纯钛ECAE过程三维模拟及超细晶纯钛织构和耐腐蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯钛作为生物医用材料,具有良好的生物相容性,不含有毒化学元素,受到国内外研究者的关注。但是因强度较低、耐磨损性能较差,纯钛在人体承受较大载荷部位的应用受到限制。因此,寻求一种新型工艺制备具有良好综合性能的纯钛材料,已成为生物医用材料的一个重要攻关方向。近年来,运用等通道弯角挤压(Equal channel angular extrusion, ECAE)法细化纯钛组织、提高材料强度等力学性能的研究已经引起研究者的关注。本文选用3级工业纯钛(CP-Ti)为研究对象,通过在400℃沿B_C路径八道次ECAE处理加冷轧两步大变形法制备出大块体超细晶CP-Ti。利用三维有限元数值模拟方法计算分析了多道次ECAE处理CP-Ti的变形过程,并研究了变形热及初始挤压温度对变形行为的影响;借助极图和ODF函数系统地研究了CP-Ti在两步大变形过程中的织构特征,以及织构对其力学性能和变形机制的影响;并采用动电位极化技术和电化学阻抗谱(EIS)研究了超细晶CP-Ti在Ringer’s(林格式)人体模拟体液中的耐腐蚀性能。
     400℃沿Bc路径四道次ECAE处理CP-Ti过程的三维有限元模拟结果表明, ECAE处理后试样在长度、宽度、厚度三个方向上的变形不均匀,应变分布梯度较大;但试样中间部分呈现稳定均匀变形区(试样最大应变值1.124出现在该变形区内),均匀变形区尺寸及应变量随着挤压道次增加而增大;四道次ECAE处理后均匀变形区最大应变值达3.723,均匀变形区尺寸约占试样总长的50%。CP-Ti试样最大挤压载荷峰值随着挤压道次增加而增大。400℃沿Bc路径两道次ECAE处理后的CP-Ti试样中,损伤参数C_N (Cockcroft–Latham断裂准则)最大值达0.33,分布在靠近试样尾部的上表面边沿区域,大于临界C_N~*值(约0.31),预示试样上表面相应处有裂纹产生。实验观察与FEM损伤模拟结果预测裂纹基本吻合。
     采用热-机耦合的刚塑性有限元分析了400℃一道次处理CP-Ti过程中的温度分布,结果表明:试样在剪切变形区温度骤升,温度增加值ΔT最大达110℃;试样未变形部分受到变形部分和模具传递的热量而在更高温度发生塑性变形。采用质点跟踪法揭示了在挤压过程中CP-Ti试样沿长度方向体中心线上和表面各质点的温度变化规律。一道次ECAE处理CP-Ti试样中温度分布不均匀,最高温度分布在试样剪切变形区的上表面。当初始挤压温度升高时,试样变形更加均匀,温差变小,且模具内温差也变小。
     多道次ECAE处理CP-Ti的织构分析表明,退火粗晶CP-Ti的织构组分在400℃一道次ECAE处理后不再保留。400℃沿B_C路径多道次ECAE处理CP-Ti的织构最大强度在四道次后逐渐稳定。四道次ECAE处理后,主要织构组分的欧拉角位置为{φ_1=315°,Φ=66°,φ_2=12°}(Bunge符号系统),其相应的密勒指数约为((1|-)03(2|-)2)[10(1|-)2];较弱织构的欧拉角位置为{φ_1=165°,Φ=72°,φ_2=48°},即(12(3|-)2)[(2|-)111]。八道次ECAE处理后,主要织构组分为(01(1|-)1)[(1|-)013],其欧拉角位置为{φ_1=120°,Φ=60°,φ_2=30°}。织构和Schmid因子分析表明,一道次ECAE处理CP-Ti过程中,{10(1|-)1}孪生为主要变形方式,同时伴随锥面-滑移;二道次ECAE处理过程中,柱面-滑移为主要的变形方式。
     在拉伸过程中,四道次ECAE处理后CP-Ti织构((1|-)03(2|-)2)[10(1|-)2]和(12(3|-)2)[(2|-)111]在柱面-
滑移系上的Schmid因子明显增加,更有利于柱面-滑移开动,因而在比较小的应力下就能达到滑移所需要的临界分切应力值,导致屈服强度降低。
     八道次ECAE处理后获得的超细晶CP-Ti经室温76%冷轧后的织构分布比较分散,织构组分主要有(01(1|-)5)[1(1|-)01]、(01(1|-)5)[2(2|-)01]、(0001)[(1|-)(3|-)43]和(01(1|-)3)[2(1|-)(1|-)1];经液氮温度74%冷轧后织构主要组分为棱锥型织构(1(2|-)14)[21(3|-)(1|-)]及较弱(01(1|-)3)[20(2|-)1]织构。
     超细晶CP-Ti的动电位极化曲线和电化学阻抗谱EIS测试表明:在Ringer’s溶液中,随着挤压道次增加,CP-Ti的破裂电位Etp明显增加,超细晶CP-Ti的耐点蚀能力较粗晶CP-Ti有显著提高。超细晶CP-Ti的极化电阻Ep较粗晶CP-Ti亦有明显提高,表明超细晶CP-Ti表面形成的氧化层更稳定。
Pure Ti attracted much attention in medical application because of better biocompatibility, corrosion resistance and without toxic element. The application of pure Ti as medical implant materials, especially as implant components to sustain heavy load, is limited due to its lower strength and bad abrasion resistance. Developing a new process to increase the strength of pure Ti with good ductility is what to go after for medical implant materials researchers. In recent decades, it has attracted much attention that improving the strength of pure Ti through ultrafine-grained structures after equal channel angular extrusion (ECAE).
     In the present paper, bulk ultrafine-grained commercial pure Ti (UFG CP-Ti) was prepared by multi-pass ECAE at 400℃via route BC and cold rolling (CR). The deformation behavior of CP-Ti during four-pass ECAE process at 400℃via route BC was simulated by three-dimension (3D) finite element method (FEM). The deformation heat and the effect of initial extrusion temperature on deformation behaviors of CP-Ti during ECAE were analyzed. The texture evolution of CP-Ti during multi-pass ECAE and CR process were investigated by pole figures and ODF. The effect of texture on mechanical properties and deformation mechanism were also analyzed. The electrochemical properties of UFG CP-Ti in Ringer’s solution were investigated by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) measurement).
     3D FEM simulation of four-pass ECAE process indicates that the deformation of CP-Ti during ECAE process is inhomogeneity in the directions of the length, the width and thickness along the billet. But there is a steady-state deformation region in the middle part of the billet after one-pass ECAE, with a maximum effective strain is 1.124. The strain and the size of the steady-state region are increased with the number of ECAE process. The strain reaches to 3.723 and the steady-state strain region takes about 50% length of the total billet after four-pass. The maximum value of extrusion load increases with the number of ECAE. A maximum damage factor value C_N of 0.33 is obtained on the top surface at a length of 16.356mm to the tail of CP-Ti billet processed after two-pass ECAE at 400℃via route B_C, which is larger than the critical value C_N~* of 0.31. Crack is predicted to appear from this area at the top surface of the billet. The experimental observation is consistence with the FEM prediction.
     The simulation of temperature distribution in CP-Ti billet during one-pass ECAE at 400℃by rigid-plastic FEM shows that abrupt temperature rise occurs within the shear zone during one-pass ECAE and the maximum temperature riseΔT is 110℃. The undeformed part of the billet gains heat from the deformed part and die and is deformed at a higher temperature. The temperature responses at different locations are generated by point tracking method. The temperature distributes imhomogenously in CP-Ti billet during one-pass ECAE and the maximum temperature locates on the top surface of billet where closes to the shear deformation zone. When the initial extrusion temperature increases, the deformation of billet is more homogenously and the temperature difference in both the billet and die become smaller.
     The analysis of texture in CP-Ti processed by multi-pass ECAE indicates that the texture components of coarse-grained (CG) CP-Ti are not retained in the billet after multi-pass ECAE. The maximum value of texture intensity is stabilized after four-pass ECAE. The main texture component of CP-Ti billet after four-pass ECAE is centered at a Euler angle position with {φ_1 1=315°,Φ=66°,φ_2=12°} (in the Bunge notation system), which corresponds to ((1|-)3(2|-)2)[10(1|-)2] and secondary texture component is (12(3|-)2)[(2|-)111], i.e. {φ_1=165°,Φ=72°,φ_2=48°}. The texture component of CP-Ti billet after eight-pass ECAE is (01(1|-)1)[(1|-)013]. The analysis of texture and Schmid factors shows that {10(1|-)1} twinning is accompanied by pyramidal- slip during one-pass ECAE. The crystallographic relationship in one-pass ECAEed billet induces the prismatic-
slip during two-pass ECAE process.
     The prismatic-
slip is favored by the ((1|-)3(2|-)2)[10(1|-)2] and (12(3|-)2)[(2|-)111] textures in the tensile deformation of four-pass ECAEed billet, since Schmid factor of ((1|-)03(2|-)2)[10(1|-)2] and (12(3|-)2)[(2|-)111] textures at the prismatic- slip is obviously enhanced in the four-pass ECAEed billet. Besides, a lower stress is needed for the prismatic- slip due to the smallest critical stress for prismatic- slip, which results in the decrease of the yield strength.
     After cold rolling at room temperature with an accumulative strain of 76%, the textures of UFG CP-Ti processed by eight-pass ECAE are spreaded and distributed along the line ofΦ=18°. The main texture components are (01(1|-)5)[1(1|-)01], (01(1|-)5)[2(2|-)01], (0001)[(1|-)(3|-)43] and (01(1|-)3)[2(1|-)(1|-)1]. The textures of UFG CP-Ti after CR at liquid nitrogen temperature with an accumulative strain of 74% are mainly pyramidal-texture (1(2|-)14)[21(3|-)(1|-)] and weakly (01(1|-)3)[20(2|-)1] texture.
     The results of potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) measurement show that the breakdown potential Etp of CP-Ti increases remarkably with the ECAE pass number in Ringer’s solution, which reveals an improvement of pit corrosion resistance. The polarization resistance (RP) of UFG CP-Ti is improved, which indicates that the oxidizing layer formed on the surface of UFG CP-Ti is more stabilized.
引文
[1].黄永光.我国钛及钛合金牌号的发展和标准化[J].稀有金属快报, 2008, (04).
    [2].刘洪贵.全球经济危机中海绵钛行业现状和对策[J].攀枝花科技与信息, 2009, (01).
    [3].秦莹,王少安.钛及钛合金口腔种植体的腐蚀性能研究[J].国际口腔医学杂志, 2008, 35 (4): 255-258.
    [4].黄永光.外科植入用钛合金材料及其标准化[J].钛工业进展, 2002, (01).
    [5].陈长春,孙.吴.髋关节置换用股骨假体材料的研究与应用[J].材料导报, 1998, (06).
    [6]. Jeon, M. S.,Yoon, W. S. Appl Surf lett., 2000, 165 8.
    [7]. Berbon, P. B. Processing of ultrafine-grained materials using the equal-channel angular(ECAE) pressing technique and optimiztion of the parameter to obtain superplasticity.Ph.D thesis[D]. UM.
    [8].靳丽.等通道角挤压(ECAE)变形镁合金微观组织与力学性能研究[博士论文][D].上海:上海交通大学2006.
    [9]. Segal, V. M. Materials processing by simple shear[J]. Materials Science and Engineering A, 1995, 197 (2): 157-164.
    [10]. Iwahashi, Y.,Wang, J.,Horita, Z., etc. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia, 1996, 35 (2): 143-146.
    [11]. Cao, W. Q.,Godfrey, A.,Liu, W., etc. EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing[J]. Materials Science and Engineering A, 2003, 360 (1-2): 420-425.
    [12]. Sun, P. L.,Yu, C. Y.,Kao, P. W., etc. Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion[J]. Scripta Materialia, 2002, 47 (6): 377-381.
    [13]. Miyamoto, H.,Fushimi, J.,Mimaki, T., etc. Dislocation structures and crystal orientations of copper single crystals deformed by equal-channel angular pressing[J]. Materials Science and Engineering: A, 2005, 405 (1-2): 221-232.
    [14]. Li, S.,Beyerlein, I. J.,Necker, C. T., etc. Heterogeneity of deformation texture in equal channel angular extrusion of copper[J]. Acta Materialia, 2004, 52 (16): 4859-4875.
    [15]. Yamashita, A.,Horita, Z.,Langdon, T. G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering A, 2001, 300 (1-2): 142-147.
    [16]. Stolyarov, V. V.,Zhu, Y. T.,Alexandrov, I. V., etc. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J]. Materials Science and Engineering A, 2003, 343 (1-2): 43-50.
    [17]. Stolyarov, V. V.,Zhu, Y. T.,Alexandrov, I. V., etc. Influence of ECAP routes on the microstructure and properties of pure Ti[J]. Materials Science and Engineering A, 2001, 299 (1-2): 59-67.
    [18]. Semiatin, S. L.,DeLo, D. P. Equal channel angular extrusion of difficult-to-work alloys[J]. Materials & Design, 2000, 21 (4): 311-322.
    [19]. Semiatin, S. L.,Berbon, P. B.,Langdon, T. G. Deformation heating and its effect on grain size evolution during equal channel angular extrusion[J]. Scripta Materialia, 2001, 44 (1): 135-140.
    [20]. Shin, D. H.,Kim, I.,Kim, J., etc. Microstructure development during equal-channel angular pressing of titanium[J]. Acta Materialia, 2003, 51 (4): 983-996.
    [21]. DeLo, D.,TR, B.,SL, S. Microstructure and texture evolution during equal channel angular extrusion of Ti-6Al-4V[J]. 2000, March 12-16 10.
    [22]. Ko, Y. G.,Jung, W. S.,Shin, D. H., etc. Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy[J]. Scripta Materialia, 2003, 48 (2): 197-202.
    [23]. Sastry, S. M. L.,Mahapatra, R. N.,Hasson, D. F. Microstructural refinement of Ti-44Al-11Nb by severe plastic deformation[J]. Scripta Materialia, 2000, 42 (7): 731-736.
    [24]. Pushin, V. G.,Stolyarov, V. V.,Valiev, R. Z., etc. Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2005, 410-411 386-389.
    [25]. Fan, Z.,Xie, C. Phase transformation behaviors of Ti-50.9at.% Ni alloy after Equal Channel Angular Extrusion[J]. Materials Letters, 2008, 62 (6-7): 800-803.
    [26]. Semiatin, S. L.,Segal, V. M.,Goforth, R. E., etc. Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (5): 1425-1435.
    [27]. Valiev, R. Z.,Islamgaliev, R. K.,Alexandrov, I. V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45 (2): 103-189.
    [28]. LOWE, T. C. mater Sci Forum 2006, (503-504): 355-362.
    [29]. Kim, I.,Kim, J.,Shin, D. H., etc. Effects of equal channel angular pressing temperature ondeformation structures of pure Ti[J]. Materials Science and Engineering A, 2003, 342 (1-2): 302-310.
    [30]. Mingler, B.,Stolyarov, V. V.,Zehetbauer, M. mater Sci Forum, 2006, (503-504): 805-810.
    [31]. Perlovich, Y.,M, I.,V, F. mater Sci Forum, 2006, (503-504): 853-858.
    [32].胡庚祥,蔡询.材料科学基础[M].上海:上海交通大学出版社, 2000.
    [33]. Ko, Y. G.,Shin, D. H.,Park, K.-T., etc. An analysis of the strain hardening behavior of ultra-fine grain pure titanium[J]. Scripta Materialia, 2006, 54 (10): 1785-1789.
    [34]. Park, K. T.,Shin, D. H. Meatll Mater Trans A, 2002, (33): 705.
    [35]. Yapici, G. G.,Karaman, I.,Maier, H. J. Mechanical flow anisotropy in severely deformed pure titanium[J]. Materials Science and Engineering: A, 2006, 434 (1-2): 294-302.
    [36]. Vinogradov, A. Y.,Stolyarov, V. V.,Hashimoto, S., etc. Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation[J]. Materials Science and Engineering A, 2001, 318 (1-2): 163-173.
    [37]. Raab, G. J.,Valiev, R. Z.,Lowe, T. C., etc. Continuous processing of ultrafine grained Al by ECAP-Conform[J]. Materials Science and Engineering A, 2004, 382 (1-2): 30-34.
    [38]. Zhernakov, V. S.,Latysh, V. V.,Stolyarov, V. V., etc. The developing of nanostructured spd ti for structural use[J]. Scripta Materialia, 2001, 44 (8-9): 1771-1774.
    [39]. Zhu, Y. T.,Lowe, T. C.,Langdon, T. G. Performance and applications of nanostructured materials produced by severe plastic deformation[J]. Scripta Materialia, 2004, 51 (8): 825-830.
    [40]. Berbon, P. B.,Furukawa, M.,Horita, Z., etc. Influence of pressing speed on microstructural development in equal-channel angular pressing[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (8): 1989-1997.
    [41]. Furukawa, M.,Horita, Z.,Nemoto, M., etc. Review process in gof metals by equal-channel angular pressing [J]. 2001, (36): 2835-2843.
    [42]. Nakashima, K.,Horita, Z.,Nemoto, M., etc. Development of a multi-pass facility for equal-channel angular pressing to high total strains[J]. Materials Science and Engineering A, 2000, 281 (1-2): 82-87.
    [43]. Neishi, K.,Uchida, T.,Yamauchi, A., etc. Low-temperature superplasticity in a Cu-Zn-Sn alloy processed by severe plastic deformation[J]. Materials Science and Engineering A, 2001, 307 (1-2): 23-28.
    [44]. Gholinia, A.,Prangnell, P. B.,Markushev, M. V. The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE[J]. Acta Materialia, 2000, 48 (5): 1115-1130.
    [45]. Iwahashi, Y.,Horita, Z.,Nemoto, M., etc. The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia, 1998, 46 (9): 3317-3331.
    [46]. Zhu, Y. T.,Lowe, T. C. Observations and issues on mechanisms of grain refinement during ECAP process[J]. Materials Science and Engineering A, 2000, 291 (1-2): 46-53.
    [47]. Stolyarov, V. V.,Zhu, Y. T.,Lowe, T. C., etc. Microstructure and properties of pure Ti processed by ECAP and cold extrusion[J]. Materials Science and Engineering A, 2001, 303 (1-2): 82-89.
    [48]. Lee, S.,Langdon, T. Mater Res Soc Symp Proc[J]. 2000, (601): 359.
    [49]. Yamashita, A.,Yamaguchi, D.,Horita, Z., etc. Influence of pressing temperature on microstructural development in equal-channel angular pressing[J]. Materials Science and Engineering A, 2000, 287 (1): 100-106.
    [50]. Delo, D. P.,Semiatin, S. L. Metall. Mater. Trans. A 1999, (30): 2473.
    [51]. Chen, Y. C.,Huang, Y. Y.,Chang, C. P., etc. The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminium alloy processed by equal channel angular extrusion[J]. Acta Materialia, 2003, 51 (7): 2005-2015.
    [52]. Wang, Y. Y.,Sun, P. L.,Kao, P. W., etc. Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion[J]. Scripta Materialia, 2004, 50 (5): 613-617.
    [53]. Stolyarov, V. V.,Lapovok, R.,Brodova, I. G., etc. Ultrafine-grained Al-5 wt.% Fe alloy processed by ECAP with backpressure[J]. Materials Science and Engineering A, 2003, 357 (1-2): 159-167.
    [54]. Raab, G. I.,Soshnikova, E. P.,Valiev, R. Z. Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti[J]. Materials Science and Engineering A, 2004, 387-389 674-677.
    [55]. Lapovok, R. Y. The positive role of back-pressure in equal channel angular extrusion[J]. Mater Sci Forum, 2006, (503-504): 37-34.
    [56]. Krasilnikov, N. A. Russian Metall, 2005, (3): 35.
    [57]. Chang, J.-Y.,Yoon, J.-S.,Kim, G.-H. Development of submicron sized grain during cyclic equal channel angular pressing[J]. Scripta Materialia, 2001, 45 (3): 347-354.
    [58]. Ferrasse, S.,Segal, V. M.,Ted Hartwig, K., etc. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28 (4): 1047-1057.
    [59]. Mabuchi, M.,Iwasaki, H.,Yanase, K., etc. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE[J]. Scripta Materialia, 1997, 36 (6): 681-686.
    [60]. Kim, J.,Kim, I.,Shin, D. H. Development of deformation structures in low carbon steel by equal channel angular pressing[J]. Scripta Materialia, 2001, 45 (4): 421-426.
    [61]. Valiev, R. Z.,Langdon, T. G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51 (7): 881-981.
    [62]. Beausir, B.,Tóth, L. S.,Neale, K. W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear[J]. Acta Materialia, 2007, 55 (8): 2695-2705.
    [63]. Beyerlein, I. J.,Toth, L. S. Texture evolution in equal-channel angular extrusion[J]. Progress in Materials Science, 2009, 54 (4): 427-510.
    [64].陈振华,夏伟军,程永奇, etc.镁合金织构与各向异性[J].中国有色金属学报, 2005, 5 (01): 1-11.
    [65]. Beyerlein, I. J.,Lebensohn, R. A.,Tom, C. N. Modeling texture and microstructural evolution in the equal channel angular extrusion process[J]. Materials Science and Engineering A, 2003, 345 (1-2): 122-138.
    [66]. Tóth, L. S.,Arruffat Massion, R.,Germain, L., etc. Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field[J]. Acta Materialia, 2004, 52 (7): 1885-1898.
    [67]. Ferrasse, S.,Segal, V. M.,Kalidindi, S. R., etc. Texture evolution during equal channel angular extrusion: Part I. Effect of route, number of passes and initial texture[J]. Materials Science and Engineering A, 2004, 368 (1-2): 28-40.
    [68]. De Messemaeker, J.,Verlinden, B.,Van Humbeeck, J. Texture of IF steel after equal channel angular pressing (ECAP)[J]. Acta Materialia, 2005, 53 (15): 4245-4257.
    [69]. Toth, L. S.,Arruffat Massion, R.,Germain, L., etc. Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field[J]. Acta Materialia, 2004, 52 (7): 1885-1898.
    [70]. Yapici, G. G.,Karaman, I. Common trends in texture evolution of ultra-fine-grained hcp materials during equal channel angular extrusion[J]. Materials Science and Engineering: A, 2009, 503 (1-2): 78-81.
    [71]. Yapici, G. G.,Karaman, I.,Luo, Z.-P. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures[J]. Acta Materialia, 2006, 54 (14): 3755-3771.
    [72]. Agnew, S. R.,Mehrotra, P.,Lillo, T. M., etc. Crystallographic texture evolution of three wrought magnesium alloys during equal channel angular extrusion[J]. Materials Science and Engineering: A, 2005, 408 (1-2): 72-78.
    [73]. Alexandrov, I.,Kilmametov, A. R.,Valiev, R. Z. Russian Metall 2004, (1): 63.
    [74]. Rosochowski, A.,Olejnik, L. Finite element simulation of severe plastic deformationprocesses.[J]. Proceedings of the Institution of mechanical engineers, Part L: Jounal of materials: Design and Applications, 2007, 221 (4): 187-196.
    [75].林金宝.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究[博士论文][D].上海:上海交通大学2009.
    [76]. Prangnell, P. B.,Harris, C.,Roberts, S. M. Finite element modelling of equal channel angular extrusion[J]. Scripta Materialia, 1997, 37 (7): 983-989.
    [77]. Bowen, J. R.,Gholinia, A.,Roberts, S. M., etc. Analysis of the billet deformation behaviour in equal channel angular extrusion[J]. Materials Science and Engineering A, 2000, 287 (1): 87-99.
    [78]. DeLo, D. P.,Semiatin, S. L. Finite-element modeling of nonisothermal equal-channel angular extrusion[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (5): 1391-1402.
    [79]. Semiatin, S. L.,DeLo, D. P.,Shell, E. B. The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion[J]. Acta Materialia, 2000, 48 (8): 1841-1851.
    [80]. Srinivasan, R. Computer simulation of the equichannel angular extrusion (ECAE) process[J]. Scripta Materialia, 2001, 44 (1): 91-96.
    [81]. Li, S.,Bourke, M. A. M.,Beyerlein, I. J., etc. Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion[J]. Materials Science and Engineering A, 2004, 382 (1-2): 217-236.
    [82]. Kim, H. S. Finite element analysis of deformation behaviour of metals during equal channel multi-angular pressing[J]. Materials Science and Engineering A, 2002, 328 (1-2): 317-323.
    [83]. Lee, S. C.,Ha, S. Y.,Kim, K. T., etc. Finite element analysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP[J]. Materials Science and Engineering A, 2004, 371 (1-2): 306-312.
    [84]. Pei, Q. X.,Hu, B. H.,Lu, C., etc. A finite element study of the temperature rise during equal channel angular pressing[J]. Scripta Materialia, 2003, 49 (4): 303-308.
    [85]. Suo, T.,Li, Y.,Guo, Y., etc. The simulation of deformation distribution during ECAP using 3D finite element method[J]. Materials Science and Engineering: A, 2006, 432 (1-2): 269-274.
    [86].余厚毅.钛和钛合金的腐蚀与防腐[J].包装工程, 1986, 15 (03): 1-4.
    [87].郭敏,彭乔.钛的应用开发和腐蚀研究[J].四川化工与腐蚀控制, 2000, 3 (6): 28-31.
    [88]. Jacobs, J. J.,Gilbert, J. L.,Urban, R. M. Corrosion of metal orthopaedic implants[J]. Journal of Bone and Joint Surgery - Series A, 1998, 80 (2): 268-282.
    [89]. Torgersen, S.,Gjerdet, N. R. Retrieval study of stainless steel and titanium miniplates and screws used in maxillofacial surgery[J]. Journal of Materials Science: Materials in Medicine, 1994, 5 (5): 256-262.
    [90].魏宝明主编.金属腐蚀理论及应用.第一版.[M].北京:化学工业出版社, 1984.
    [91]. Elayaperumal, K.,De, P. K.,Balachandra, J. PASSIVITY OF TYPE 304 STAINLESS STEEL-EFFECT OF PLASTIC DEFORMATION[J]. Corrosion, 1972, 28 (7): 269-273.
    [92]. Salvago, G.,Fumagalli, G.,Sinigaglia, D. The corrosion behavior of AISI 304L stainless steel in 0.1 M HCl at room temperature-II. The effect of cold working[J]. Corrosion Science, 1983, 23 (5): 515-523.
    [93]. Baranov, D. A.,Lunichkina, M. A.,Nesterova, A. I. The effect of rolling on the corrosion resistance of high-strength cast iron[J]. Zashchita Metallov, 2003, 39 (4): 420-423.
    [94]. Baranov, D. A.,Leirikh, I. V.,Myznikova, E. S. Corrosion resistance of strained, high-strength cast iron in aqueous media[J]. Protection of Metals, 2004, 40 (3): 254-256.
    [95]. Rofagha, R.,Erb, U.,Ostander, D., etc. Nanostruct Mater, 1993, (2): 12.
    [96].郭敏,彭乔.钛的应用与腐蚀[J].全面腐蚀控制, 2000, 14 (02): 20-24,42.
    [97]. Uhlig, H. H.,R.W, R. Corrosion and corrosion control[J]. 3rd Edition New York: Wiley-Interscience, 1985.
    [98]. Fan, Z.,Jiang, H.,Sun, X., etc. Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation[J]. Materials Science and Engineering: A, In Press, Corrected Proof.
    [1].工程材料实用手册编辑委员会.工程材料实用手册:铝合金,镁合金,钛合金[J].中国标准出版社, 1989.
    [2]. Guo, X.-W.,Chang, J.-W.,He, S.-M., etc. Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions[J]. Electrochimica Acta, 2007, 52 (7): 2570-2579.
    [3]. S.L.Semiatin,V.M.Segal,R.E.Goforth, e. a. Meatll Mater Trans A, 1999, 30 1425-1430.
    [4].魏伟.块体超细晶铜的纸板和组织性能研究[博士论文][D].南京:南京理工大学2004.
    [5]. Stolyarov, V. V.,Zhu, Y. T.,Lowe, T. C., etc. A two step SPD processing of ultrafine-grainedtitanium[J]. Nanostructured Materials, 1999, 11 (7): 947-954.
    [6]. Korshunov, A. I.,Vedernikova, I. I.,Polyakov, L. V., etc. Effects of the number of ECAP passes and ECAP route on the heterogeneity in mechanical properties across the sample from titanium[A]. In Materials Science Forum[C], 2006; 693-698.
    [7].范志国.超细晶纯Ti及TiNi合金制备及其组织与力学行为[博士论文][D].上海:上海交通大学2009.
    [8]. Fan, Z.,Jiang, H.,Sun, X., etc. Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation[J]. Materials Science and Engineering: A, 2009, 527 (1-2): 45-51.
    [9]. Kim, H. S. Evaluation of strain rate during equal-channel angular pressing[J]. Journal of Materials Research, 2002, 17 (1): 172-179.
    [10].李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社, 1990.
    [11].毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社, 1993.
    [12].毛卫民.金属材料的晶体学织构与各向异性[M].北京:科技出版社, 2002.
    [13]. R.J.Roe. J.Appl.Phys., 1965, (36): 2024
    [14]. H.J.Bunge. Z.Metallkde, 1965, (65): 872.
    [15]. Bunge, H. J. Experimental techniques of texture analysis[J]. DGM Information sgesellschaft,Oberursel, 1986.
    [16]. Wang, Y. N.,Huang, J. C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81 (1): 11-26.
    [17]. J.Imhof. In: Proc.ICOTOM5, 1978, (1): 149.
    [18]. D.Ruer,R.Baro. Adv X-Ray Anal, 1977, (20): 187.
    [1]. Delo, D. P.,Semiatin, S. L. Finite-element modeling of non-isothermal equal-channel angularextrusion[J]. Metall. Mater. Trans. A, 1990, 30 (5): 1391-1402.
    [2]. Zuyan, L.,Gang, L.,Wang, Z. R. Finite element simulation of a new deformation type occurring in changing-channel extrusion[J]. Journal of Materials Processing Technology, 2000, 102 (1-3): 30-32.
    [3]. Semiatin, S. L.,DeLo, D. P.,Shell, E. B. The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion[J]. Acta Materialia, 2000, 48 (8): 1841-1851.
    [4]. A.V., N. Int. J. Nanosci., 2005, (4): 745-751.
    [5]. Yang, F.,Saran, A.,Okazaki, K. Finite element simulation of equal channel angular extrusion[J]. Journal of Materials Processing Technology, 2005, 166 (1): 71-78.
    [6]. Bowen, J. R.,Gholinia, A.,Roberts, S. M., etc. Analysis of the billet deformation behaviour in equal channel angular extrusion[J]. Materials Science and Engineering A, 2000, 287 (1): 87-99.
    [7]. Kim, H. S.,Seo, M. H.,Hong, S. I. On the die corner gap formation in equal channel angular pressing[J]. Materials Science and Engineering A, 2000, 291 (1-2): 86-90.
    [8]. J.H., L.,I.h., S.,Y.T., I. Mater.Trans., 2004, (45): 2165-2171.
    [9]. Dumoulin, S.,Roven, H. J.,Werenskiold, J. C., etc. Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry[J]. Materials Science and Engineering: A, 2005, 410-411 248-251.
    [10]. Prangnell, P. B.,Harris, C.,Roberts, S. M. Finite element modelling of equal channel angular extrusion[J]. Scripta Materialia, 1997, 37 (7): 983-989.
    [11]. Kim, H. S. Finite element analysis of deformation behaviour of metals during equal channel multi-angular pressing[J]. Materials Science and Engineering A, 2002, 328 (1-2): 317-323.
    [12]. Stolyarov, V. V.,Zhu, Y. T.,Alexandrov, I. V., etc. Influence of ECAP routes on the microstructure and properties of pure Ti[J]. Materials Science and Engineering A, 2001, 299 (1-2): 59-67.
    [13].单德彬,吕炎,王真.金属体积成形过程三维刚塑性有限元模拟技术的研究[J].塑性工程学报, 1997, (03).
    [14].毕大森,张建,崔宏祥, etc.等通道转角挤压模具挤压力计算[J].重型机械, 2001, (06): 34-36.
    [15].王立忠,安静,王经涛, etc.低碳钢等径弯曲通道变形数值模拟及组织分析[J].西安交通大学学报, 2004, (03): 226-229.
    [16].毕见强. 2A12铝块体超细晶材料的制备、模拟及细化机制的研究[博士论文][D].山东:山东大学2005.
    [17]. J.W., P.,J.Y., S. Metall. Mater. Trans. A, 2001, (32): 3007-3014.
    [18]. Yang, Y.-L.,Lee, S. Finite element analysis of strain conditions after equal channel angular extrusion[J]. Journal of Materials Processing Technology, 2003, 140 (1-3): 583-587.
    [19]. Iwahashi, Y.,Wang, J.,Horita, Z., etc. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia, 1996, 35 (2): 143-146.
    [20]. Figueiredo, R. B.,Cetlin, P. R.,Langdon, T. G. The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys[J]. Acta Materialia, 2007, 55 (14): 4769-4779.
    [21]. Cockcroft, M. G.,Latham, D. J. National Engineer Laboratory. Glasgow, UK,, 1966.
    [22]. Oh, S. I.,Chen, C. C.,obayashi, S. K. J. Eng. Ind., 1979, (101): 36-44.
    [23]. Semiatin, S. L.,Segal, V. M.,Goforth, R. E., etc. Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (5): 1425-1435.
    [24]. Park, J. W.,Suh, J. Y. Metall. Mater. Trans. A, 2001, (32): 3007-3014.
    [25]. Shin, D. H.,Pak, J.-J.,Kim, Y. K., etc. Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing[J]. Materials Science and Engineering A, 2002, 323 (1-2): 409-415.
    [26]. Huang, W. H.,Yu, C. Y.,Kao, P. W., etc. The effect of strain path and temperature on the microstructure developed in copper processed by ECAE[J]. Materials Science and Engineering A, 2004, 366 (2): 221-228.
    [27]. M醠 ek, P.,Cieslar, M.,Islamgaliev, R. K. The influence of ECAP temperature on the stability of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2004, 378 (1-2): 237-241.
    [28]. Goloborodko, A.,Sitdikov, O.,Kaibyshev, R., etc. Effect of pressing temperature on fine-grained structure formation in 7475 aluminum alloy during ECAP[J]. Materials Science and Engineering A, 2004, 381 (1-2): 121-128.
    [29]. Fagin, P. N.,Brown, J. O.,Brown, T. M., etc. Failure modes during equal channel angular extrusion of aluminum alloy 2024[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32 (7): 1869-1870.
    [30]. Wang, Y. Y.,Sun, P. L.,Kao, P. W., etc. Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion[J]. Scripta Materialia, 2004, 50 (5): 613-617.
    [31]. Yamaguchi, D.,Horita, Z.,Nemoto, M., etc. Significance of adiabatic heating in equal-channel angular pressing[J]. Scripta Materialia, 1999, 41 (8): 791-796.
    [32]. Nishida, Y.,Ando, T.,Nagase, M., etc. Billet temperature rise during equal-channel angular pressing[J]. Scripta Materialia, 2002, 46 (3): 211-216.
    [33]. Semiatin, S. L.,Berbon, P. B.,Langdon, T. G. Deformation heating and its effect on grain size evolution during equal channel angular extrusion[J]. Scripta Materialia, 2001, 44 (1): 135-140.
    [34]. Deform reference manual[M].
    [35].林金宝.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究[博士论文][D].上海:上海交通大学2009.
    [36]. Pei, Q. X.,Hu, B. H.,Lu, C., etc. A finite element study of the temperature rise during equal channel angular pressing[J]. Scripta Materialia, 2003, 49 (4): 303-308.
    [37]. Kim, H. S. Analysis of thermal behavior during equal channel multi-angular pressing by the 3-dimensional finite volume method[J]. Materials Science and Engineering: A, 2009, 503 (1-2): 130-136.
    [38]. Kim, I.,Kim, J.,Shin, D. H., etc. Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J]. Materials Science and Engineering A, 2003, 342 (1-2): 302-310.
    [39]. Iwahashi, Y.,Horita, Z.,Nemoto, M., etc. The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia, 1998, 46 (9): 3317-3331.
    [40]. Shin, D. H.,Kim, I.,Kim, J., etc. Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel[J]. Acta Materialia, 2001, 49 (7): 1285-1292.
    [41]. Furukawa, M.,Fukuda, Y.,Oh-Ishi, K., etc. An investigation of deformation in aluminum single crystals using equal-channel angular pressing[A]. In Chandra, T.,Torralba, J. M.,Sakai, T., Materials Science Forum[C], 2003; 2711-2716.
    [42].范志国.超细晶纯Ti及TiNi合金制备及其组织与力学行为[博士论文][D].上海:上海交通大学2009.
    [1]. Furukawa, M.,Iwahashi, Y.,Horita, Z., etc. The shearing characteristics associated withequal-channel angular pressing[J]. Materials Science and Engineering: A, 1998, 257 (2): 328-332.
    [2]. Iwahashi, Y.,Horita, Z.,Nemoto, M., etc. An investigation of microstructural evolution during equal-channel angular pressing[J]. Acta Materialia, 1997, 45 (11): 4733-4741.
    [3]. Beyerlein, I. J.,Field, R. D.,Hartwig, K. T., etc. Texture development in two-pass ECAE-processed beryllium[J]. Journal of Materials Science, 2008, 43 (23-24): 7465-7473.
    [4]. Beyerlein, I. J.,Toth, L. S. Texture evolution in equal-channel angular extrusion[J]. Progress in Materials Science, 2009, 54 (4): 427-510.
    [5]. Isaenkova, M.,Y, P.,V, F., etc. Formation of inhomogeneous texture and structure in metal materials under equal-channel angular pressing[J]. Mater Sci Forum (ICOTOM-14), 2005, 495–497 6.
    [6]. Shin, D. H.,Kim, I.,Kim, J., etc. Microstructure development during equal-channel angular pressing of titanium[J]. Acta Materialia, 2003, 51 (4): 983-996.
    [7]. Balasubramanian, S.,Anand, L. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium[J]. Acta Materialia, 2002, 50 (1): 133-148.
    [8]. Liu, T.,Wang, Y. D.,Wu, S. D., etc. Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP[J]. Scripta Materialia, 2004, 51 (11): 1057-1061.
    [9]. Kim, W. J.,Chung, S. W.,Chung, C. S., etc. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures[J]. Acta Materialia, 2001, 49 (16): 3337-3345.
    [10].毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社, 1993.
    [11].毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社, 2008.
    [12].李树棠. X射线衍射实验方法[J].北京:冶金工业出版社, 1993, 82.
    [13].洪波.电沉积铜薄膜中织构与内应力的研究[博士论文][D].上海:上海交通大学2008.
    [14].梁志德,徐家桢,王福.织构材料的三维取向分析术-ODF分析[M].沈阳:东北工学院出版社, 1986.
    [15]. Wang, Y. N.,Huang, J. C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81 (1): 11-26.
    [16]. Bunge, H. J. Texture analysis in materials science[M]. London: Butterworth, 1982.
    [17]. Alexander, D.,Vogel, S.,Li, S., etc. Unpublished data from Los Alamos National Laboratory[J]. 2004.
    [18]. Li, S.,Alexander, D.,Beyerlein, I., etc. Texture evolution during multi-pass equal channel angular extrusion of beryllium[J]. Proceedings of ICOTOM-15, 2008 [CD-ROM].
    [19]. Kim, W. J.,Hong, S. I.,Kim, Y. S., etc. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J]. Acta Materialia, 2003, 51 (11): 3293-3307.
    [20]. DeLo, D.,TR, B.,SL, S. Microstructure and texture evolution during equal channel angular extrusion of Ti-6Al-4V[J]. 2000, March 12-16 10.
    [21].肖林.密排六方金属的塑性变形[J].稀有金属材料与工程, 1995, (06).
    [22]. PG, P. The crystallography and deformation modes of hcp metals[J]. Metall Rev 1967, (12): 169-194.
    [23]. Yoo, M.,Wei, C. Slip modes of hexagonal-close-packed metals[J]. Philos Mag, 1966, (14): 573-587.
    [24]. Paton, N.,Backofen, W. Metall. Trans., 1970, (1): 2839.
    [25]. Minonishi, Y.,Morozumi, S.,Yoshinaga, H. Scripta metall, 1982, (16): 427.
    [26]. Akhtar, A. Metall. Trans, 1975, (A6): 1105.
    [27]. Numakura, H.,Koiwa, M. Metall. Sci. Technol, 1998, (16): 4.
    [28].崔忠圻.金属学与热处理(铸造、焊接专业用)[M].北京:机械工业出版社, 1995.
    [29].胡庚祥,蔡询.材料科学基础[M].上海:上海交通大学出版社, 2000.
    [30].杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社, 2007.
    [31].毛卫民.金属材料的晶体学织构与各向异性[M].北京:科技出版社, 2002.
    [32].张信钰.金属和合金的织构[M].北京:科学出版社, 1976.
    [33]. De Messemaeker, J.,Verlinden, B.,Van Humbeeck, J. Texture of IF steel after equal channel angular pressing (ECAP)[J]. Acta Materialia, 2005, 53 (15): 4245-4257.
    [34]. Fundenberger, J. J.,Philippe, M. J.,Wagner, F., etc. Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys)[J]. Acta Materialia, 1997, 45 (10): 4041-4055.
    [35]. Paton, N.,Backofen, W. Metall Trans[J]. 1970, (1): 2839.
    [36]. Paton, N.,Backofen, W. Trans TMS-AMIE 1969, (245): 1369.
    [37]. Kim, I.,Kim, J.,Shin, D. H., etc. Deformation twins in pure titanium processed by equal channel angular pressing[J]. Scripta Materialia, 2003, 48 (6): 813-817.
    [38]. Fan, Z.,Jiang, H.,Sun, X., etc. Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation[J]. Materials Science and Engineering: A, In Press, Corrected Proof.
    [39].陈振华,夏伟军,程永奇, etc.镁合金织构与各向异性[J].中国有色金属学报, 2005, 5 (01):1-11.
    [40]. Wang, Y. M.,Ma, E.,Chen, M. W. Enhanced tensile ductility and toughness in nanostructured Cu[J]. Applied Physics Letters, 2002, 80 (13): 2395.
    [41]. Ko, Y. G.,Shin, D. H.,Park, K.-T., etc. An analysis of the strain hardening behavior of ultra-fine grain pure titanium[J]. Scripta Materialia, 2006, 54 (10): 1785-1789.
    [1]. Adamescu, R. A.,Bratchikov, D. A.,Geld, P. V., etc. Texture of Materails. In Gottstein, G.,Luc, K., Eds. 1978; Vol. 2, 4031.
    [2]. Inagaki, H. Texture and mechanical anisotropy in cold rolled and annealed pure Ti sheets[J].Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1992, 83 (1): 40-46.
    [3].朱知寿,顾家琳,陈南平.冷轧形变量对钛板材再结晶织构形成的影响[J].材料科学与工艺, 1995, (02).
    [4]. Tchorzewski, R. M.,Hutchinson, W. B. 1972, 2 109-112.
    [5].朱知寿,顾家琳,陈南平.钛的织构控制方法与力学性能各向异性的研究[J].机械工程材料, 1994, (06).
    [6].朱知寿,颜鸣皋,顾家琳,陈南平.钛的相变织构及其影响因素研究[J].航空材料学报, 1996, (01).
    [7]. Wang, Y. M.,Ma, E.,Valiev, R. Z. Adv Mater, 2004, 16 (4): 328-331.
    [8]. Wang, Y. N.,Huang, J. C. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81 (1): 11-26.
    [9].范志国.超细晶纯Ti及TiNi合金制备及其组织与力学行为[博士论文][D].上海:上海交通大学2009.
    [10].靳丽.等通道角挤压(ECAE)变形镁合金微观组织与力学性能研究[博士论文][D].上海:上海交通大学2006.
    [11]. Honeycombe, R. The plastic deformation of Metals[J]. Edward Amold(Australia) Pty Ltd, 1984, 45.
    [1].秦莹,王少安.钛及钛合金口腔种植体的腐蚀性能研究[J].国际口腔医学杂志, 2008, 35 (4): 255-258.
    [2].黄永光.外科植入用钛合金材料及其标准化[J].钛工业进展, 2002, (01).
    [3].陈长春,孙.吴.髋关节置换用股骨假体材料的研究与应用[J].材料导报, 1998, (06).
    [4]. Stolyarov, V. V.,Zhu, Y. T.,Alexandrov, I. V., etc. Influence of ECAP routes on the microstructure and properties of pure Ti[J]. Materials Science and Engineering A, 2001, 299 (1-2): 59-67.
    [5]. Stolyarov, V. V.,Zhu, Y. T.,Alexandrov, I. V., etc. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J]. Materials Science and Engineering A, 2003, 343 (1-2):43-50.
    [6]. Garbacz, H.,Pisarek, M.,Kurzydlowski, K. J. Corrosion resistance of nanostructured titanium[J]. Biomolecular Engineering, 2007, 24 (5): 559-563.
    [7]. Faghihi, S.,Azari, F.,Zhilyaev, A. P., etc. Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion[J]. Biomaterials, 2007, 28 (27): 3887-3895.
    [8]. Elayaperumal, K.,De, P. K.,Balachandra, J. PASSIVITY OF TYPE 304 STAINLESS STEEL-EFFECT OF PLASTIC DEFORMATION[J]. Corrosion, 1972, 28 (7): 269-273.
    [9]. Salvago, G.,Fumagalli, G.,Sinigaglia, D. The corrosion behavior of AISI 304L stainless steel in 0.1 M HCl at room temperature-II. The effect of cold working[J]. Corrosion Science, 1983, 23 (5): 515-523.
    [10]. Baranov, D. A.,Lunichkina, M. A.,Nesterova, A. I. The effect of rolling on the corrosion resistance of high-strength cast iron[J]. Zashchita Metallov, 2003, 39 (4): 420-423.
    [11]. Baranov, D. A.,Leirikh, I. V.,Myznikova, E. S. Corrosion resistance of strained, high-strength cast iron in aqueous media[J]. Protection of Metals, 2004, 40 (3): 254-256.
    [12]. Rofagha, R.,Erb, U.,Ostander, D., etc. Nanostruct Mater, 1993, (2): 12.
    [13]. Vinogradov, A.,Mimaki, T.,Hashimoto, S., etc. On the corrosion behaviour of ultra-fine grain copper[J]. Scripta Materialia, 1999, 41 (3): 319-326.
    [14]. Chung, M.-K.,Choi, Y.-S.,Kim, J.-G., etc. Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys[J]. Materials Science and Engineering A, 2004, 366 (2): 282-291.
    [15]. Balyanov, A.,Kutnyakova, J.,Amirkhanova, N. A., etc. Corrosion resistance of ultra fine-grained Ti[J]. Scripta Materialia, 2004, 51 (3): 225-229.
    [16]. Hoseini, M.,Shahryari, A.,Omanovic, S., etc. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing[J]. Corrosion Science, 2009, 51 (12): 3064-3067.
    [17].王革,程祥荣.阳极氧化对纯钛氧化膜影响的电化学腐蚀研究[J].中华口腔医学杂志, 2002, (01).
    [18].Geis Gerstorfer, J. In vitro corrosion measurements of dental alloys[J]. Journal of Dentistry, 1994, 22 (4): 247-251.
    [19].郭文渊.亚稳β型Ti-Nb-Ta-Zr-O合金的显微组织与性能[博士论文][D].上海:上海交通大学2008.
    [20].裘松波,曹风华,孙占波.动电位极化技术在口腔修复材料腐蚀测定中的应用[J].第三军医大学学报, 2001, (02).
    [21].刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社, 1993; 88-89,230
    [22]. Salimi, A.,Roushani, M.,Hallaj, R. Micromolar determination of sulfur oxoanions and sulfide at a renewable sol-gel carbon ceramic electrode modified with nickel powder[J]. Electrochimica Acta, 2006, 51 (10): 1952-1959.
    [23].常建卫. Mg-Nd-Zn-Zr稀土镁合金腐蚀行为的研究[博士论文][D].上海:上海交通大学2007.
    [24].曹楚南.腐蚀电化学原理[M].北京:化学工业出版社, 2008.
    [25].曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科技出版社, 2002.
    [26].崔宝玉,张振邦,火时中.钛电极交流阻抗谱的弥散效应[J].腐蚀科学与防护技术, 1994, (02).
    [27]. Jones, D. Principals and prevention of corrosion. 2nd ed. [M]. Upper Saddle River, NJ, US: Prentice-Hall, Inc., 1992.
    [28]. Movchan, B. Jakupolska LN. Prot Met 1969, (5): 511.
    [29]. Johansen, N.,Adams, G.,Rysselberghe, P. V. J Electrochem Soc, 1957, (104): 339.
    [30]. Scully, J. C. The Fundamentals of Corrosion 3rd edition[M]. New York: Pergamon Pr, 1990.
    [31]. Bockris, J.,Khan, S. Surface Electrochemistry: A Molecular Level Approach[M]. New York: Plenum Press, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700