酵母细胞超高浓度乙醇连续发酵振荡行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产成本过高是制约燃料乙醇大规模推广应用的主要因素。目前以淀粉质为原料生产燃料乙醇的成本构成中,能耗成本约占30%,仅决于原料成本(约占60%),因此降低能耗是降低燃料乙醇生产成本的主要方向之一。超高浓度乙醇发酵技术可以减少单位产量乙醇的物料总量,进而减少精馏过程及废糟液处理的能耗,是燃料乙醇生产领域最具发展前景的技术之一。超高浓度乙醇连续发酵过程中极易出现大幅度的参数振荡现象,影响发酵过程的稳定性,而对于诱发这类振荡现象的机理至今没有深入的研究报道。
     酵母细胞在超高浓度乙醇连续发酵过程中呈现的振荡现象,具有周期长、振幅大的特点,与文献中报道的酵母细胞连续培养时,在特定条件下由于不对称芽殖导致子母细胞分裂周期同步激发的周期短、振幅小的振荡行为不同。代谢通量分析表明在一个完整的振荡周期内,酵母细胞代谢状态没有根本性改变,乙醇代谢途径碳通量占总碳通量的比例始终保持在80%以上,占绝对优势;而振荡过程中酵母细胞代谢网络上关键代谢节点处碳通量分布呈周期性变化,反映了细胞在振荡周期内不同相位点上对能量和细胞组分需求的差异和调节过程.实验中证明了振荡过程中胞外乙醇是酵母细胞主要的抑制因素,而酵母细胞的代谢活性对乙醇抑制表现出100 h左右的滞后,受胞外乙醇刺激后胞内海藻糖积累等乙醇耐受机制的逐步启动,抵消了乙醇对酵母细胞的抑制作用,是这种振荡现象发生的本质原因。利用流式细胞分析技术对振荡过程中细胞群体周期分布分析,表明这种振荡行为发生时,不存在细胞周期同步化现象。
     建立了一套由搅拌式发酵罐和管式反应器串联组成的反应系统,开展酵母细胞超高浓度乙醇连续发酵的研究工作,尝试了利用填料吸附对细胞进行固定化处理来调控振荡过程。装填木块和聚氨酯填料的管式反应器对来自前面搅拌罐的振荡行为能够产生不同的影响,不同填料对酵母细胞生理参数影响的差异是造成这种效果的原因。经过木块填料吸附以后,酵母细胞的比糖消耗速率及乙醇耐受能力得到改善,能够对来自搅拌罐的强制振荡产生弱化作用,而聚氨酯填料则没有类似的效果。表面微观结构的差异是造成两种填料对酵母细胞生理参数影响效果不同的可能原因之一,木块填料表面的精细结构能够为酵母细胞提供了良好的附着表面,而聚氨酯填料孔隙较大,内壁光滑,对酵母细胞起到的只是截流效果。
     在0.027 h~(-1)和0.040 h~(-1)两个稀释速率下,通过不同的操作方式可以分别实现稳定和振荡两个发酵状态,这表明稀释速率和系统的初始状态都是超高浓度乙醇连续发酵过程振荡行为产生的必要条件。以不同的操作方式达到同一稀释速率,会造成系统的初始条件不同,进而产生了不同状态的发酵过程。在稀释速率0.04 h~(-1)时,与稳态发酵过程相比,振荡过程表现出更高的发酵效率和设备生产强度,单级搅拌罐中设备生产强度提高了12.3%。动力学分析发现在稀释速率0.04 h~(-1)时,与稳态发酵过程相比,振荡过程的动力学行为不仅存在滞后,而且在相同残糖和乙醇浓度条件下,酵母细胞平均比生长速率比稳态过程提高了53.8%,表明振荡过程能够在更高乙醇浓度条件下保证酵母细胞的平均比生长速率与稀释速率平衡,使连续发酵系统得以运行。组合式反应系统中引入振荡现象可以大幅度提高设备生产强度,缩短发酵时间,同时可以利用装填填料的管式反应器对振荡过程进行弱化,保证稳定的终点乙醇浓度和较低浓度的残糖,满足工业过程的要求
     论文工作进一步试图通过周期性切换稀释速率的方式对发酵过程施加强制振荡,并研究其对发酵性能的影响。在稀释速率为0.02 h~(-1)和0.04 h~(-1)两个稳态过程之间反复切换,保证一个周期内的平均稀释速率为0.03 h~(-1),分别尝试了4 d、2 d和1 d三个周期。实验结果表明当强制振荡周期为4 d时,残糖、乙醇和生物量等发酵参数表现出规律性的振荡,且发酵性能优于稀释速率0.03 h~(-1)时的稳态过程,设备生产强度提高3.4%。随着振荡周期缩短,残糖等发酵参数变化的周期性也变得模糊,且系统的发酵性能不如稀释速率0.03 h~(-1)时的稳态过程,表明强制振荡周期必须满足酵母细胞的生理特点,周期太短既不能得到周期显著的振荡过程,也不能提高发酵效率。自发振荡周期是能够满足酵母细胞生理特点的最佳周期,强制振荡的周期长度只有在接近自发振荡周期时,才能对系统施加周期显著的振荡过程并提高发酵效率。
The widely using of fuel ethanol was limited by its high production cost.Energy cost accounted for 30%of total production,only after that of raw material consumption,was the second largest in ethanol production cost.Very high gravity(VHG) ethanol fermentation was the most promising technology for energy saving in distillation of fermented broth and waste water.Markedly oscillatory behaviors of parameters,which destroyed steady run of fermentation process,occurred usually in continuous ethanol fermentation under VHG condition,and no rational explanation was given yet.
     Parameter oscillations characterized by long oscillation periods and large oscillation amplitudes were observed in the continuous ethanol fermentation with Saccharomyces cerevisiae under VHG conditions,and the mechanism was speculated to be different from those oscillations observed in the continuous culture of the yeast,which were triggered by the synchronization of the cell cycles and characterized by short oscillation periods and small oscillation amplitudes.Metabolic flux analysis(MFA) was applied to the oscillatory VHG ethanol fermentation system,and the results indicated that the carbon fluxes at the keynotes within the metabolic network oscillated correspondingly,with over 80%of the total carbon flux to the ethanol production to generate energy to support the metabolism of the yeast cells. Ethanol was validated to be the main inhibitor of the yeast cells under oscillatory conditions, and the overall metabolic activity of the yeast cells was found not exactly out of phase but lag behind the ethanol concentration accumulated within the fermentation system and its inhibition on the yeast cells as well,which experimentally supported the mechanistic speculation for the process oscillation:ethanol inhibition in yeast cells and the lag response of the yeast cells to the ethanol inhibition.The synchronization of the intracellular trehalose,an effective protectant of yeast cells to environmental stresses,with ethanol production further supported this mechanistic speculation since time was needed for the stress protectant to provide protection again the ethanol inhibition.And in the meantime,analysis of the yeast cell cycle using the flow cytometry approach showed that no cell cycle-dependent synchronization of the daughter and mother cells occurred within the duration of the oscillation.
     A bioreactor system composed of a stirred tank and tubular bioreactors in series was established,and the impact of yeast cell immobilization with supporting materials on the oscillation of the fermentation generated within the tank ahead was investigated through packing the tubular bioreactors with wood chips and polyurethane particles,two packings with significant difference in their surface properties and microstructures.It was found that the immobilized yeast cells with the wood chips effectively attenuated the oscillation,and sugar consumption and ethanol tolerance were improved compared with the tubular bioreactor without packing,which could be the root reason for the oscillation attenuation.
     Either oscillatory or steady state could be generated at the dilution rates of 0.027 and 0.04 h~(-1),which depended on the initial conditions applied to the fermentation system. However,the productivity increased by 12.3%compared to the steady state,when the diluation rate of 0.04 h~(-1) was applied to the fermentation system under oscillation conditions. Further investigation revealed that besides the lag response of the yeast cells to ethanol inhibition under the oscillation conditions,the oscillatory dynamic kinetics of the yeast cells possessed advantages over that under steady state conditions,with 53.8%increase in the specific growth rate,indicating the fermentation system could be operated at higher dilution rates without washing out of the yeast cells.Introduction of such oscillations in a CSTR multistage tubular reactors system for ethanol continuous fermentation using VHG medium was experimentally proven to be practical.Fermentation time was shorten remarkably in oscillatory mode compared to steady states by greatly increased the fermentation efficiency. Oscillations introduced were attenuated successfully by wood chips packed tubues,and steady final ethanol content and low level of final residue sugar which were satisfied to the industrial standards were realized.
     Forced oscillations were created by applying the dilution rates of 0.02 and 0.04 h~(-1) to the fermentation system periodically.Compared with the fermentation system operated under steady state at the dilution rate of 0.03 h~(-1),improved fermentation performance was achieved when the period of 4 d was applied to the periodic change of the two dilution rates,with a increases of 3.4%for ethanol productivity of the fermentation system,while no improvement was observed for another two fermentations under the oscillation periods of 2 and 1 d, respectively,indicating the effectiveness of the forced oscillation in improving the fermentation performance could be achieved when the forced oscillation period is close to the oscillation period naturally developed by the yeast cells within the fermentation system.
引文
[1]Hahn-H(a|¨)gerdal B,Galbe M,Gorwa-Grauslund MF,Lid(?)n G,Zacchi G.Bio-ethanol- the fuel of tomorrow from the residues of today[J].Trends in Biotechnology,2006,24:549-556.
    [2]刘铁男,熊必琳.燃料乙醇与中国[M].经济科学出版社,2004.
    [3]朱百鸣,陈奕,付桂明.燃料酒精的发展进程及研究方向[J].食品科技,2005,2:17-19.
    [4]黄治玲.燃料乙醇的生产与利用[J].化工科技,2003,11(4):44-47.
    [5]Bai FW.Process oscillations in continuous ethanol fermentation with Saccharomyces cerevisiae[D].Ontario:University of Waterloo,2007.
    [6]Chen HZ,Liu LY.Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction [J].Bioresource Technology,2007,98(3):666-676.
    [7]Sun Y,Cheng JY.Hydrolysis of lignocelluosic materials for ethanol production:a review[J].Bioresource Technology,2002,83(1):1-11.
    [8]Mosiera N,Wymanb C,Dalec B,Elanderd R,Lee YY,Holtzapplef M,Ladischa M.Features of promising technologies for pretreatment of lignoceilulosic biomass[J].Bioresource Technology,2005,96(6):673-686.
    [9]Ruiza E,Caraa C,Manzanaresb P,Ballesterosb M,Castro E.Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks[J].Enzyme and Microbial Technology,2008,42(2):160-166.
    [10]刘德礼,谢林生,马玉录.木质纤维素预处理技术研究进展[J].酿酒科技,2009,1:105-110.
    [11]何品晶,方文娟,吕凡等.乙酸常温预处理对木质纤维素厌氧消化的影响[J].中国环境科学,2008,28:1116-1121.
    [12]雪金勇,马晓健,李肖斌等.利用纤维素作物生产乙醇预处理技术[J].食品工业科技,2008,29:310-312.
    [13]黄仁亮,苏荣欣,齐崴等.木质纤维素甲酸预处理及其组分分离[J].过程工程学报,2008,8(6):1103-1107.
    [14]Wyman CE.What is(and is not) vital to advancing cellulosic ethanol[J].Trends in Biotechnology,2007,25(4):153-157.
    [15]Solomon BD,Barnesa JR,Halvorsena KE.Grain and cellulosic ethanol:History,economics,and energy policy[J].Biomass and Biocnergy,2007,31(6):416-425.
    [16]刘洁丽,王靖.生产纤维素酶研究进展[J].化学与生物工程,2008,25(2):9-12.
    [17]张金鑫,田沈,刘继开等.代谢木糖产乙醇的酿酒酵母工程菌研究进展[J].微生物学通报,2008,35(4):572-576.
    [18]陈叶福,董博宇,岳瑞雪等.发酵木糖高产乙醇哈塔假丝酵母突变株的选育[J].食品与发酵工业,2008,34(10):1-5.
    [19]张亚云,丁长河,李里特等.树干毕赤酵母发酵木糖生产燃料乙醇[J].酿酒,2009,36(1):23-26.
    [20]任佳,颜涌捷,陈明强等.天然酵母对木糖利用的研究进展[J].化学与生物工程,2009,26(1): 6-10.
    [21]宋安东,王风芹,杜风光等.戊糖和己糖共发酵生产燃料乙醇条件研究[J].生物学杂志,2007,24(2):17-20.
    [22]胡海军,葛向阳,梁运祥.一株中型假丝酵母发酵木糖产乙醇的特性研究[J].微生物学通报,2008,35(10):1511-1515.
    [23]李永建,严明,丁莉等.在酿酒酵母中共表达XYLA和XKS1基因后利用木糖的初步研究[J].生物加工过程,2006,4(4):65-69.
    [24]张亚珍,张金鑫,刘继开等.重组酿酒酵母发酵木糖产乙醇的研究进展[J].可再生能源,2008,26(3):48-52.
    [25]汪天虹,Penttil(a|¨) M,李波.带有木糖还原酶基因和木糖醇脱氢酶基因的重组酿酒酵母的构建[J].菌物系统,1999,18:311-315.
    [26]鲍晓明,高东,王祖农.木糖代谢工程菌的研究进展[J].生物工程学报,1998,14:355-358.
    [27]鲍晓明,高东,王祖农.嗜热细菌木糖异构酶基因xyla在酿酒酵母中的高效表达[J].微生物学报,1999,39:49-54.
    [28]沈煜,郑华军,王颖等.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31:746-751.
    [29]Wang Y,Shi WL,Liu XY,Shen Yu,Bao XM,Bai FW,Qu YB.Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae[J].Biotechnoiogy Letters,2004,26:885-890.
    [30]Farahnak F,Seki T,Dewey D,Ogrydziak D.Construction of lactose-assimilating and high-ethanol-producing yeasts by protoplast fusion[J].Applied and Environmental Microbiology,1986,51:362-367.
    [31]张博润,蔡金科.酵母菌属间原生质体融合获得能发酵乳糖生产酒精的融合体[J].微生物学报,1990,30:182-188.
    [32]吴晓萍,李文清,罗进贤等.α-淀粉酶和糖化酶的表达及酿酒酵母工程菌构建[J].中山大学学报(自然科学版),1999,38(2):80-84.
    [33]罗贤进,何鸣,李文清等.α-淀粉酶和糖化酶在酿酒酵母中的表达和分泌[J].生物工程学报,1994,10(4):299-305.
    [34]王海燕,秦浚川,王敖全等.黑曲霉酸性α-淀粉酶基因和糖化酶基因对工业酒精酵母的整合及其共表达[J].微生物学报,2004,44(4):483-486.
    [35]廖昱泓,赵德刚.利用淀粉的酿酒酵母基因工程菌的研究进展[J].酿酒科技,2005,6:44-50.
    [36]Birol G,(?)nsan ZI,Kirdar B,Oliver SG.Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch[J].Enzyme and Microbial Technology,1998,22:672-677.
    [37]Marn D,Jim(?)nez A,Fermfindez LM.Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast[J].FEMS Microbiology Letters,2001,201:249-253.
    [38]庞小燕,王吉瑛,赵凤生.构建直接发酵淀粉产生酒精的酵母融合菌株的研究[J].生物工程学报,2001,17:165-169.
    [39]沈微,华国强,王正祥等.古菌Pyrococcus furiosus嗜热α-淀粉酶基因在酿酒酵母中的表达[J].微生物学通报,2003,30:22-25.
    [40]Gundllapalli-Moses SB,Cordero-Otero RR,La-Grange DC,van-Rensburg P,Pretorius IS.Different genetic backgrounds influence the secretory expression of the LKA1-encoded Lipomyces kononenkoae α-amylase in industrial strains of Saccharomyces cerevisiae[J].Biotechnology Letters,2002,651:651-656.
    [41]Thomas KC,Hynes SH,Ingledew WM.Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation[J].Process Biochemistry,1996,31:321-331.
    [42]Bayrock DP,Ingledew WM.Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology[J].Journal of Industrial Microbiology &Biotechnology,2001,27:87-93.
    [43]Reddy LVA,Reddy OVS.Rapid and enhanced production of ethanol in very high gravity(VHG)sugar fermentation by Saccharomyces cerevisiae:role of finger millet(Eleusine coracana L.) flour[J].Process Biochemisty,2006,41:726-729.
    [44]Reddy LVA,Reddy OVS.Improvement of ethanol production in very high gravity fermentation by hors gram(Dolichos biflorus) flour supplementation[J].Letters in Applied Microbiology,2005,41:440-444.
    [45]Thomas KC,Ingledew WM.Fuel alcohol production:effects of free amino nitrogen of fermentation of very high gravity wheat mashes[J].Applied and Environmental Microbiology,1990,56:2046-2050.
    [46]Thomas KC,Ingledew WM.Production of 21%(v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes[J].Journal of Industrial Microbiology & Biotechnology,1992,10:61-68.
    [47]D'Amore T,Panchai CJ,Russell I,Stewart GG.A study of ethanol tolerance in yeast[J].Critical Reviews in Biotechnology,1990,9:287-304.
    [48]Seki T,Myoga S,Limtong S,Vedono S,Kumnuanda J,Taguchi M.Genetic construction of yeast strains for high ethanol production[J].Biotechnology Letters,1983,5:351-356.
    [49]Kavanagh K,Whittaker PA.Application of protoplast fusion to the nonconventional yeast[J].Enzyme and Microbial Technology,1996,18:45-51.
    [50]D'Amore T,Panchal CJ,Russell I,Stewart GG.A study of ethanol tolerance in yeast[J].Critical Reviews in Biotechnology,1990,9:287-304.
    [51]Aguilera A,Benitez T.Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae[J].Archives of Microbiology,1985,142:389-392.
    [52]Aguilera A,Benitez T.Ethanol-sensitive mutants of Saccharomyces cerevisiae[J].Archives of Microbiology,1986,143:337-344.
    [53]Jimenez J,Benitez T.Genetic analysis of highly ethanol-tolerant wine yeasts[J].Current Genetics,1987,12:421-428.
    [54]Kajiwara S,Shirai A,Fujii T,Toguri T,Nakamura K,Ohtaguchi K.Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae:expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana[J].Applied and Environmental Microbiology,1996,62:4309-4313.
    [55]Alexandre H,Ansannay-Galeote V,Dequin S,Blondin B.Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae[J].FEBS Letters,2001,498:98-103.
    [56]Alper H,Moxley J,Nevoigt E,Fink GR,Stephanopoulos G.Engineering yeast transcription machinery for improved ethanol tolerance and production[J].Science,2006,314:1565-1568.
    [57]Wood BE,Aldrich HC,Ingram LO.Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper[J].Biotechnology Progress,1997,13(3),232-237.
    [58]Devantier R,Scheithauer B,Villas-B(?)as SG,Pedersen S,Olsson L.Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations[J].Biotechnology and Bioengineering,2005,90:703-714.
    [59]Devantier R,Scheithauer B,Pedersen S,Oisson L.Characterization of very high gravity ethanol fermentation of corn mash.Effect of glucoamylase dosage,pre-saccharification and yeast strain[J].Applied Microbiology and Biotechnology,2005,68:622-629.
    [60]Varela C,Pizarro F,Agosin E.Biomass content governs fermentation rate in nitrogen-deficient wine musts[J].Applied and Environmental Microbiology,2004,70(6):3392-3400.
    [61]Mendes-Ferreira A,del Olmo M,Gareia-Martinez J,Jimenez-Marti E,Leao C,Mendes-Faia A,Perez-Ortin JE.Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation[J].Applied and Environmental Microbiology,2007,73:5363-5369.
    [62]Bal FW,Chen LJ,Anderson WA,Moo-Young M.Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system[J].Biotechnology Bioengineering,2004,88:558-566.
    [63]Wang FQ,Gao CJ,Yang CY,Xu YP.Optimization of an ethanol production medium in very high gravity fermentation[J].Biotechnology Letters,2007,29:233-236.
    [64]孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株[J].食品与发酵工业,2002,28(5):1-5.
    [65]陈叶福,王正祥,王晨霞等.耐高温酵母菌株的分离、鉴定及其酒精发酵初步研究[J].微生物学通报,2003,30(5):24-27.
    [66]秦广利,郭坤亮,白爱琴等.耐高温酵母的研究进展[J].酿酒科技,2008,10:92-95.
    [67]Banat IM,Nigam P,Singh D,Marchant R,McHale AP.Review:Ethanol production at elevated temperatures and alcohol concentrations:Part I-Yeasts in general[J].World Journal of Microbiology and Biotechnology,1998,14:809-821.
    [68]D'Amore T,Celotto G,Russell I,Stewart GG.Selection and optimization of yeast suitable for ethanol production at 40℃[J].Enzyme and Microbial Technology,1989,11:411-416.
    [69]Banat IM,Nigam P,Marchant R.The isolation of thermotolerant fermentative yeasts capable of growth at 52℃ and ethanol production at 45℃ and 50℃[J].World Journal of Microbiology and Biotechnology,1992,8:259-263.
    [70]Banat IM,Marchant R.Characterization and potential industrial applications of five novel,thermotolerant,fermentative yeasts strains[J].World Journal of Microbiology and Biotechnology,1995,11:304-306.
    [71]Banat IM,Singh D,Marchant R.The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production[J].Acta Biotechnologica,1996,16:215-223.
    [72]Nigam P,Banat IM,Singh D,McHale AP,Marchant R.Continuous ethanol production by thermotolerant Kluyveromyces marxianus IMB3 immobilized on mineral Kissiris at 45℃[J].World Journal of Microbiology and Biotechnology,1997,13:283-288.
    [73]Nolan AM,Barron N,Brady D,McAree T,McHale L,McHale AP.Ethanol production at 45℃ by an alginate-immobilized,thermotolerant strain of Kluyveromyces marxianus following growth on glucose-containing media[J].Biotechnology Letters,1994,16:849-852.
    [74]Brady D,Nigam P,Marchant R,McHale AP.Ethanol production at 45℃ by alginate-immobilized Kluyveromyces marxianus IMB3 during growth on lactose-containing media[J].Bioprocess Engineering,1997,16:101-104.
    [75]Spindler DD,Wyman CE,Grohmann K.Evaluation of thermotolerant yeasts in controlled simultaneous saccharification and fermentation of cellulose to ethanol[J].Biotechnology and Bioengineering,1988,34:189-195.
    [76]Ballesteros I,Oliva JM,Ballesteros M,Carrasco J.Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts[J].Applied Biochemistry and Biotechnology,1993,39:201-211.
    [77]Boyle M,Barron N,McHale AP.Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB3[J].Biotechnology Letters,1997,19:49-51.
    [78]Krishna SH,Reddy TJ,Chowdary GV.Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast[J].Bioresource Technology,2001,77:193-196.
    [79]Ballesteros M,Oliva JM,Manzanares P,Negro MJ,Ballesteros I.Ethanol production from paper material using a simultaneous sacchafification and fermentation system in a fed-batch basis[J].World Journal of Microbiology and Biotechnology,2002,18:559-561.
    [80]白凤武.无载体固定化细胞的研究进展[J].生物工程进展,2000,20(2):32-36.
    [81]Nigam JN.Continuous ethanol production from pineapple cannery waste using immobilized yeast cells[J].Journal of Biotechnology,2000,80:189-193.
    [82]Verbelen PJ,De Schutter DP,Delvaux F,Verstrepen KJ,Delvaux FR.Immobilized yeast cell systems for continuous fermentation applications[J].Biotechnology Letters,2006,28:1515-1525.
    [83]Seki M,Ohzora C,Takeda M,Furusaki S.Taxol production using free and immobilized cells of taxus cuspidate[J].Biotechnology and Bioengineering 1997,53:214-219.
    [84]Yang JD,Angelillo Y,Chaudhry M,Goldenberg C.Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process[J].Biotechnology and Bioengineering,2000,69:74-82.
    [85]Parulekar SJ,Semones GB,Roll MJ,Lievense JC,Lim HC.Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae[J].Biotechnology and Bioengineering,1986,28:700-710.
    [86]Chen CI,McDonald KA.Oscillatory behavior of Saccharomyces cerevisiae in continuous culture:Ⅰ.Effects of pH and nitrogen levels[J].Biotechnology and Bioengineering,1990,36:19-27.
    [87]Chen CI,McDonald KA.Oscillatory behavior of Saccharomyces cerevisiae in continuous culture:Ⅱ.Analysis of cell synchronization and metabolism[J].Biotechnology and Bioengineering,1990,36:28-38.
    [88]Tu BP,Kudlicki A,Rowicka M,McKnight SL.Logic of the yeast metabolic cycle:temporal compartmentalization of cellular processes [J].Science,2006,310:1152-1158.
    [89]Beuse M,Bartling R,Kopmann K,Diekmann H,Thoma M.Effect of the dilution rat on the mode of oscillation in continuous cultures of Saccharomyces cerevisiae [J].Journal of Biotechnology,1998,61:15-31.
    [90]Groz R,Steohanopoulos G.Physiological and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae.Ⅰ:Hysteresis,oscillations,and maximum specific ethanol productivities in chemostat culture [J].Biotechnology and Bioengineering,1990,36:1006-1019.
    [91]Neubauer P,Haeggstroem L,Enfors SO.Influence of substrate oscillations on acetate formation and growth yield in E.coli glucose limited fed-batch cultivations [J].Biotechnology and Bioengineering,1995,47:139-146.
    [92]Lazar JG,Ross J.Changes in mean concentration,phase shift,and dissipation in a forced oscillatory reaction [J].Science,1990,247:189-192.
    [93]Richard P.The rhythm of yeast [J].FEMS Microbiology Reviews,2003,27:547-557.
    [94]Richard P,Teusink B,Hemker MB,Van Dam K.Around the growth phase transition Saccharomyces cerevisiae make-up favours sustained oscillations of intracellular metabolites [J].FEBS Letters,1993,318:80-82.
    [95]Richard P,Teusink B,Hemker MB,Van Dam K,Westerhoff HV.Sustained oscillations in free-energy state and hexose phosphates in yeast [J].Yeast,1996,12:731-740.
    [96]Hjortso MA.Population balance models of autonomous periodic dynamics in microbial cultures.Their use in process optimization [J].Canadian Journal of Chemical Engineering,1996,74:612-620.
    [97]Satroutdinov AD,Kuriyama H,Kobayashi H.Oscillatiory metabolism of Saccharomyces cerevisiae in continuous culture [J].FEMS Microbiology Letters,1992,77:261-267.
    [98]Betz A,Becker JU.Phase dependent phase shifts induced by pyruvate and acetaldehyde in oscillating NADH of yeast cells [J].Journal of Interdisciplinary Cycle Research,1975,6:167-173.
    [99]Satroutdinov AD,Kuriyama H,Kobayashi H.Oscillatiory metabolism of Saccharomyces cerevisiae in continuous culture [J].FEMS Microbiology Letters,1992,77:261-267.
    [100]Murray DB,Roller S,Kuriyama H,Lloyd D.Clock control of ultradian respiratory oscillation found during yeast continuous culture [J].Journal of Bacteriology,2001,183:7253-7259.
    [101]Sohn H,Murray DB,Kuriyama H.Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture:hydrogen sulphide mediates population synchrony [J].Yeast,2000,16:1185-1190.
    [102]Sohn H,Kuriyama H.Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture:hydrogen sulphide,a population synchronizer,is produced by sulphite reductase[J].Yeast,2001,18:125-135.
    [103]Murray DB,Engelen FA,Keulers M,Kuriyama H,Lloyd D.NO~+,but not NO,inhibits respiratory oscillations in ethanol-growth chemostate cultures of Saccharomyces cerevisiae [J].FEBS Letters,1998,431:297-299.
    [104]Porro D,Martegani E,Ranzi BM,Alberghina L.Oscillations in continuous cultures of budding yeast:a segregated parameter analysis [J].Biotechnology and Bioengineering,1988,32:411-417.
    [105]Marzulf GA.Molecular genetics of sulfur assimilation in filamentous fungi and yeast[J].Annual Review of Microbiology,1997,51:73-96.
    [106]Wolf J,Sohn HY,Heinrich R,Kuriyama H.Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous culture of Saccharomyces cerevisiae[J].FEBS Letters,2001,499:230-234.
    [107]Keulers M,Satroudinov AD,Suzuki T,Kuriyama H.Synchronization affector of autonomous short-period sustained oscillations of Saccharomyces cerevisiae[J].Yeast,1996,12:673-682.
    [108]Pratap R,Patnaik.Oscillatory metabolism of Saccharomyces cerevisiae:an overview of mechanisms and models[J].Biotechnology Advances,2003,21:183-192.
    [109]Murray DB,Beckmann M,Kitano H.Regulation of yeast oscillatory dynamics[J].PNAS,2007,104:2241-2246.
    [110]Tu BP,Mohler R.E,Liu JC,Dombek KM,Young ET,Synovec RE,McKnight SL.Cyclic changes in metabolic state during the life of a yeast cell[J].PNAS,2007,104:16886-16891.
    [111]Chen Z,Odstrcil EA,Tu BP,McKnight SL.Restriction of DNA Replication to the Reductive Phase of the Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation in Saccharomyces cerevisiae cell Cycle Protects Genome Integrity[J].Science,2007,316:916-1919.
    [112]Wittmann C,Hans MA,van Winden WA,Ras C,Heijnen JJ.Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation in Saccharomyces cerevisiae[J].Biotechnology and Bioengineering,2005,89:839-847.
    [113]Hans MA,Heinzle E,Wittmann C.Free intracellular amino acid pools during autonomous oscillation in Saccharomyces cerevisiae.Biotechnology and Bioengineering 2003,82:143-151.
    [114]修志龙,曾安平.微生物细胞连续培养过程中振荡和混沌行为的研究进展[J].生物工程进展,1999,19(6):58-63.
    [115]Daugulis AJ,McLellan PJ,Li JH.Experimental investigation and modeling of oscillatory behavior in the continuous culture of Zymomonas mobilis[J].Biotechnology and Bioengineering,1997,56:99-105.
    [116]McLellan PJ,Daugulis AJ,Li JH.The incidence of oscillatory behavior in the continuous fermentation of Zymomonas mobilis[J].Biotechnology Progress,1999,15:667-680.
    [117]Borzani W.Variation of the ethanol yield during oscillatory concentrations changes in undisturbed continuous ethanol fermentation of sugar-cane blackstrap molasses[J].World Journal of Microbiology and Biotechnology,2001,17:253-258.
    [118]罗鑫鹏,陈丽杰,汪芳,白凤武.稀释速率对高浓度酒精连续发酵振荡行为的影响[J].生物工程学报,2005,21:604-608.
    [119]Xu TJ,Zhao XQ,Bai FW.Continuous ethanol production using self-flocculating yeast in a cascade of fermentors[J].Enzyme and Microbial Technology,2005,37:634-640.
    [120]杨蕾,陈丽杰,白凤武.高浓度酒精连续发酵过程中振荡行为的模拟及填料弱化振荡的机理[J].化工学报,2007,58:715-721.
    [121]Yang RYK,Su J.Improvement of chemostat performance via nonlinear oscillations[J].Bioprocess and Biosystems Engineering 1993,9:97-102.
    [122]Garhyan P,Elnashaie SSEH,Ai-Haddad SM,Ibrahim G,Elshishini SS.Exploration and exploitation of bifurcation/chaotic behavior of a continuous fermentor for the production of ethanol [J].Chemical Engineering Science,2003,58:1479-1496.
    [123]Garhyan P,Elnashaie SSEH.Bifurcation analysis of two continuous membrane fermentor configurations for producing ethanol [J].Chemical Engineering Science,2004,59:3235-3268.
    [124]Hong J,Lee CK.Unsteady-state operation of continuous fermentor for enhancement of cell mass production [J].Biotechnology and Bioengineering,1987,30:187-195.
    [125]Impoolsup A,Caunt P,Greenfield PF.Stabilisation of a recombinant yeast plasmid in non-selective medium by cycle growth rate changes [J].Biotechology Letters,1989,9:605-608.
    [126]Bideaux C,Alfenore S,Cameleyre X,Molina-Jouve C,Uribelarrea JL,Guillouet SE.Minimization of glycerol production during the high-performance fed-batch ethanol fermentation process in Saccharomyces cerevisiae,using a metabolic model as a prediction tool [J].Applied and Environmental Microbiology,2006,72:2134-2140.
    [127]Sharma SC.A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae [J].FEMS Microbiology Letters,1997,152:11-15.
    [128]Ferreira JC,Paschoalin VMF,Panek AD,Trugo LC.Comparison of three different methods for trehalose determination in yeast extracts [J].Food Chemistry,1997,60:251-254.
    [129]Benthin S,Nielsen J,Villadsen J.A simple and reliable method for determination of cellular RNA content [J].Biotechnology Techniques,1991,5:39-42.
    [130]Howlett NG,Avery SV.Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae [J].FEMS Microbiology Letters,1999,176:379-386.
    [131]Nissen TL,Schulze U,Nielsen J,Villadsen J.Flux distributions in anaerobic,glucose-limited continuous cultures of Saccharomyces cerevisiae [J].Microbiology,1997,143:203-218.
    [132]Lin YH,Bayrock D,Ingledew WM.Metabolic flux variation of Saccharomyces cerevisiae cultivated in a multistage continuous stirred tank reactor fermentation environment [J].Biotechnology Progress,2001,17:1055-1060.
    [133]Hottiger T,Virgilio CD,Hall MN,Boiler T,Wiemken A.The role of trehalose synthesis for the acquisition of thermotolerance in yeast.Ⅱ.Physiological concentrations of trehalose increase the thermal stability of proteins in vitro [J].FEBS Journal,1994,219:187-193.
    [134]Mansure JJ,Panek AD,Crowe LM,Crowe JH.Trehalose inhibits ethanol effects on intact yeast cells and liposomes [J].Biochimica et Biophysica Acta,1994,1191:309-316.
    [135]Bai FW,Chen LJ,Zhang Z,Anderson WA,Moo-Young M.Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions [J].Journal of Biotechnology,2004,110:287-293.
    [136]陈令伟.高浓度酒精连续发酵过程中振荡行为及其弱化机制的研究[D].大连:大连理工大学环境与生命学院,2007.
    [137]Crowe JH,Crowe LM,Chapman D.Preservation of membranes in anhydrobiotic organisms:The role of trehalose [J].Science,1984,223:701-703.
    [138]Orford PD,Parker R,Ring SG.Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight [J].Carbohydrate Research,1990,196:8-11.
    [139]Sebollela A,Louzada PR,Sola-Penna M,Sarone-Williams V,Coelho-Sampaio T,Ferreira ST.Inhibition of yeast glutathione reductase by trehalose:possible implications in yeast survival and recovery from stress[J].The International Journal of Biochemistry and Cell Biology,2003,36:900-908.
    [140]陈令伟,葛旭萌,赵心清,陈丽杰,白凤武.木块填料对高浓度乙醇连续发酵过程中振荡行为的弱化机制[J].化工学报,2007,58(10):2624-2628.
    [141]Shen HY,Moonjai N,Verstrepen KJ,Delvaux FR.Impact of attachment immobilization on yeast physiology and fermentation performance[J].Journal of the American Society of Brewing Chemists,2003,61:79-87.
    [142]Br(?)nyik T,Vicente AA,Kuncov(?) G,Podrazk(?) O,Dost(?)lek P,Teixeira JA.Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains:a biocatalyst for continuous beer fermentation[J].Biotechnology progress,2004,20:1733-1740.
    [143]Gu(?)nette M,Duvnjak Z.Wood blocks as a carrier for Saccharomyces cerevisiae used in the production of ethanol and fructose[J].The Chemical Engineering Journal and the Biochemical Engineering Journal,1996,61:233-240.
    [144]Thomas KC,Hynes SH,Ingledew WM.Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,1994,60:1519-1524.
    [145]Verstrepen KJ,Klis FM.Flocculation,adhesion and biofilm formation in yeasts[J].Molecular Microbiology,2006,60:5-15.
    [146]Palkov(?) Z,V(?)chov(?) L.Life within a community:benefit to yeast long-term survival[J].FEMS Microbiology Review,2006,30:806-24.
    [147]侯淑艳.木块填料体系中游离酵母乙醇耐受性提高的机理研究[D].大连:大连理工大学环境与生命学院,2008.
    [148]Laudrin I,Goma G.Ethanol production by Zymomonas mobilis:Effect of temperature on cell growth,ethanol production and intracellular ethanol accumulation[J].Biotechnology Letters,1982,4:537-542.
    [149]Lee JH,Williamson D,Rogers PL.The effect of temperature on the kinetics of ethanol production by Saccharomyces uvarum[J].Biotechnology Letters,1980,2:141-146.
    [150]Lei F,Olsson L,Jφrgensen SB.Experimental investigations of multiple steady states in aerobic continuous cultivations of Saccharomyces cerevisiae[J].Biotechnology and Bioengineering 2002,82:766-777.
    [151]Axelsson JP,M(u|¨)nch T,Sonnleitner B.Multiple steady-states in continuous cultivation of yeast[J].IFAC Modelling Control Biotechnical Processes,Colorado,USA,1992,10:383-386.
    [152]Xiu ZL,Zeng AP,Deckwer WD.Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition[J].Biotechnology and Bioengineering,1998,57:251-261.
    [153]Nitzan A,Ross J.Oscillations,multiple steady states,and instabilities in illuminated systems[J].Journal of Chemical Physics,1973,59:241-249.
    [154]Warren RK,Hill GA,Macdonald DG.Improved bioreaction kinetics for the simulation of continuous ethanol fermentation by Saccharomyces cerevisiae[J].Biotechnology Progress,1990,6: 319-325.
    [155]Luong JHT.Kinetics of ethanol inhibition in alcohol fermentation [J].Biotechnology and Bioengineering,1985,27:280-285.
    [156]Rogers PL,Lee KJ,Tribe DE.Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations [J].Biotechnology Letters,1979,1:165-170.
    [157]Borzani W.Gregori RE,Vairo MLR.Some observations on oscillatory changes in the growth rate of Saccharomyces cerevisiae in aerobic continuous undisturbed culture [J].Biotechnology and Bioengineering,1977,19 (9):1363-1374.
    [158]Zamamiri AQM,Birol G,Hjortso MA.Multiple stable states and hysteresis in continuous,oscillating cultures of budding yeast [J].Biotechnology and Bioengineering,2001,75 (3):305-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700