铜表面置换镀镍及镀层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电子领域中,精细铜线路表面的化学镀镍通常需要借助钯活化,不但价格昂贵,而且容易造成溢镀,开发在铜表面直接化学沉积镍镀层的方法具有重要意义。基于硫脲与一价铜离子和镍离子形成的络合物稳定常数相差14个数量级,本文选择硫脲为铜的特定配位剂,使铜的稳定电位大幅度负移并低于镍的沉积电位,开发出了铜表面置换镀镍的方法。根据不同条件下制备的置换镀镍层组成和性能的差异,将其用作自催化型化学镀镍的催化层来代替钯活化,或者直接作为铜基体的保护性镀层。
     利用XPS证明了铜在硫脲溶液中会发生配位溶解生成一价铜离子。通过考察硫脲溶液pH值与铜的配位溶解速率之间的关系,明确了随硫脲溶液pH值的升高,铜表面会逐渐生成一层保护膜,导致硫脲对铜配位溶解能力的降低。依据Nernst方程计算和电化学测试,发现了在高浓度硫脲溶液中铜的稳定电位将低于镍的沉积电位,证明了铜表面置换镀镍的热力学可行性,并利用EDX和XPS验证了置换镀镍层在铜表面的沉积。通过对镀层的成分分析,发现强酸性条件下镍与硫共沉积于镀层之中,但是随着镀液pH值的升高镀层中还会夹杂有硫脲分子。
     将强酸性条件下制备的置换镀镍层用作自催化型化学镀镍的催化层,探讨了置换镀镍层成分和催化活性之间的关系。通过对镀层的分析和电化学测试,发现了镀层中硫含量随着沉积时间的延长和镀液pH值的升高而上升,导致镀层更容易发生自钝化,从而造成镀层催化活性的降低。当置换镀镍层的沉积时间为10s、置换镀镍溶液的pH=0时,制备的置换镀镍层催化活性最高。根据电化学测试及XPS分析结果,阐释了置换镀镍层必须经过后处理去除吸附的硫脲,才能表现出对化学镀镍的催化活性。从催化活性、所得化学镀镍层的性能以及对化学镀镍溶液寿命的影响等方面对比了基于铜表面置换镀镍的镍活化法和传统的钯活化法,证明了镍活化可以取代钯活化。利用交流伏安法和XPS揭示了镍可以在析氢的电位区间内发生非常规的亚单层氧化,明确了其氧化电位与次亚磷酸根在镍表面氧化电位之间的关系,并根据亚稳态水合氧化物催化模型提出了镍的亚单层氧化催化了次亚磷酸根氧化的假说。
     将近中性条件下制备的置换镀镍层用作铜的保护性镀层,发现镀层可以为铜基体提供有效的电化学保护。对镀层成分与耐蚀性之间的关系进行了探讨,认为当镀液pH=6.0时,镀层中夹杂的硫脲分子以及氧化亚铜有利于镀层耐蚀性的提高。详细研究了镀液pH值、沉积时间、施镀温度和镀液组成等因素对置换镀镍层耐蚀性能的影响,优化出了最佳的施镀工艺,即:置换镀镍溶液的pH为6.0,沉积时间为4min,施镀温度为60℃,镀液组成为40g/L柠檬酸钠、30~40g/L硫酸镍和150g/L硫脲。
In electronic field, Pd-activation is usually required to initiate the electroless Niplating on Cu circuits with fine dimensions. It will increase cost and sometimescause some defects. Therefore, the development of direct electroless Ni plating onCu without Pd-activation is significant. Because the stability constant ofCu(I)-thiourea complex is14orders of magnitude higher than that of Ni(II)-thioureacomplex, thiourea has been chosen as the specific complexing agent for Cu in thispaper. As a result, the steady potential of Cu in thiourea solution would shiftnegatively and be negative enough for the reduction of Ni2+. According to thesefindings, a methodology for replacement Ni plating on Cu surface was developed.The Ni films prepared under different conditions had significant differences incomposition and properties. Therefore, they could be used as the catalytic films forelectroless Ni plating in order to replace Pd-activation and as the protective films forCu substrate, respectively.
     It was demonstrated by X-ray photoelectron spectroscopy (XPS) that Cu+wasgenerated during the dissolution process of Cu in thiourea solution, and wascoordinated by thiourea via S atom. With the increase of the pH value in thioureasolution, a passive film would be formed on Cu surface, resulting in the inhibition ofactive dissolution of Cu. Based on Nernst equation and electrochemicalmeasurements, it was demonstrated that the steady potential of Cu in highconcentrated thiourea solution would be negative enough for Ni deposition.According to the thermodynamic principle, the deposition of Ni on Cu byreplacement plating could be realized, and the obtained Ni films were illustrated byXPS and energy dispersive X-ray spectrometry (EDX). It suggested that Ni and Swere co-deposited in strong acidic solution, and thiourea was doped in the Ni filmwith the rise of pH.
     The Ni films prepared in strong acidic solution were used as the catalytic filmsfor eletroless Ni plating. The significance of film composition for its catalyticactivity was investigated. EDX results revealed that the sulfur content in theprepared Ni films increased with the increase of plating time and pH. Theelectrochemical measurements indicated that the Ni films with higher sulfur contentwere more prone to be passivated, with negative influence on its catalytic activityfor hypophosphite oxidation. Thus, the catalytic activity for electroless Ni platingwould be the highest when the plating time and pH value were10s and0,respectively. It was demonstrated by electrochemical measurement and XPSanalysis, that the post-treatment to eliminate the adsorbed thiourea must be performed in order to trigger the catalytic activity for electroless Ni plating.Importantly, the developed Ni-activation method was systematically compared withthe traditional Pd-activation method in terms of the catalytic activity, the propertiesof resulting Ni-P layers and the influence on the electroless nickel plating bath. Itindicated that the developed Ni-activation method was capable of replacingPd-activation. Moreover, underlying premonolayer oxidation of Ni electrode inhydrogen evolution reaction potential region was revealed by AC voltammetry andXPS. The relationship between its potential range and that of hypophosphiteoxidation on Ni was investigated. Based on the incipient hydrous oxide adatommediator (IHOAM) model, it was proposed that the premonolayer oxidation of Nicatalyzed hypophosphite oxidation.
     The Ni films prepared in neutral solution were used as protective films for Cusubstrate, which could provide effective electrochemical protection. The influnce offilm composition on corrosion resistance was studied. It was demonstrated thatthiourea and Cu_2O were doped in the Ni film prepared at pH of6.0, which mightplay a promotional role in the improvement of corrosion resistance. The influencesof pH value, plating time, temperature and bath composition on the properties of thedeposited Ni films were investigated in detail to determine the optimized platingconditions. When the pH value was controlled at6.0, the plating time was4minutes,the temperature was maintained at60℃, and the plating bath comprised40g/Lsodium citrate,30~40g/L nickel sulfate and150g/L thiourea, the prepared Ni filmsexhibited the best corrosion resistance.
引文
[1] Siau S,Vervaet A,Degrendele L,Baets J D,Calster A V. QualitativeElectroless Ni/Au Plating Considerations for the Solder Mask on Top ofSequential Build-up Layers[J]. Appl. Surf. Sci.,2006,252(8):2717-2740.
    [2] Chen W D,Sung Y,Chang C P,Chen Y C,Ger M D. The Preparation ofThermo-responsive Palladium Catalyst with High Activity for ElectrolessNickel Deposition[J]. Surf. Coat. Tech.,2010,204(14):2130-2135.
    [3]杨维生.化学镀镍金在印制电路板制造中的应用[J].化工新型材料,2002,30(2):24-26.
    [4] Huang H L,Guo X P,Zhang G A,Dong Z H. The Effects of Temperature andElectric Field on Atmospheric Corrosion Behaviour of PCB-Cu underAbsorbed Thin Electrolyte Layer[J]. Corrosion Science,2011,53(5):1700-1707.
    [5] Kim T,Kingon A I,Maria J P,Croswell R T. Lead Zirconate Titanate ThinFilm Capacitors on Electroless Nickel Coated Copper Foils for EmbeddedPassive Applications[J]. Thin Solid Films,2007,515(18):7331-7336.
    [6] Ham Y S, Koh J H. The Dielectric Characteristics of Screen PrintedSrTiO3-Epoxy Composite Thick Films on the Cu Plate PCB Substrates[J].Ferroelectrics,2009,382(1):85-91.
    [7] Ham Y S,Kim S H,Koh J H. Electrical Properties of SrTiO3-epoxy CompositeThick Films on Cu Plate PCB substrates[J]. Journal of the Korea PhysicalSociety,2009,55(3):1079-1082.
    [8] Rohan J F,O'Riordan G,Boardman J. Selective Electroless Nickel Depositionon Copper as a Final Barrier/Bonding Layer Material for MicroelectronicsApplications[J]. Appl. Surf. Sci.,2002,185(3-4):289-297.
    [9] Chun H S,Yoon J W,Jung S B. Solid-state Interfacial Reactions betweenSn-3.5Ag-0.7Cu Solder and Electroless Ni-immersion Au Substrate duringHigh Temperature Storage Test[J]. J. Alloy. Compd,2007,439(1-2):91-96.
    [10] Lu Y H,Wang W,Xu H B,Kong X F,Wang J. Copper Corrosion and AnodicElectrodissolution Mechanisms in Naturally Aerated Stagnant0.5M H2SO4[J].Corrosion Science,2010,52(3):780-787.
    [11] Zhang C,Xu N,Yang B. The Corrosion Behavior of Copper in SimulatedUterine Fluid[J]. Corrosion Science,1996,38(4):635-641.
    [12] Huang H L,Dong Z H,Chen Z Y,Guo X P. The effects of Cl-ion concentrationand relative humidity on atmospheric corrosion behaviour of PCB-Cu underadsorbed thin electrolyte layer[J]. Corrosion Science,2011,53(4):1230-1236.
    [13] Feng Y,Teo W K,Siow K S,Tan K L,Hsieh A K. The Corrosion Behaviorof Copper in Neutral Tap Water. Part I. Corrosion Mechanisms[J]. CorrosionScience,1996,38(3):369-385.
    [14] Feng Y,Teo W K,Siow K S,Tan K L,Hsieh A K. The Corrosion Behaviorof Copper in Neutral Tap Water. Part II. Determination of Corrosion Rates[J].Corrosion Science,1996,38(3):387-395.
    [15] Kantola K,Tenno R. Machine Vision in Detection of Corrosion Products onSO2Exposed ENIG Surface and an in situ Analysis of the Corrosion Factors[J].J. Mater. Process Tech.,2009,209(5):2707-2714.
    [16] Zou S W,Li X G,Dong C F,Li H Y,Xiao K. Effect of Mold on CorrosionBehavior OF Printed Circuit Board-Copper and ENIG Finished[J]. ActaMetallurgica Sinica,2012,48(6):687-695.
    [17] Cui G F,Zhao J,Liu S F,Wu G. Structural and Corrosion Properties of NiPxMetallic Glasses: Insights from EIS and DFT[J]. J. Phys. Chem. C,2011,115(43):21169-21176.
    [18] Yang Q,Liang S H,Wang J,Wang Y. Morphologies and Corrosion Resistancesof Electroless Ni-P Coated Nanoporous Coppers[J]. ScienceChina-technological Sciences,2013,56(5):1147-1150.
    [19] Jin Z Y,Li P P,Zheng B Z,Xiao D. The Structure and Properties of ElectrolessNi-Mo-Cr-P Coatings on Copper Alloy[J]. Materials and Corrosion-werkstoffeund Korrosion,2013,64(4):341-346.
    [20] Ballantyne A,Forrest G,Goosey M,Griguceviciene A,Juodkazyte J,KellnerR,Ryder K,Selskis A,Tarozaite R,Veninga E. Advanced surface protectionfor improved reliability PCB systems (ASPIS)[J]. Circuit World,2012,38(1):21-29.
    [21] Rohan J F,O’Riordan G. Characterisation of the Electroless Nickel Deposit as aBarrier Layer/Under Bump Metallurgy on IC Metallisation[J]. Microelectron.Eng.,2003,65(1-2):77-85.
    [22] Kwok R W M,Chan K C M,Bayes M W. Develpoment of an Electroless NickelImmersion Gold Process for PCB Finial Finishes[J]. Circuit World,2004,30(3):5-8.
    [23] Kunimoto M,Shimada T,Odagiri S,Nakai H,Homma T. Density FunctionalTheory Analysis of Reaction Mechanism of Hypophosphite Ions on MetalSurfaces[J]. J. Electrochem. Soc.,2011,158(9):D585-D589.
    [24] Kunimoto M,Nakai H,Homma T. Density Functional Theory Analysis forOrbital Interaction between Hypophosphite Ions and Metal Surfaces[J]. J.Electrochem. Soc.,2011,158(10):D626-D633.
    [25] Homma T,Komatsu I,Tamaki A,Nakai H,Osaka T. Molecular Orbital Studyon the Reaction Mechanisms of Electroless Deposition Processes[J].Electrochim. Acta,2001,47(1-2):47-53.
    [26] Kunimoto M,Nakai H,Homma T. Theoretical Analysis of Catalytic Activity ofMetal Surfaces on Reaction of Hypophosphite Ion[J]. Electrochemistry,2012,80(3):126-131.
    [27] Kunimoto M,Seki K,Nakai H,Homma T. Theoretical Analysis of AdsorptionStructure of Hydrated Hypophosphite Ion on Pd (111) Surface[J].Electrochemistry,2012,80(4):222-225.
    [28]姜晓霞.化学镀理论及实践[M].北京:国防工业出版社,2000:297-298.
    [29] Luo Q, Mackay R A, Babu S V. Copper Dissolution in AqueousAmmonia-Containing Media during Chemical Mechanical Polishing[J]. Chem.Mater.,1997,9(10):2101-2106.
    [30] Shi Z Y,Wang D Q,Ding Z M. Nanocrystalline Ni-B Coating SurfaceStrengthening Pure Copper[J]. Applied Surface Science,2006,253(3):1051-1054.
    [31] Shi Z Y,Wang D Q,Ding Z M. Surface strengthening pure copper by Ni-Bcoating[J]. Applied Surface Science,2004,221(1-4):62-68.
    [32]周红娟,尹卓湘,马婕.电位-pH图的研究及发展[J].中国稀土学报,2008,26:981-986.
    [33] Demidov A I,Volkova E N. Potential-pH Diagram for the Nickel-Water SystemContaining Nickel(III) Metahydroxide[J]. Russian Journal of AppliedChemistry,2009,82(8):1498-1500.
    [34] Liang D F,Liu Z W,Hilty R D,Zangari G. Electrodeposition of Ag-Ni Filmsfrom Thiourea Complexing Solutions[J]. Electrochimica Acta,2012,82:82-89.
    [35] Lee C L,Kuo L C,Huang Y C. Mesoporous, Self-Assembled PalladiumNanospheres: High Efficiency Activator for Electroless Nickel Deposition[J].Electrochem. Commun.,2006,8(5):697-702.
    [36] Kuo L C,Huang Y C,Lee C L,Yen Y W. The Activation Effect of PdNanoparticles on Electroless Nickel-phosphorous Deposition[J]. Electrochim.Acta,2006,52(1):353-360.
    [37] Liu H B,Li J,Wang L J. Electroless Nickel Plating on APTHS Modified WoodVeneer for EMI Shielding[J]. Appl. Surf. Sci.,2010,257(4):1325-1330.
    [38] Song D,Zhou J D,Jiang W,Zhang X J,Yan Y,Li F S. A Novel Activationfor Electroless Plating on Preparing Ni/PS Microspheres[J]. Mater. Lett.,2009,63(2):282-284.
    [39] Byeon J H,Yoon K Y,Jung Y K,Hwang J. Thermophoretic Deposition ofPalladium Aerosol Nanoparticles for Electroless Micropatterning of Copper[J].Electrochem. Commun.,2008,10(9):1272-1275.
    [40] Flis J,Duquette D J. Initiation of Electroless Nickel Plating on Copper,Palladium-activated Copper, Gold, and Platimum[J]. J. Electrochem. Soc.,1984,131(2):254-260.
    [41] Touhami M E,Chassaing E,Cherkaoui M. Kinetics of the AutocatalyticDeposition of Ni-P Alloys in Ammoniacal Solutions[J]. Electrochim. Acta.,1998,43(12-13):1721-1728.
    [42] Durkin B. Electroless Nickel Technology and Business Trends in2004[J]. Met.Finish.,2004,102(1):21-26.
    [43] Donahue F M,Yu C U. A Study of the Mechanism of the Electroless Depositionof Nickel[J]. Electrochim. Acta.,1970,15(1):237-239.
    [44] Touhami M E,Chassaing E,Cherkaoui M. Modelisation of Ni-P ElectrolessDeposition in Ammoniacal Solutions[J]. Electrochim. Acta.,2003,48(24):3651-3658.
    [45] Bulasara V K, Thakuria H, Uppaluri R, Purkeit M K. CombinatorialPerformance Characteristics of Agitated Nickel Hypophosphite ElectrolessPlating Baths [J]. Journal of Materials Processing Technology,2011,211(9):1488-1499.
    [46] Marshall J H. The Nickel Metal Catalyzed Decomposition of AqueousHypophosphite Solutions[J]. J. Electrochem. Soc.,1983,130(2):369-372.
    [47] Abrantes L M,Correia J P. On the Mechanism of Electroless Ni-P Plating[J]. J.Electrochem. Soc.,1994,141(9):2356-2360.
    [48] Hsu H F,Tsai C L,Lee C W,Wu H Y. Mechanism of Immersion Depositionof Ni-P Films on Si(100) in an Aqueous Alkaline Solution Containing SodiumHypophosphite[J]. Thin Solid Films,2009,517(17):4786-4791.
    [49] Tang X J,Bi C L,Han C X,Zhang B G. A New Palladium-free SurfaceActivation Process for Ni Electroless Plating on ABS Plastic[J]. Mater. Lett.,2009,63(11):840-842.
    [50] Tang X J,Wang J G,Wang C J,Shen B X. A Novel Surface Activation Methodfor Ni/Au Electroless Plating of Acrylonitrile-Butadiene-Styrene[J]. Surf. Coat.Tech.,2011,206(6):1382-1388.
    [51] Karmalkarz S,Kumar V P. Effects of Nickel and Palladium Activations on theAdhesion and I-V Characteristics of As-Plated Electroless Nickel Deposits onPolished Crystalline Silicon[J]. J. Electrochem. Soc.,2004,151(9):C554-C558.
    [52] Inazawa S,Majima M,Koyama K,Tani Y,Nakayama S,Nakao S,Kim D,Obata K. Development of Electroless Ni Plating Bath Using Ti (III) IonReductant[J]. J. Surf. Finish. Soc. Jpn.,2002,53(1):694-697.
    [53] Inazawa S,Majima M,Koyama K,Tani Y,Nakayama S,Nakao S,Kim D,Obata K. Development of Electroless Ni Plating Method Using ElectrolyticRegeneration of Reductant~Electrolytic Reduction of Ti(Ⅳ)[J]. J. Surf.Finish. Soc. Jpn.,2003,54(7):488-491.
    [54] Yagi S,Murase K,Tsukimoto S,Hirato T,Awakura Y. Electroless NickelPlating onto Minute Patterns of Copper Using Ti(IV)/Ti(III) Redox Couple[J].J. Electrochem. Soc.,2005,152(9):C588-C592.
    [55] Cui G F,Ke X,Liu H,Zhao J W,Song S Q,Shen P K. First-principlesConsiderations on Spontaneous Replacement of Copper by Tin in the Presenceof Thiourea[J]. J. Phys. Chem. C,2008,112(35):13546-13553.
    [56]杨保民.铜、钴、镍、锌与PAN形成的络合物研究及铜的测定[J].昆明理工大学学报(理工版),2005,30(4):117-119.
    [57]赵林治,杨书廷.硫脲稳定性研究[J].河南师范大学学报(自然科学版),1992,20(1):98-102.
    [58] Brown G M,Hope G A,Schweinsberg D P,Fredericks P M. SERS Study of theInteraction of Thiourea with a Copper Electrode in Sulphuric Acid Solution[J].J. Electroanal. Chem.,1995,380(1-2):161-166.
    [59] Liu Z J,Wu G Z. Surface-enhanced Raman Scattering of Thiourea Adsorbed onthe Silver Electrode: Bond Polarizability Derivatives as Elucidated from theRaman Intensities[J]. Chemical Physics Letters,2004,389(4-6):298-302.
    [60] Papapanayiotou D,Nuzzo R N,Alkire R C. Adsorption of Thiourea on CuElectrodes Monitored by in situ Infrared Spectroscopy[J]. J. Electrochem.Soc.,1998,145(10):3366-3379.
    [61] Tian Z Q,Li W H,Mao B W. Surface-enhanced Raman Spectroscopic Studieson Structural Dynamics of Coadsorption of Thiourea and ClO4-at AgElectrodes[J]. J. Electroanal. Chem.,1994,379(1-2):271-279.
    [62] Azzaroni O,Andreasen G,Blum B. Scanning Tunneling Microscopy Studies ofthe Electrochemical Reactivity of Thiourea on Au(111) Electrodes[J]. J. Phys.Chem. B,2000,104(7):1395-1398.
    [63] Bowmaker G A,Pakawatchai C,Skelton B W,Thanyasirikul Y,White A H.Structural and Spectroscopic Studies of [M((x)tu)4]+Systems (M=Cu, Ag;(x)tu=(substituted) Thiourea)[J]. Zeitschrift Fur Anorganische undAllgemeine Chemie,2008,634(14):2583-2588.
    [64] Méndez S,Andreasen G,Schilardi P L. The Influence of a Thiourea Additiveon the Kinetics of Roughening and Brihtening[J]. Langmuir,1998,14(9):2515-2524.
    [65] Kumar K S,Biswas K. Effect of Thiourea on Grain Refinement and DefectStructure of the Pulsed Electrodeposited Nanocrystalline Copper[J]. Surf. Coat.Tech.,2013,214:8-18.
    [66] Wang G,Jiang Z,Lian J,Jiang Q. The Grain Refinement Mechanism ofElectrodeposited Copper[J]. Journal of Materials Research,2009,24(10):3226-3236.
    [67] N. Tantavichet, M. Pritzker. Effect of Plating Mode, Thiourea and Chloride onthe Morphology of Copper Deposits Produced in Acidic Sulphate Solution[J].Electrochimica Acta,2005,50(9):1849-1861.
    [68] Kumar K S,Biswas K,Balasubramaniam R. Mechanism of film growth ofpulsed electrodeposition of nanocrystalline copper in presence of thiourea[J].Journal of Nanoparticle Research,2011,13(11):6005-6012.
    [69] Alodan M, Smyrl W. Effect of Thiourea on Copper Dissolution andDeposition[J]. Electrochim. Acta,1998,44(2-3):299-309.
    [70] Cheong W J,Luan B L,Shoesmith D W. The Effects of Stabilizers on the BathStability of Electroless Ni Deposition and the Deposit[J]. Appl. Surf. Sci.,2004,229(1-4):282-300.
    [71] Liu H P,Li N,Bi S F,Li D Y,Zou Z L. Effect of Organic Additives on theCorrosion Resistance Properties of Electroless Nickel Deposits[J]. Thin solidfilms,2008,516(8):1883-1889.
    [72] Lin K L,Hwang J W. Effect of Thiourea and Lead Acetate on the Deposition ofElectroless Nickel[J]. Mater. Chem. Phys.,2002,76(2):204-211.
    [73] Baskaran I,Narayanan T S N S,Stephen A. Effect of Accelerators andStabilizers on the Formation and Characteristics of Electroless Ni-PDeposits[J]. Mater. Chem. Phys.,2006,99(1):117-126.
    [74] Rahimi A R,Modarres H,Abdouss M. Study on Morphology and CorrosionResistance of Electroless Ni-P Coatings[J]. Surface Engineering,2009,25(5):367-371.
    [75] Oni A. The Mode of Action of Thiourea in Electroless Nickel Plating[J].Transactions of the Institute of Metal Finishing,1988,66:47-49.
    [76] Petulkhovz I V. The Effect of Component Concentrations in Electroless NickelPlating Solution on Topography and Microrelief of Ni-P Coatings[J]. Russian J.Electrochem.,2008,44(2):147-157.
    [77] Sotskaya N V,Ryabinina E I,Kravchenko T A. The Role of Organic Additivesin the Electroless Nickel Plating Bath[J]. Prot. Met.,2003,39(3):245-249.
    [78] Han K P,Fang J L. Stabilization Effect of Electroless Nickel Plating byThiourea[J]. Met. Finish.,1997,95(2):73-75.
    [79] Sotskaya N V, Kravchenko T A, Ryabinina E I. Anodic Oxidation ofHypophosphite on a Nickel-Phosphorus Electrode in the Presence of someOrganic Compounds[J]. Russian J. Electrochem.,2003,39(9):960-966.
    [80] Chen Y H,Wang Y Y,Wan C C. Microstructural Characteristics of ImmersionTin Coatings on Copper Circuitries in Circuit Boards[J]. Surf. Coat. Tech.,2007,202(3):417-424.
    [81] Huttunen-Saarivirta E,Tiainen T,Lepisto T. Microstructural Study of theInitiation and Formation of Immersion Tin Coating on Copper[J]. Mat. Sci.Eng. A,2002,336(1-2):52-58.
    [82] Zhao J,Li N,Cui G F,Zhao J W. Study on Immersion Tin Process byElectrochemical Methods and Molecular Orbital Theory[J]. J. Electrochem.Soc.,2006,153(12):C848-C853.
    [83] Kong Y,Shao J Q,Wang W C,Liu Q F,Chen Z D. Electroless Sn-Ni AlloyPlating with High Sn Content Free of Activation Pretreatment[J]. J. AlloyCompd.,2009,477(1-2):328-332.
    [84]邹敏敏.电镀镍层表面无铬钝化膜的制备及性能研究[D].长沙:中南大学,2012:32-34.
    [85] Peng S S,Zeng Z X,Zhao W J,Li H,Xue Q J,Wu X D. Synergistic Effectof Thiourea in Epoxy Functionalized Silica Sol-gel Coating for CopperProtection[J]. Surf. Coat. Tech.,2012,213:175-182.
    [86]徐海波,余家康,董俊华,林海潮,曹楚南.硫酸溶液中硫脲对铁缓蚀作用的电化学和SERS研究[J].中国腐蚀与防护学报,1998,18(1):14-20.
    [87]沈长斌,王胜刚,杨怀玉,龙康,王福会.硫脲对块体纳米晶工业纯铁在盐酸溶液中的缓蚀行为[J].物理化学学报,2004,20(6):664-667.
    [88]郑粟,王云燕,柴立元,张晓飞.高稳定性碱性硫脲体系对不同类型金矿的适应性[J].过程工程学报,2005,5(3):289-293.
    [89] Zhang C F,Chai L Y,Zhong H Y,Masazumi O,Ryouichi I. SelectiveDissolution of Gold in an Alkaline thiourea Solution by Electrolysis[J]. J. Cent.South Univ. Technol.,1997,4(2):73-78.
    [90] Haseeb A S M A,Schilardi P L,Bolzan A E,Piatti R C V,R.C. Salvarezza,Arvia A J. Anodisation of Copper in Thiourea-containing Acid Solution: PartII. In situ Transversal Imaging Observations. Kinetics of Anodic FilmGrowth[J]. J. Electroanal. Chem.,2001,500(1-2):543-553.
    [91] Bolzan A E,Haseeb A S M A,Schilardi P L,Piatti R C V,Salvarezza R C,Arvia A J. Anodisation of Copper in Thiourea-and FormamidineDisulphide-containing Acid Solution: Part I. Identification of Products andReaction Pathway[J]. J. Electroanal. Chem.,2001,500(1-2):533-542.
    [92] Alodan M, Smyrl W. Effect of Thiourea on Copper Dissolution andDeposition[J]. Electrochim. Acta,1998,44(2-3):299-309.
    [93] Zhao J,Cui G F. Study on Adsorption and Complexation Behavior of Thioureaon Copper Surface[J]. Int. J. Electrochem. Sci.,2011,6(9):4048-4058.
    [94] Zhao J,Li N,Gao S,Cui G F. The Irreversible Characteristic Analysis ofThiourea on Copper Electrodes in Aqueous0.5mol/L Sulphuric Acid[J].Electrochem. Commun.,2007,9(9):2261-2265.
    [95] Gassa L M,Lambi J N,Bolzan A E,Arvia A J. Electrochemical ImpedanceSpectroscopy of Thiourea Electro-oxidation on Copper Electrodes in Aqueous0.5M Sulphuric Acid[J]. J. Electroanal. Chem.,2002,527(1-2):71-84.
    [96] Huttunen-Saarivirta E. Observations on the Uniformity of Immersion TinCoatings on Copper[J]. Surf. Coat. Tech.,2002,160(2-3):288-294.
    [97] Wang Y M,Jiang B L,Lei T Q,Guo L X. Microarc Oxidation Coatings Formedon Ti6Al4V in Na2SiO3System Solution: Microstructure, Mechanical andTribological Properties[J]. Surf. Coat. Tech.,2006,201(1-2):82-89.
    [98] Tang H,Sun Q,Xin T Z,Yi C G,Jiang Z H,Wang F P. Influence ofCo(CH3COO)2Concentration on Thermal Emissivity of Coatings Formed onTitanium Alloy by Micro-arc Oxidation[J]. Curr. Appl. Phys.,2012,12(1):284-290.
    [99]张允诚,胡如南,向荣.电镀手册(第三版)[M].北京:国防工业出版社,2007:685.
    [100] Biesinger M C,Payne B P,Grosvenor A P,Lau L W M,Gerson A R,SmartR St C. Resolving Surface Chemical States in XPS Analysis of First RowTransition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni[J]. AppliedSurface Science,2011,257(7):2717-2730.
    [101] Biesinger M C,Payne B P,Lau L W M,Gerson A,Smart R St C. X-rayPhotoelectron Spectroscopic Chemical State Quantification of Mixed NickelMetal, Oxide and Hydroxide Systems[J]. Surf. Interface Anal.,2009,41(4):324-332.
    [102]Wilson K E,Baddeley C J. XPS Studies of the Effects of Modification pH onthe Interaction of Methylacetoacetate with (S)-aspartic Acid-modified NiSurfaces[J]. J. Catal.,2011,278(1):41-49.
    [103]Oliveira M C,Botelho do Rego A M. The Effect of the Hypophosphite IonOxidation on the Ni Surface Electrode-an XPS Study[J]. J. Alloy Compd.,2006,425(1-2):64-68.
    [104]Diplas S,Jorgensen S,Tafto J,Tonnessen T,Knutsen T,Lehrmann J,ValandT,Abel M L,Watts J F. Probing the Electronic Structure of Ni-X,(X=B, S, P)Catalysts with XPS[J]. Surf. Interface Anal.,2006,38(4):238-242.
    [105]Rodriguez J A,Li S Y,Hrbek J,Huang H H,Xu G Q. The Interaction of Niand Fe with Sulfur and Molybdenum-sulfide Surfaces: a TDS, XPS andHydrogen-chemisorption Study[J]. Surf. Sci.,1997,370(1):85-95.
    [106]Sulitanu N. Microstructure and Stripe Domains in Ni-S Ferromagnetic ThinFilms[J]. J. Magn. Magn. Mater.,2000,214(3):176-184.
    [107]Hauptmann H,Walter W F. The Action of Raney Nickel on Organic SulfurCompounds[J]. Chem. Rev.,1962,62(5):347-404.
    [108]Renner R F,Liddell K C. Effect of Thiourea and Saccharin on the Roughnessof Electrodeposited Ultrathin Nickel and Cobalt Layers[J]. J. Appl.Electrochem.,2002,32(6):621-627.
    [109]Tantavichet N,Pritzker M D. Aspects of Copper Electrodeposition from AcidicSulphate Solutions in Presence of Thiourea[J]. T. I. Met. Finish.,2006,84(1):36-46.
    [110]Quinet M,Lallemand F,Ricq L,Hihn J Y,Delobelle P. Adsorption ofThiourea on Polycrystalline Platinum: Influence on Electrodeposition ofCopper[J]. Surf. Coat. Tech.,2010,204(2):3108-3117.
    [111]Wen T C,Lin S M,Tsai J M. Sulphur Content and the Hydrogen EvolvingActivity of NiSxDeposits Using Statistical Experimental Strategies[J]. J. Appl.Electrochem.,1994,24(3):233-238.
    [112]He H W,Liu H J,Liu F,Zhou K C. Structures and Electrochemical Propertiesof Amorphous Nickel Sulphur Coatings Electrodeposited on the Nickel FoamSubstrate as Hydrogen Evolution Reaction Cathodes[J]. Surf. Coat. Tech.,2006,201(3-4):958-964.
    [113]Abrantes L M,Oliveira M C,Bellier J P,Lecoeur J. Electro-oxidation ofHypophosphite Ions on Nickel Single Crystal Electrodes[J]. Electrochim.Acta,1994,39(11-12):1915-1922.
    [114]Shastri L V,Huie R E,Neta P. Formation and Reactivity of Hypophosphite andPhosphite Radicals and Their Peroxyl Derivatives[J]. J. Phys. Chem.,1990,94(5):1895-1899.
    [115]Abrantes L M,Oliveira M C,Vieil E. A Probe Beam Deflection Study of theHypophosphite Oxidation on a Nickel Electrode[J]. Electrochim. Acta,1996,41(9):1515-1524.
    [116]Zeng Y,Zheng Y C,Yu S C,Chen K,Zhou S M. An ESR Study of theElectrocatalytic Oxidation of Hypophosphite on a Nickel Electrode[J].Electrochem. Commun.,2002,4(4):293-295.
    [117]Cui G F,Liu H,Wu G,Zhao J W,Song S Q,Shen P K. ElectrochemicalImpedance Spectroscopy and First-Principle Investigations on the OxidationMechanism of Hypophosphite Anion in the Electroless Deposition System ofNickel[J]. J. Phys. Chem. C,2008,112(12):4601-4607.
    [118]Zeng Y,Zhou S M. In situ UV-Vis Spectroscopic Study of the ElectrocatalyticOxidation of Hypophosphite on a Nickel Electrode[J]. Electrochem.Commun.,1999,1(6):217-223.
    [119]Abrantes L M,Oliveira M C,Correia J P,Bewick A,Kalaji M. In situ IR Studyof the Electrooxidation of Hypophosphite on a Polycrystalline NickelElectrode[J]. J. Chem. Soc. Faraday Trans.,1997,93(6):1119-1125.
    [120]Burke L D,O’Leary W A. The Importance of Superficial (Adatom) SurfaceOxidation in the Electrocatalytic Behaviour of Noble Metals in AqueousMedia[J]. J. Appl. Electrochem.,1989,19(5):758-767.
    [121]Ahern A J,Nagle L C,Burke L D. Electrocatalysis at Polycrystalline Silver inBase: an Example of the Complexity of Surface Active State Behaviour[J]. J.Solid State Electrochem.,2002,6(7):451-462.
    [122]Rodriguez-Lopez J,Alpuche-Aviles M A,Bard A J. Interrogation of Surfacesfor the Quantification of Adsorbed Species on Electrodes: Oxygen on Gold andPlatinum in Neutral Media[J]. J. Am. Chem. Soc.,2008,130(50):16985-16995.
    [123]Lertanantawong B,O’Mullane A P,Surareungchai W,Somasundrum M,Burke L D, Bond A M. Study of the Underlying Electrochemistry ofPolycrystalline Gold Electrodes in Aqueous Solution and Electrocatalysis byLarge Amplitude Fourier Transformed Alternating Current Voltammetry[J].Langmuir,2008,24(6):2856-2868.
    [124]Shiddiky M J A,O’Mullane A P,Zhang J,Burke L D,Bond A M. LargeAmplitude Fourier Transformed AC Voltammetric Investigation of the ActiveState Electrochemistry of a Copper/Aqueous Base Interface and Implicationsfor Electrocatalysis[J]. Langmuir,2011,27(16):10302-10311.
    [125]Burke L D,Lee B H. An Investigation of Some Electrocatalytic ProcessesOccurring at Low Potentials at a Nickel Electrode in Base[J]. J. Electrochem.Soc.,1991,138(9):2496-2504.
    [126]Bond A M,Duffy N W,Guo S X,Zhang J,Elton D. Changing the Look ofVoltammetry[J]. Anal. Chem.,2005,77(9):186A-195A.
    [127]Weininger J L,Breiter M W. Hydrogen Evolution and Surface Oxidation ofNickel Electrodes in Alkaline Solution[J]. J. Electrochem. Soc.,1964,111(6):707-712.
    [128]Visscher W,Barendrecht E. The Anodic Oxidation of Nickel in AlkalineSolution[J]. Electrochim. Acta.,1980,25(5):651-655.
    [129]Burke L D,Twomey T A M. Voltammetric Behaviour of Nickel in Base withParticular Reference to Thick Oxide Growth[J]. J. Electroanal. Chem.,1984,162(1-2):101-119.
    [130]Gafin A H,Orchard S W. Current-Potential Relationships for the Half-Reactionin Two Electroless Nickel Plating Baths Using the Quartz CrystalMicrobalance Electrode[J]. J. Appl. Electrochem.,1992,22(9):830-834。
    [131]Grden M,Klimek K. EQCM Studies on Oxidation of Metallic Nickel Electrodein Basic Solutions[J]. J. Electroanal. Chem.,2005,581(1):122-131.
    [132]Gregori J,Garcia-Jareno J J,Gimenez-Romero D,Roig A,Vicente F. AnodicDissolution of Nickel across Two Consecutive Electron Transfers Calculationof the Ni(I) Intermediate Concentration[J]. J. Electrochem. Soc.,2007,154(7):C371-C377.
    [133]美国材料与试验协会.胶带法测试附着力的标准方法[M]. ASTMD3359-2008.2008.
    [134]Laibinis P E, Whitesides G M. Self-Assembled Monolayers ofn-Alkanethiolates on Copper Are Barrier Films That Protect the Metal againstOxidation by Air[J]. J. Am. Chem. Soc.,1992,114(23):9022-9028.
    [135]Pan Y,Lu X C,Pan G S,Liu Y H,Luo J B. Performance of Sodium DodecylSulfate in Slurry with Glycine and Hydrogen Peroxide for Copper-ChemicalMechanical Polishing[J]. J. Electrochem. Soc.,2010,157(12):H1082-H1087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700