ,P. tremula x P. tremuloides,following Abbreviated as 353). 191 PCR positive clones of FT transgenes were obtained via leaf disc incubated in agrobacterium strain AGL1, and optimization of transform conditions for the 3 FT genes on 2 poplar clones. Early flowering were successfully induced on FT transgenes after heat induction system , best flowering FT genes were selected for 2 poplar clones, all factors affect FT gene expression and transgenes flowering capacity were discussed , flower development process under heat induction treatment were set forth, and finally graft-transmissible of FT induced flowering signal was preliminary explored. Results obtained from our experiments as following:
     1.Created constructs of PHSP::FT1 and PHSP::FT2 driven by a heat shock promoter of FT1 and FT2 genes in poplar.
     2.Factors e.g. auxin NAA, cytokinin 6-BA and TDZ, cutting styles of leaf explants, inoculation style, and culture situation etc, affect on shoots regeneration on hybrid aspen clones 717 and 353 were studied through systematic tests. Also threshold sensitive concentration of canamycin was tested in shoot regeneration and rooting in 2 poplar clones. Results showed appropriate culture medium for shoots regeneration on leaf explants is MS containing 0.10 mg/L NAA, 0.5 mg/L 6-BA and 0.05 mg/L TDZ for both poplar clones 717 and 353. The likely treatments for shoot regeneration were 4mm leaf discs punched form leaf explants, leaf adaxial touch medium, and 16 hr lights/d after initial 2 days in darkness in the above medium composition. Under the above regeneration system, shoots regeneration frequency on leaf explants were 85.6% and 77.5%, with average number of shoots per explant were 12.4 and 8.6 on poplar clones 717 and 353, respectively. The threshold sensitive concentration of canamycin was 100 mg/L in shoot regeneration on leaf explants, and 25 mg/L in shoots rooting for both poplar clones 717 and 353.
     3.Factors affect PHSP::FT transformation on clone 717 was tested and optimized, successfully transformation of PHSP::FT1 and PHSP::FT2 on 717, and three FT constructs transformation on clone 353 via optimized system were achived, 191 PCR positive clones obtained from PHSP::FT , PHSP::FT1 and PHSP::FT2 transgenes on clones 717 and 353. Results indicated short time pre-culture enhanced transfornmation ratio on clone 717, high concentration of AGL1, long time of transformation in AGL1 solution, relative short time incubatation were essential for PHSP::FT transformation on clone 717. AS (Acetosyringone) has less effect on transformation frequency of PHSP::FT construct on clone 717. Optimized transformation condition for FT gene on clone 717 via AGL1 is, pre-culture 3 days, agrobacterium activation of OD600=0.5-0.6, transformation 60 minutes, incubation 2 days in darkness, no AS attendance, would reach a transformation frequency of 31.7%. In additional, the optimized system also appropriate for other FT constructs on clone717 and the 3 FT constructs on clone 353.
     4.FT gene that could express smoothly and induced transgenes flowering after heat induction on both poplar clones 717 and 353 was selected, Factors that affect FT gene expression following heat induction were discussed, appropriate heat induction situations in smooth induction express of FT gene were found, and flower development process on FT transgenic poplar were observed in detail.
     Heat induction results showed, no leaky expression of the FT genes under HSP promoter was observed, great diversity among early flowering induction in various FT gene origins, FT gene has better flowering ability than genes FT1 and FT2 from P. Trichocarpa, and each FT gene prefer flowering in clone 353 to clone 717. Factors affect FT gene expression following heat induction including, receptor genotype, clones within the same genotype, ages and height of transgenes when heat induction started, heat induction treatments etc. Interaction of FT gene and receptor genotype was obvious, the 3 best flowering combinations of FT genes and receptor genotype are 353/PHSP:: FT, 717 /PHSP::FT and 353/ PHSP:: FT1;FT gene expression following heat induction was varied within clones and ramets inside clone, and such variation changes associated with ages and height of transgenes when heat induction began. .
     Flowering frequency is positive related to plant height, larger plants appeared to flower more readily than did smaller plants, variable height were required based on different gene/clone combination, plants must higher than 20cm in 353/PHSP:: FT(or FT1), or than 30 cm in 717 /PHSP::FT were considerably more likely to flower. Ages of transgenes mainly affect flowering initiation following heat induction, whereas less affect final ramets flowering frequency, but influence clones flowering frequency within same transgene.
     Heat induction hours per day has less effect on transgenes flowering frequency, duration of heat induction treatment greatly affected normal development of catkin , increased duration time of heat induction could prevent catkins reverted to vegetative growth, whereas increased normal catkin products. Increased heat induction temperature (40℃)would advance FT gene expression and initial flowering on transgenes, more production of catkins, and less catkin reverted to vegetative growth.
     Lower room temperature in GH is favorable for FT gene expression following heat induction. Floral buds initiated from leaf axils in newly sprouted shoots which elongated in original shoots apex after heat induction started, floral organ differentiated from floral buds varied widely, kinds of floral organs differentiation depends on location of floral shoots initiated on shoots or initiation time. Only 20-40% floral buds induced following heat induction formed into catkins, 5% catkins and 30% individual flowers on catkins dispersed pollen grain. Bisexual flowers on male catkin were more normal than those on single flowers.
     5.Cleft grafted transgenes failed to induce non-transgenic scions to flower after heat induction, but transgenic rootstocks had less flowering frequency than did controls, indicating grafting might resulted in transmission of part of FT product in grafted transgenic rootstocks.
引文
陈洪伟.2008.白杨花粉管通道法导入外源胡杨DNA技术研究[博士学位论文].北京:北京林业大学
    陈维伦,郭东红,杨善英,等.1980.山新杨(Populus davidiana×P.bolleanaLoucne)叶外植体的器官分化以及生长调节物质对它的影响.植物学报,22:311~315
    陈维纶,杨善英,郭东红.1991.一种以黄化法为基础提高毛白杨快速繁殖效率的新分化方法.植物学报,33(1):14~18
    陈颍,韩一凡,李玲,等.1995.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究.林业科学,31(2):97~103
    程贵兰,姜静,蔡智军.2004.中黑防杨(美洲黑杨×青杨)的组织培养与植株再生.植物生理学通讯,40(5):585
    樊军锋,李玲,韩一凡,等.2002a.84K杨叶片外植体再生系统的建立.西北林学院学报,17(2):33~36
    樊军锋,李玲,韩一凡,等2002b.84K杨树耐盐基因转化研究.西北林学院学报,17(4):33~37
    方宏筠,王关林,王火旭,等.1999.抗菌肽基因转化樱桃矮化砧木获得抗根瘤病的转基因植株.植物学报, 41(11):1192~1198
    郝贵霞,朱桢,朱之悌.1999.毛白杨遗传转化系统优化的研究.植物学报,41(9):363~940
    侯英杰,苏晓华,张冰玉.2006.转基因林木潜在生态风险研究进展.中国生物工程杂志,26(12):117~121
    黄学林,李筱菊.1995.高等植物组织培养的形态建成及其调控.北京:科学出版社
    贾小明,樊军锋,王娟娟.2006.河北杨、新疆杨离体叶片诱导不定芽的研究.西北农林科技大学学报(自然科学版),34(12):110~114
    康冰,王关平,陈彦生.2004.速生欧美黑杨愈伤组织诱导及植株再生.植物生理学通讯,40(5):582
    李慧,陈晓阳,李云,等. 2004.银白杨叶片不定芽影响因素的研究.北京林业大学学报,26(3):46~50
    李浚明.2002.植物组织培养教程.北京:中国农业大学出版社
    李晓,王学德.2004.根癌农杆菌转化棉花花粉的研究.棉花学报,16(6):323~327
    林栖凤,李冠一,黄骏麒.2004.植物分子育种.北京:科学出版社
    路静,赵华燕,何奕昆,等.2004.高等植物启动子及其应用研究进展.自然科学进展,14(8):856~862
    卢孟柱,胡建军.2006.我国转基因杨树的研究及应用现状.林业科技开发,20:1~4
    祁春芳,郑智礼.2000.白杨派杨树组培技术研究.山西林业科技,(4):21~23
    司少鹏,周萍,陈家美.2002.84K杨树的离体快速繁殖试验.江苏林业科技,29(3):29
    孙宇飞,高秀华,赵彦修,等. 2004.欧美杨107杨组织培养再生系统的建立[J].山东师范大学学报, 19(2):85~87
    王冬梅,张志毅,安新民,等.2005.毛白杨AP3同源基因(PtAP3 )的克隆及其在烟草中的正反义转化初报.林业科学,41:35~42
    王关林,方宏筠,那杰.1997.高活性细胞激动素TDZ在植物组织培养中的应用.植物学通报,14(3):47~53
    王关林,方宏筠.2002.植物基因工程.第二版.北京:科学出版社
    王婕琛.2003.新疆杨转抗虫基因研究[硕士学位论文].南京:南京林业大学
    王瑞琲.2008.高等植物基因特异性启动子的研究进展. http://qkzz.net/article/24cb04cf-ac70-48e9-9 a3c-dfeba567148d.htm[2009-09-18]
    王善平,许农,许智宏,等.1991.利用PEG法对GUS基因在几种杨树原生质体中瞬间表达的研究.试验生物学报,24:71~73
    王善平,许智宏,卫志明.1990.毛白杨叶外植体的遗传转化.植物学报,32(3):172~177
    徐华松,徐九龙,黄学林.1996.TDZ在植物组织培养中的作用.广西植物,16 (1):77~80
    闫新甫.2003.转基因植物.北京:科学出版社
    杨利艳,孙毅,谢莉琴.2008.转基因杨树的研究及其生物安全评价.分子植物育种,6(1):123~127
    杨业正.1989.棉花脱叶剂TDZ简介.植物生理学通讯,6:63~64
    杨自湘,韩一凡,于在林.1990.外源DNA导入在杨树杂交育种中的研究.林业科技通讯,(9):5~8
    于志水,茴胜军,赵继海,等.2003.杨树转化受体系统再生初步研究及卡那霉素敏感性测定.辽宁林业科技,5:9~11
    张冰玉,苏晓华,周祥明.2007.杨树花发育相关基因及基因工程调控.分子植物育种,5(5):695~700
    张冰玉,苏晓华,周祥明.2008.林木花发育的基因调控.植物学通报,25(4):476~482
    张志宏,景士西,王关林.1997.TDZ对苹果叶片离体再生不定芽的效应.植物生理学通讯,33(6):420~423
    赵华燕,卢善发,晁瑞堂.2001.杨树的组织培养及基因工程的研究.植物学通报,18(2):169~176
    郑进,康薇,彭建新,等.2006.抗生素对农杆菌的抑制和杨树叶片分化的影响.林业科技开发,20(1):34~36
    郑均宝,张玉满,杨文芝.1995.741杨离体叶片再生及抗虫基因转化.河北农业大学学报,18(3):20~25
    周冀明,卫志明,许智宏,等.1997.根癌农杆菌介导转化诸葛菜获得转基因植株.植物生理学报,23 (1):21~28
    邹智,卢长明.2008.影响农杆菌介导遗传转化的植物因子研究进展.生物技术通讯,1:1~9
    朱大保, 1990.国外杨树组培微繁技术的进展.北京林业大学学报,12(1): 84~91
    诸葛强,王婕琛,黄敏仁,等.2003a.新疆杨植株再生体系的建立.南京林业大学学报(自然科学版), 27(6):1~4
    诸葛强,王婕琛,陈英,等.2003b.新疆杨高效遗传转化系统的建立.植物资源与环境学报,12(4):6~10
    Abe M, Kobayashi Y, Yamamoto S, et al. 2005.FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309: 1052~1056
    Achere V, P Faivre Rampant, S Jeandroz, et al. 2004. A full saturated linkage map of Picea abies including AFLP, microsatellite, EST/STS, 5S rDNA and morphological markers. TAG 108, 1602~1613
    Ahuja MR.1993. Micropagation of woody plants. Dordrecht:Klauwer Academic Publishers:187~194
    Aki T, Shigyo M, Nakano R, et al.. 2008. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant and Cell Physiology, 49: 767~790
    Aldwinckle HS. 1975. Flowering of apple seedlings 16–20 months after germination. HortScience,10, 124~126
    An HC, Roussot P, Suarez~Lopez L, et al.. 2004. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development , 131 (15):3615~3626
    Anderson G S, Hellgren JM, Bjorklund S. 2003. Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant Journal, 34(3) 339~349
    Andow DA and Zwahlen C. 2006.Assessing environmental risks of transgenic plants .Ecology Letters, 9 (2):196~214
    Araki T, Kobayashi Y, Kaya H, et al.. 1998.The flowering~time geneFT and regulation of flowering inArabidopsis. Journal of Plant Research , 11 (2):277~281
    Ayre K and Turgeon R. 2004. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol , 135:2271~2278
    Banfield M J and Brady RL. 2000.The structure of Antirrhinum Centroradialis Protein (CEN) Suggests a Role as a Kinase Regulator. Mol.Biol, 297:1159~1170
    Bastow RJS, Mylne C, Lister Z, et al.. 2004.Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 427 (6970):164~167
    Baurle I and Dean C. 2006.The timing of developmental transitions in plants. Cell,125: 655~664
    Bhalerao R, Nilsson O and Sandberg G. 2003.Out of the woods: forest biotechnology enters the genomic era. Current Opinion in Biotechnology , 14:206~213
    Blazquez M A and Weigel D. 2000.Integration of floral inductive signals in Arabidopsis. Nature, 404: 889~892
    Block M.1990.Factors influencing the tissue culture and the Agrobacterium tumefaciens mediated transformation of hybrid aspen and poplar clones. Plant Physiol,93:1110~1116
    Boes T K, Strauss S H. 1994. Floral phenology and morphology of black cottonwood, Populus trichocarpa (Salicaceae). American Journal of Botany,81(5):562~567
    B?hlenius H, Eriksson S, Parcy F, et al.. 2007. Retraction: THE MRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering, Science, 316: 367~367
    B?hlenius H, Huang T, Charbonnel-Campaa L, et al.. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 312(5776):1040~1043
    Borner R, Kampmann G, Chandler J, et al.. 2000. Melzer SA MADS domain gene involved in the transition to flowering in Arabidopsis. Plant Journal, 24 (5) : 591~599
    Boss PK, Bastow RM, Mylne JS, et al.. 2004. Multiple pathways in the decision to flower: Enabling, promoting, and resetting. Plant Cell, 16 Suppl: S18~S31
    Braatne JH, Rood S B and Heilman P E. 1996. Life history, ecology, and conservation of riparian cottonwoods in North America. In: RF Stettler, HD Bradshaw Jr, PE Heilman, and TM Hinckley.Biology of Populus and its implication for management and conservation. Ottawa:National Research Council of Canada. ON: NRC Research Press:57~85
    Bradshaw HD, Ceulemans R, Davis J. et al.. 2000. Emerging model systems in plant biology: Poplar (Populus) as a model forest tree. Journal of Plant Growth Regulation ,19: 306~313
    Bradshaw HD Jr. 1996. Molecular genetics of Populus. In: RF Stettler, HD Bradshaw Jr, PE Heilman, and TM Hinckley.Biology of Populus and its implication for management and conservation. Ottawa:National Research Council of Canada. ON: NRC Research Press: 183~199
    Brunner A M and Nilsson O . 2004. Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytologist, 164:43~51
    Brunner AM, Dye S J, Hollenbeck VG , et al.. 2000.Poplar homologs of genes controlling floral meristem identity and flowering time: Expression over a seasonal cycle and a continuous age gradient. Plant Biology (Rockville) 42
    Brunner AM, Li JY, DiFazio SP , et al.. 2007.Genetic containment of forest plantations .Tree Genetics & Genomes, 3 (2):75~100
    Brunner AM, Rottmann WH, Sheppard LA, et al. 2000. Structure and expression of duplicate AGAMOUS orthologues in popar. Plant Mol Biol, 44(5):619~634
    Carlson JE. 2005. Biological dimensions of the GMO issue.In: Steiner K C and J E Carlson. Prec of conforestoration of American chestnut to forest lands. Washington D C: National Park Service:151~158
    Caspar T, Huber SC, and Somerville C. 1985. ALTERATIONS IN GROWTH, PHOTOSYNTHESIS, AND RESPIRATION IN A STARCHLESS MUTANT OF ARABIDOPSIS~THALIANA (L) DEFICIENT IN CHLOROPLAST PHOSPHOGLUCOMUTASE ACTIVITY. Plant Physiology,79:11~17
    Cecich RA, H Kang, and W Chalupka.1994. Regulation of early ?owering in Pinus banksiana. Tree Physiol,14, 275~284
    Cervera M, Navarro L and Pe?a L. 2009. Gene stacking in 1~year~cycling APETALA1 citrus plants for a rapid evaluation of transgenic traits in reproductive tissues. Journal of Biotechnology , 140 (3~4):278~282
    Chailakhyan M K.1936. New facts in support of the hormonal theory of plant development. Compt Rend Acad Sci URSS, 13:79~83
    Chupeau MC, Pautot V, Chupeau Y. 1994. Recovery of transgenic trees after electroporation of poplar protoplasts. Transgenic Res, 3:13~19
    Coleman GD, Ernst SG. 1989.In vitro shoot regeneration of populus deltoides:effect of cytokinin and Genotype.Plant Cell Rep, 8:459~462
    Colombo L, Franken J, Koetie E, et al. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell,7(11):1859~1868
    Confalonieri M, Balestrazzi A, Bisoffi S. 1995. Factors affecting Agrobacterium tumefaciens~mediated transformation in several black poplar clones. Plant Cell Tiss Org Clit,43:215~222
    Confalonieri M, Balestrazzi A, Cella R. 1997. Genetic transformation of Populus deltioides and P. euramericana clones using Agrobacterium tumefaciens. Plant Cell Tiss Org Clit,48:53~61
    Corbesier L and Coupland G. 2006. The quest for florigen: a review of recent progress, Oxford Univ Press(J Exp Bot), 57(13) : 3395~3403
    Corbesier L, Vincent C, Jang S, et al.. 2007. FT protein movement contributes to long~distance signaling in floral induction of Arabidopsis. Science, 316: 1030~1033
    Cordero RE. 1985. Murray JR and Hackett W P. PLASTOCHRON INDEXES FOR JUVENILE AND MATURE FORMS OF HEDERA~HELIX L (ARALIACEAE). American Journal of Botany, 72, 324~327
    Crone D, Rueda J, Martin KL, et al.. 2001.The differential expression of a heat shock promoter in floral and reproductive tissues. Plant Cell and Environment, 24:869~874
    Cseke LJ, Sen B, Ravinder N, et al. 2003. MADS~box genes in dioecious aspen I:characterization of PTM1 and PTM2 floral MADS~box genes. Physiol Mol Biol Plants, 9:187~196
    Cseke, LJ, and GK Podila.2004.MADS-box genes in dioecious aspen II: a review ofMADS-box genes from trees and their potential in forest biotechnology. Physiol. Mol. Biol. Plants, 10, 7~28
    David JJ, Sandra U, Cheng JS, et al.. 1993.Acetosyringone and osmoproectants like betaine or proclone synergistically enhance Agrobacteriummediated transformation of apple. Plant Cell Rep, 12(11): 559~563
    Dickmann DI and Stuart KW. 1983. The culture of poplars in eastern North America. Dansville: Hickory Hollos Assoc:168
    Dickmann DI, Isebrands JG, Eckenwalder JE, et al..2001. Poplar culture in North America. In: RF Stettler, HD Bradshaw Jr, PE Heilman, and TM Hinckley.Biology of Populus and its implication for management and conservation. Ottawa:National Research Council of Canada. ON: NRC ResearchPress: 309~324
    DiFazio SP, Slavov GT,Burczyk J,et al.. 2004. Gene flow from tree plantations and implications for transgenic risk assessment. Plantation forest biotechnology for the 21st century . 405~422
    Elo A, J Lemmetyinen, ML Turunen, et al.2001.Three MADS-box genes similar to APETALA and FRUIT-FULL from solver birch (Betula pendula). Physiol. Plant.,112, 95~103
    Elo A, J Lemmetyinen, A Novak, et al. 2007. BpMADS4 has a central role in in?orescence initiation in silver birch (Betula pendula). Physiol.Plant.,131, 149~158
    Endo T, Shimada T, Fujii H, et al..2005. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research, 14(5):703~712
    Fillatti JJ, Sellner J, Mccown B. 1987. Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet, 206:192~199
    Flachowsky H, Hanke M V, Pell A, et al.. 2009. A review on transgenic approaches to accelerate breeding of woody plants.http//: www.interscience.wiley.com[2009.07-10]
    Flachowsky H, Peil A, Sopanen T,et al.. 2007.Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early~flowering in apple (Malus x x domestica Borkh.). Plant Breeding, 126 (2):137~145
    Fladung M and Ziegenhagen B. 1998.M13 DNA fingerprinting can be used in studies on phenotypic reversions of forest tree mutants. Trees~Structure and Function, 12, 310~314
    Fraley RT., Rogers SG., Horsch RB et al.. Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A, 1983, 80, 15: 4803~4807
    Frewen BE, Chen TH , Howe GT, ett al.. 2000.Quantitative trait loci and candidate gene mapping of shoot set and shoot flush in Populus. Genetics, 154, 837~845
    Gelvin SB. 2000. Agrobacteriumand plant genes involved in T~DNAtransfer and integration review . Annual Review of Phytopathology, 51(7): 223~256
    Giavalisco P, Kapitza K, Kolasa A, et al.. 2006.Towards the proteome of Brassica napus phloem sap. Proteomics, 6 (3):896~909
    Godwin I.1992.The effects of acetosyringone and pH on Agrobacterium~mediated transformation vary according to plant species. Plant Mol Biol Rep,10:12~36
    Gyllenstrand N, Clapham D, Kallman T, et al.. 2007.A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiology, 144:248~257
    Hackett WP. 1985. Juvenility, maturation and rejuvenation in woody plants. Hortic. Rev., 7, 109~115
    Han KH, Gordon M P and Strauss S H. 1997.High~frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Canadian Journal of Forest Research~Revue Canadienne De Recherche Forestiere. 27:464~470
    Han KH, Gordon M P, and Strauss SH. 1996.Cellular and molecular biology of Agrobacterium~mediated transformation of plants and its application to genetic transformation of Populus. In: RF Stettler, HD Bradshaw Jr, PE Heilman, and TM Hinckley.Biology of Populus and its implication for management and conservation. Ottawa:National Research Council of Canada. ON: NRC Research Press:201~222
    Hanke MV, H Flachowsky, A Peil. 2007. No ?ower no fruit– genetic potentials to trigger ?owering in fruit trees.GGG 1,1~20
    Hattasch C, Flachowsky H, Kapturska D, et al.. 2008.Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiology, 28:1459~1466
    Hayama R, Agashe B, Luley E, et al.. 2007. A circadian rhythm set by dusk determines the expression of FT homologs and the short~day photoperiodic flowering response in Pharbitis. Plant Cell, 19: 2988~3000
    Hepworth SR, Valverde F, Ravenscroft D, et al.. 2002.Antagonistic regulation of flowering~time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO JOURNAL, 21( 16): 4327~4337
    Hjeltnes SH. 2004.Juvenile-adult correlations in pear, and their possible utilization. Acta Hortic, 663,789~792
    Hoenicka H and Fladung M. 2006. Biosafety in Populus spp. and other forest trees: from non~native species to taxa derived from traditional breeding and genetic engineering. Trees~Tructure and Function, 20(3):131~144
    Hoenicka H, Nowitzki O, Debener O, et al. 2006. Faster evaluation of induced floral sterility in transgenic early flowering poplar. Silvae Genetica ,55(6): 285~291
    Hoenicka H, O Nowitzki, D Hanelt, et al. 2008.Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta,227,1001~1011
    Holford P, Hernandes N,Newbury HJ.1992.Factors influencing the efficiency of T~DNA transfer during co~cultivation of Antirrhinum majus with Agrobacterium tumefaciens.Plant Cell Rep,11:196~199
    Holland D, MA Abied, S Nachman,et al. 1995.Cotyledon detachment inhibits development but does not affect precocious ?owering of‘Duncan’grapefruit. Plant Cell Tiss. Organ Cult, 41,79~82 Horsch RB et al.. 1985. A simple and general methord for transferring genes to plants.Science,227:1229~1231
    Howe GT, Goldfarb B, Strauss SH.1994. Agrobacterium-mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants. Plant Cell Org Cult,36:59~71
    Hsu CY, Liu Y, Luthe DS, et al.. 2006. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell, 18:1846~1861
    Huang FH, Li XY.1994. Effects of concentration acetosyringone and Agrobacterium tumefaciens on Gus gene transformation efficiency of Populus. In Vitro,30:67
    Huang T, Bohlenius H, Eriksson S, et al.. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science,309:1694~1696
    Igasaki T, Watanabe Y, Nishiguchi M, et al.. 2008. The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant and Cell Physiology. 49: 291~300
    Imaizumi T and Kay S. 2006. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci, 11: 550~558
    Irish VF. 2003. The evolution if floral homeotic gene function. Bioessays, 25(7):637~646
    Jack T. 2004. Molecular and genetic mechanisms of floral control. Plant Cell,16:S1~S17
    Jaeger K and Wigge P. 2007.FT protein acts as a long~range signal in Arabidopsis. Curr. Biol.,17: 1050~1054
    Kardailsky I, Shukla VK, Ahn J H, et al.1999. Activation tagging of the floral inducer FT. Science,286:1962~1965
    Keinonen J and Sopanen T. 2004. Prevention of the flowering of a tree, silver birch. Molecular Breeding, 13: 243~249
    Kim JH, JG Woo, KO Kim, et al.2006.Agrobacterium-mediated transformation of‘Fuji’apple using MdAP1-like Gene. Abstracts of the 27th International Horticul-tural Congress & Exhibition, Aug. 13–19, 2006, 219~220. ISHS,Seoul, Korea
    Knott J E. 1934. Effect of a localized photoperiod on spinach. Proc Am Soc Hort Sci , 31:152~154
    Kobayashi Y, Kaya H, Goto K, et al.. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286: 1960~1962
    Kobayashi Y, Weigel D. 2007. Move on up, it’s time for change~~ mobile signals controlling photoperiod~dependent flowering. Genes Dev, 21:2371~2384
    Kojima S, Takahashi Y, Kobayashi Y, et al.. 2002.Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short~day conditions. Plant and Cell Physiology, 43: 1096~1105
    Komeda Y.2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology, 55: 521~353
    Koornneef M, Hanhart C J, van der Veen J H. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana .Mol Gen Genet , 229 (1):57~66
    Kotoda N, H Iwanami, S Takahashi, et al. 2006.Antisense expression of MdTFL1,a TFL1-like gene, reduces the juvenile phase in apple. J. Am. Soc. Hortic. Sci.,131, 74~81
    Kotoda N, M Wada, T Masuda, et al. 2003.The break-trough in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic, 625, 337~343
    Laurent C., Vincent C., Jang S., et al.. 2007, FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science,316(5827): 1030-1033
    Lee JH, Hong SM, Yoo SJ, et al.. 2006. Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans . Physiol Plant , 126:475~483
    Lemmetyinen J, Hassinen M, Elo A, et al.. 2004. Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiologia Plantarum ,121: 149~162
    Leple JC, Pilate G, Jouanin L. 1992. Transgenic poplar trees. Berlin: Springer~Verlag :221~224
    Lifschitz E, Eviatar T, Rozman A, et al.. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl Acad. Sci, USA, 103: 6398~6403
    Lifschitz, E. and Eshed, Y. 2006. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J Exp Bot 57, 3405-3414
    Lin JJ, Assadd~Garcis N, Kou J. 1995. Plant horm one effect of antibiotics on the transformation efficiency of plant tissue by Agrobacterium tumefaciens cells.Plant Sci,109:171~177
    Lin M, Belanger H, Lee Y, et al.. 2007. FLOWERING LOCUS T protein may act as the long~distance florigenic signal in the Cucurbits. Plant Cell, 19: 1488~1506
    Longman KA, TAA Nasr, and PF Wareing. 1965.Gravimorphism in trees.4. Effect of gravity on ?owering. Ann.Bot. 29, 459~473
    Matsuda N, K Ikeda, M Kurosaka, K Isuzugawa, et al.2006. In vitro ?owering on transgenic pears (Pyruscommunis L.) expressing CiFT, a Citrus ortholog of the Arabidopsis FT gene. Abstract Book of the 3rd Intl. Rosaceae Genomics Conf., 19-20 March, 2006, 45. ISHS, Napier, New Zealand.
    Mathieu J, Warthmann N, Kuttner F,et al.. 2007. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology ,17: 1055~1060
    Matziris DI. 1994. Genetic variation in the phenology of ?owering in black pine. Silvae Genet, 43, 321~328
    Mauro ML, M Trovato, A De Paolis, et al. 1996. The plant oncogene rolD stimulates ?owering in transgenic tobacco plants. Dev. Biol.,180,693~700
    McCown BH, Mclab DE, Russell DR, et al. 1991.Stable transformation of Populus and incorporation of pestresistance by electric discharg particle acceleration.Plant Cell Reps, 9(10):590~594
    Meilan R, Sabatti M, Ma C P, et al.. 2004.An early~flowering genotype of Populus. Journal of Plant Biology, 47, 52~56
    Meilan R. 1997.Floral induction in woody angiosperms. New Forests, 14, 179~202
    Meilan R, A Brunner, J Skinner, et al. 2001.Modification of ?owering in transgenic trees. In: A. Komamine,and N. Morohoshi . Molecular Breeding of Woody Plants. Progress in Biotechnology series. Amsterdam: Elsevier Science BV,247~256
    Meyerowitz EM and Pruitt RE. 1985. ARABIDOPSIS~THALIANA AND PLANT MeyerP and Saedler H. 1996. Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47, 23-48
    Michaels S D and Amasino R M. 1999.FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell , 11 (5):949~956
    Michaels S D and Amasino RM. 2001.Loss of FLOWERING LOCUS C activity eliminates the late~flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 13 (4):935~941
    Missiaggia, A, AL Piacezzi, and D Grattapaglia. 2005.Genetic mapping of Eef1, a major effect QTL for early ?owering in Eucalyptus grandis. TGG 1, 79~84
    Mitsuda N, Hiratsu K, Todaka D, et al.. 2006. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnol J 4, 325-332
    Mok MC, Mok DWS, Armst rong DJ. 1980.Cytokinin activity of N2 phenyl2N21 ,2 ,32thiadiazol25ylurea and its effect on cytokinin autonomy in callus cultures of phaseolus. Plant Physiol , 65 (suuppl) :24 MOLECULAR~GENETICS. Science, 229: 1214~1218
    Mouradov A, Cremer F, Coupland G. 2002.Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell, 14: S111~S130
    Nagao R T, Czarnecka E, Gurley W B, et al.. 1985. GENES FOR LOW~MOLECULAR~WEIGHT HEAT~SHOCK PROTEINS OF SOYBEANS ~ SEQUENCE~ANALYSIS OF A MULTIGENE FAMILY. Molecular and Cellular Biology, 5: 3417~3428
    Napp-Zinn.K. 1987. Vernalization ~ environmental and genetic regulation Manipulation of flowering, P123~132
    Ng M and Yanofsky M. 2000. Three ways to learn the ABCs. Curr Opin Plant Biol,3:47~52 Notaguchi M, Abe M, Kimura T, et al.. 2008. Long~Distance, Graft~Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant and Cell Physiology , 49:1645~1658
    Onouchi JH and Coupland G . 1998.The Regulation of Flowering Time of Arabidopsis in Response to Daylengt . Journal of Plant Research , 111: 271~275
    Onouchi H, Igeno MI, Perilleux C, et al.. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering~time genes. Plant Cell, 12(6): 885~900
    Pelaz S, Ditta GS, Baumann E, et al. 2000. B and C floral organ identify functions require SEPALLATA MADS~box genes. Nature, 405(6783):200~203
    Pena L, M Martin-Trillo, J Juarez, et al. 2001.Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time.Nat. Biotechnol, 19, 263~267
    Pnueli L, Gutfinger T, Hareven D, et al..2001. Tomato SP~interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell , 13(12 ): 2687~2702
    Poethig R S 2003. Phase change and the regulation of developmental timing in plants. Science, 301: 334~336
    Putterill J, Robson F, Lee K, et al..1995. The CONSTANS Gene of Arabidopsis Promotes Flowering and Encodes a Protein Showing Similarities to Zinc Finger Transcription Factors. Cell press, 80: 847~857
    Rogers HJ and Parkes HC.1995.TRANSGENIC PLANTS AND THE ENVIRONMENT.Journal of Experimental Botany,46(286):467~488
    Rottmann WH, Meilan R, Sheppard LA, et al.. 2000. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant Journal, 22, 235~245
    Ruiz-Garcia L, Madueno F, Wilkinson M, et al.. 1997. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 9 (11): 1921~1934
    Saedler H, A Becker, KU Winter, C. Kirchner, et al. 2001. MADS-box genes are involved in ?oral development and evolution. Acta Biochim Pol, 48, 351~358
    Samach A, Onouchi H, Gold S, et al.. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 288: 1613~1616
    Schell J and Montagu MV. 1983.The Ti Plasmids as Natural and as Practical Gene Vectors for Plants. Nature Biotechnology, (1): 175~180
    Schlesinger MJ, Aliperti G and Kelley PM. 1982.THE RESPONSE OF CELLS TO HEAT~SHOCK. Trends in Biochemical Sciences , 7: 222~225
    Schmid SL. 2005. A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5):501~506
    Schoffl F and Key JL. 1982. An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J. Mol. Appl. Genet 1, (4): 301~314
    Schoffl F, Baumann G, Raschke E, et al.. 1986. THE EXPRESSION OF HEAT~SHOCK GENES IN HIGHER~PLANTS. Philosophical Transactions of the Royal Society of London Series B~Biological Sciences, 314, 453~468
    Schultz E A and Haughn G W. 1993. GENETIC~ANALYSIS OF THE FLORAL INITIATION PROCESS (FLIP) IN ARABIDOPSIS. Development , 119:745~765
    Searle I, He YH, Turck F, et al.. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development , 20:898~912
    Sederoff R. 2007.Regulatory science in forest biotechnology. Tree Genetics & Genomes, 3:71~74
    Severin K and Schoffl F. 1990. HEAT~INDUCIBLE HYGROMYCIN RESISTANCE IN TRANSGENIC TOBACCO. Plant Molecular Biology, 15, 827~833
    Sheldon CC, Burn PP, Perez J, et al.. 1999.The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11 (3):445~458
    Sheldon CC, Rouse DT, Finnegan E J, et al.. 2000.The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA, 97 (7):3753~3758
    Sheldon CC, Conn AB, Dennis ES, et al.. 2002.Different regulatory regions are required for the vernalization~induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell, 14 (10):2527~2537
    Sheppard LA, Brunner AM, Krutovskii KV, et al.2000.A DEFICIENS homolog from the dioecious tree blackcotton wood is expressed in female and male flroral meristems of the two~whorled, unisexual flowers. Plant Physiol,124:627~640
    Shou Huixia, Reid G Palmer, Wang Kan. 2002.Irreproducibility of the soybean pollen~tube pathwaytransformation procedure. Plant Molecular Biology Reporter, 20:325~334
    Simpson G G, Dean C. 2002. Arabidopsis, the rosetta stone of flowering time. Science, 296(5566):285~289
    Skinner JS, R Meilan, C Ma, et al. 2003.The Populus PTD promoter imparts ?oral-predominant expression and enables high levels of ?oral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol. Breed, 12, 119~132
    Smouse PE , Robledo~Arnuncio J J. and González~Martínez SC. 1983.Implications of natural propagule flow for containment of genetically modified forest trees.Nature Biotechnology, (1):262~269
    Snow AA and Palma P M. 1997.Commercialization of transgenic plants: Potential ecological Risks.American institute of Biological Sciences.
    Southerton SG. 2007. Early ?owering induction and Agrobacterium transformation of the hardwood tree species Eucalyptus occidentalis. Funct. Plant Biol.,34,707~713
    Sterky F, Bhalerao RR, Unneberg P, et al.. 2004. A Populus EST resource for plant functional genomics. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 101(38) :13951~13956
    Strauss SH, Brunner A M, Busov V B, et al.. 2004.Ten lessons from 15 years of transgenic Populus research. Forestry , 77 (5):455~465
    Strauss SH, Skinner J, Brunner A., et al.. 2001. Transgene dispersal and control of flowering in poplars. In Vitro Cellular and Developmental Biology Animal, 37:7
    Suarez-Lopez P, Wheatley K, Robson F, et al.. 2001.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410: 1116~1120
    Sung S and Amasino RM. 2005. Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol, 56:491~508
    Takada S and Goto K. 2003.TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell,15, 2856~2865
    Tamaki S, Matsuo S, Wong H, et al.. 2007.Hd3a protein is a mobile flowering signal in rice. Science, 316:1033~1036
    Tan FC, Swain SM. 2006. Genetics of flower initiation and development in annual and perennial plants. Physioligia Plantarum, 128:8~17
    Taylor G. 2002.Populus: Arabidopsis for forestry. Do we need a model tree? Annals of Botany, 90(6): 681~189
    Taylor G, Ceulemans R, Ferris R, et al.. 2001. Increased leaf area expansion of hybrid poplar in elevated CO2. From controlled environments to open~top chambers and to FACE. Environ. Pollut, 115:463~472
    Taylor JS, RP Pharis, B Loveys, et al. 1984. Changes in endogenous hormones in apple during shoot burst induced by defoliation. Plant Growth Regul, 2,117~134
    Theissen G,A Becker, A Di Rosa, et al. 2000. A short history of MADS-box genes in plants. Plant Mol Biol,42, 115~149
    Tiedje J M, Simkins S, Groffman P M. 1989.erspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil , 115(2):261~284
    Tromp J. 1967. Fruit-shoot formation and shoot growth in apple in relation to gravity. Naturwissenschaften 54, 95
    Tromp J. 1968. Flower-shoot formation and shoot growth in apple as affected by shoot orientation. Acta Botanica Netherlandica,17,212~20
    Turck F, Fornara F and Coupland G. 2008.Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology , 59:573~594
    Tuskan G A, DiFazio S, Jansson S, et al.. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313: 1596~1604
    Visser T. 1964.Juvenile phase and growth of apple and pear seedlings. Euphytica,13,119~129
    Visser T. 1965.On the inheritance of the juvenile period in apple.Euphytica,14,125~134
    Visser T. 1967. Juvenile period and precocity of apple and pear seedlings. Euphytica,16,319~320
    Visser T. 1970. The relation between growth, juvenile period and fruiting of apple seedlings and its use to
    improve breeding efficiency. Euphytica,19,293~302
    Waterhouse PM and Helliwell CA. 2003. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4, 29-38
    Wei H, Meilan R, Brunner AM, et al.. 2007. Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter : barnase sterility transgene . Molecular Breeding, 19(1):69~85
    Wei H, Meilan R, BrunnerA M, et al.. 2006.Transgenic sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues.Tree. Physiology , 26:401~410
    Weigel D and Meyerowitz EM. 1994. The ABCs of floral homeofic genes. Cell,78(2):203~209
    Weigel D and Nilsson O. 1995. A DEVELOPMENTAL SWITCH SUFFICIENT FOR FLOWER INITIATION IN DIVERSE PLANTS. Nature, 377: 495~500
    Weigel D.1995.The genetics of flower development: From floral induction to ovule morphogenesis. Annual Review of Genetics, 29: 19~39
    Wesley SV, Helliwell CA, Smith NA, et al.. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581~590
    Wigge PA, Kim MC, Jaeger K E, et al.. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science , 309:1056~1059
    Williams CG and Davis BH. 2005.Rate of transgene spread via long~distance seed dispersal in Pinus taeda.Forest Ecology and Management ,21(7): 95~102
    Wullschleger SD, Jansson S, Taylor G. 2002.Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell, 14(11): 2651~2655
    Yan L, Fu D, Li C, et al.. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl AcadSci U S A, 103:19581-19586
    Yuceer C, Land S B, Kubiske M E, et al.. 2003a.Shoot morphogenesis associated with flowering in Populus deltoides (Salicaceae). American Journal of Botany, 90 (2):196~206
    Yuceer C. ME Kubiske, RL Harkess, et al. 2003b. Effects of induction treatments on ?owering in Populus deltoides.Tree Physiol,23,489~495
    Yadav IS, SH Jalikop, and HP Singh.1980.Recognition of short juvenility in Poncirus. Curr. Sci. 49, 512~513
    Zeevaart J AD.1976. PHYSIOLOGY OF FLOWER FORMATION. Annual Review of Plant Physiology and Plant Molecular Biology, 27:321~348
    Zeevaart JA D. 2006.Florigen coming of age after 70 years. Plant Cell, 18: 1783~1789
    Zeevaart JA D. 2008.Leaf~produced floral signals. Current Opinion in Plant Biology , 11:541~547

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700