受控脉冲穿孔等离子弧焊接控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿孔等离子弧焊接作为一种高能量密度焊接方法,能够对中厚板不开坡口一次焊透,具有很大的应用潜力。但由于小孔状态对焊接工艺参数的变化敏感,获得良好接头质量的合理工艺参数范围窄、可调裕度小,制约着该工艺在制造业中的大量应用。对传统的穿孔等离子弧焊接工艺做出新颖的改进,使其自动适应焊接工艺条件的变化,提高焊接过程和焊接质量的稳定性,拓宽其适用的工艺参数区间,对于推动穿孔等离子弧焊接工艺在制造业中的大量应用,从而大幅度提高焊接生产率,具有重要的意义和工程实用价值。
     本研究基于“受控脉冲穿孔”的控制策略,研制出等离子弧焊接实验系统,设计和调试出主控计算机与等离子弧焊机之间的接口电路与控制软件,实现了焊接过程的信息采集、处理、运行等各项控制功能。研制出尾焰电压信号的检测装置,进行了大量的焊接试验,建立了尾焰电压、焊缝背面熔宽和焊接电流三者之间的定量关系,能够可靠地表征熔池的穿孔状态以及小孔的尺寸。提出了一种新的小孔检测技术-NTWV传感法,进行了初步的试验验证。
     设计出适用于受控脉冲穿孔控制策略的特殊焊接电流波形,在电流峰值下降沿增加了两个缓降坡度,以进一步降低焊接热输入,改进电流波形的可控性和灵活性,并保证焊接过程中小孔“开-闭”过渡更加平稳,避免普通方波电流作用时的小孔特征信号倒“V”型剧烈变化。焊接试验证明,受控脉冲电流波形作用于焊接过程时,在每一个脉冲循环过程中,小孔特征信号均呈现倒“U”型变化,证明了小孔从“开”到“闭”转变过程的平稳,有利于获得更好的焊缝成形质量。
     从熔池穿孔过程各时间段和穿孔反馈信号幅值两个角度对焊接过程进行分析,确定了两种受控脉冲穿孔控制方法,分别以小孔建立时间和小孔平均尺寸为系统被控制量,脉冲峰值电流及其下降斜率为控制量。基于经典控制理论,针对两种控制方法,设计适当的焊接试验获得系统的输入输出数据对,进行系统辨识,经整定,获得比例积分(PI)控制器的参数。集成上述传感检测技术与PI控制技术,研制出受控脉冲穿孔等离子弧焊接控制系统。
     设计了平板-恒定目标值、平板-变化目标值和变厚度工件-恒定目标值焊接试验,对控制系统和控制方法的实际效果进行验证。试验证明,系统运行平稳,控制算法可靠;被控制量目标值变化时,控制量迅速随之调整,以保证焊接过程动态稳定。当工件厚度连续变化时,系统根据反馈信号与目标值的偏差实时调节脉冲峰值电流及其下降斜率,使被控制量稳定在目标值附近,从而保证小孔尺寸和熔宽的均匀、稳定。通过比较两种控制方法的控制效果,发现以小孔平均尺寸(脉冲尾焰电压平均值V_(EP)作为表征)为被控制量的控制方法更优。
Keyhole plasma arc welding (PAW), as one of the high energy density welding processes, can fully penetrate the workpieces of middle thickness with single pass, so that it has great potential of application in industry. However, since key-holing condition during PAW process is sensitive to the variation of welding process parameters, the ranges of appropriate welding parameters are narrow, and the tolerance is less, which limits its wide applications in manufacturing. In this study, the traditional keyhole PAW was novelly improved to make it be adaptive to any variation of welding conditions. The ranges of appropriate welding parameters were expanded with higher process stability and weld quality. It is of significant value for promoting wider applications of keyhole PAW and increasing welding productivity in modern manufacturing industry.
     Based on the 'controlled pulse key-holing' strategy, a keyhole PAW experiment system was developed with the functions such as signal acquisition, data processing, process control etc. The interface circuits and the system software were designed to integrate the main control computer and the PAW machine. Efflux plasma voltage signal acquisition device was constructed, and large amount of sensing experiments were conducted. The quantitative correlation between the efflux plasma voltage, backside weld width and welding current were established through data analysis. It was found that efflux plasma voltage can reflect and characterize the keyhole status and size reliably. In addition, a new method for sensing keyhole- NTWV was proposed with preliminary experimental verification.
     The welding current waveform for controlled pulse key-holing strategy was developed and applied in the keyhole PAW system. Two slow-decreasing slopes were added at the dropping point from peak current to base current to further reduce welding heat input and improve the controllability. Such current waveform assured more stable and smoother transition of the keyhole from 'open' to 'close' status. The sudden change of keyhole signals like an inverted 'V' shape under square-waveform current was avoided. The test results showed that when the welding current waveform for controlled pulse key-holing strategy was applied, the corresponding keyhole signal changed with a smoother mode, like an inverted 'U' shape. It proved that the transition of keyhole from 'open' to 'close' status is more stable, which results in higher weld quality.
     Keyhole PAW process was analyzed according to the different time intervals of keyhole establishing and sustaining, and the keyhole signal describing the averaged keyhole size during a pulse cycle. Two control methods were determined, i.e., taking the keyhole establishing time and the averaged efflux plasma voltage as the controlled variables, respectively, while taking the peak current and its slow-dropping slopes as the controlling variables. Based on the classical control theory, system identification and model construction were conducted, and PI controller parameters were acquired.
     Through integrating the keyhole sensing device and the PI controller, a system of controlled pulse key-holing plasma arc welding was developed. To verify the effectiveness of the control system, various kinds of welding experiments (bead-on-plate welding with constant setpoint and varied setpoint, varied-thickness plate with constant setpoint) were conducted. It has proved that the developed system works stably and the control algorithms are reliable. When the setpoint of controlled variable varies, the controlling variable can be adjusted rapidly to maintain the dynamic stability of the welding process. When the workpiece thickness changes continuously, the system adjusts the peak current and its decreasing slopes according to the deviation of the feedback signal from the setpoint. Therefore, the controlled variable fluctuates around the setpoint within the permitted range, and keyhole size and backside weld width can be guaranteed to be uniform although the plate thickness changes. Through comparing the welding results under two control methods, it was found that the controller taking the averaged keyhole size as the controlled variable is better.
引文
[1]潘际銮.21世纪焊接科学研究的展望.第九次全国焊接会议论文集[M].哈尔滨:黑龙江人民出版社,1999:D-1-17.
    [2]Lancaster J F.The physics of welding[M].Oxford,England:Pergamon Press (First edition),1984:268-280
    [3]Metcalfe J C and Quigley M B C.Keyhole stability in plasma arc welding[J].Welding Journal,1975,54(11):401-404.
    [4]董春林,吴林,邵亦陈.穿孔等离子弧焊发展历史与现状[J].中国机械工程,2000,11(5):577-581.
    [5]Martikainen J K and Moisio T J I.Investigation of the effect of welding parameters on weld quality of plasma arc keyhole welding of structural steels[J].Welding Journal,1993,72(7):329-340.
    [6]Vilkas E P.Plasma arc welding of exhaust pipe system components[J].Welding Journal,1991,70(4):49-52.
    [7]Irving B.Why aren't airplanes welded[J].Welding Journal,1997,76(1):34-41.
    [8]Irving B.Plasma arc welding takes on the advanced solid rocket motor[J].Welding Journal,1992,71(12):49-52.
    [9]Nunes A C.Variable polarity plasma arc welding on the space shuttle external tank [J].Welding Journal,1984,63(9):27-35.
    [10]Keanini R G and Rubinsky B.Plasma arc welding under normal and zero gravity [J].Welding Journal,1990,69(6):41-50.
    [11]Patricio F.Mendez.New trends in welding in the aeronautic industry[C].New Trends for the Manufacturing in the Aeronautic Industry.San SebastiAn,Spain,May 24-25,2000,pp.21-38.
    [12]关桥.我国现代运载工具制造工程中的特种焊接技术[A].与时俱进追求卓越.中国机械工程学会焊接学会四十周年、中国焊接协会十五周年纪念文集[C].2002.
    [13]朱轶峰,张慧,董春林等.穿孔等离子弧焊接技术研究[J].航天制造技术, 2002,(2):22-26.
    [14]陈久文,陈强等.一种新型等离子小孔焊接熔透闭环控制系统[J].电焊机,2002,32(6):5-8,27.
    [15]宋东风,胡绳荪,韩俭,朱玉欣.基于反翘电压的脉冲穿孔等离子弧焊熔透控制系统[J].焊接学报,2006,27(6):45-48
    [16]朱轶峰,张慧,邵亦陈,董春林.脉冲等离子弧焊接工艺研究[J].等离子加工技术,1999年增刊:53-54.
    [17]代大山,宋永伦,江伟等.穿孔等离子弧焊接质量控制的研究概况及发展(J)焊接技术,2000,29(6):2-4.
    [18]陈裕川.等离子弧焊技术的新发展(一)[J].现代焊接,2008,(8):5-10.
    [19]中国机械工程学会,中国材料研究学会编.中国材料工程大典材料焊接工程(上)[M].北京:化学工业出版社,2005,554-562
    [20]代大山.等离子弧焊接过程小孔形成机理及其信息的特征[D].广州:华南理工大学博士论文,2002.P5-6
    [21]何德孚.焊接与连接工程学导论[M].上海:上海交通大学出版社,1998
    [22]C.D.Lundin and W.J.Ruprecht.Pulsed current plasma arc welding[J].Welding Journal,1974.53(1):11-19.
    [23]Holmoy E,Fostevoll H.New applications of plasma keyhole welding[J].Welding in the world,1994,34(9):285-291.
    [24]中国机械工程学会焊接学会编.焊接手册第二版第一卷[M].北京:机械工业出版社,2001.7.
    [25]陈克选,李鹤岐,李春旭.变极性等离子弧焊研究进展[J].焊接学报,2004,25(1):124-128.
    [26]李来平,陆成虹,罗志强.变极性等离子弧焊接及其在航天领域的应用[J].现代焊接,2008,(12):1-3.
    [27]满伯倩,张铁.变极性等离子弧焊设备及其铝合金焊接工艺研究[J].上海航天,2006,(2):61-64.
    [28]李志宁,张莉芝,李强.变极性等离子弧焊换向过程控制方法研究[J].军械工程学院学报,2008,20(6):68-72.
    [29]陈国余,常红坡,陈春阳等.铝及铝合金的变极性等离子焊接设备与工艺[J].电焊机,2006,36(2):22-26.
    [30]张铁民,张宏光,魏铀泉.变极性等离子在铝合金壳体焊接中的应用[J]..电焊机,2006,36(2):10-14.
    [31]韩永全,陈树君,殷树言,吕耀辉.大厚度铝合金变极性等离子弧穿孔立焊技术[J].机械工程学报,2006,42(9):144-148.
    [32]韩永全,陈树君,殷树言.铝合金变极性等离子焊接电弧产热机理[J].焊接学报,2007,28(12):35-40.
    [33]蒋健博,刘黎明,祝美丽,沈勇.镁合金小孔变极性等离子弧缝焊工艺[J].焊接学报,2007,28(5):65-68.
    [34]沈勇,刘黎明,张兆栋.镁合金中厚板变极性等离子弧焊工艺[J].焊接学报,2005,26(6):1-4.
    [35]Lng RalfWinkelmann,Burg.Investigations into the abrasive wear of powder plasma-arc surface welds[J].Schweissen & Schneident,2001,(10):43-47.
    [36]Takeshi Shinoda,Shin-Heung Kang,Yoshihisa Katoh,et al.Improvement of wear resistance of aluminum alloy by PTA surfacing process[J].Aluminum Alloys,1998,3:1729-1734.
    [37]Yang L J.Plasma surface hardening of ASSAB 760 steel specimens with aguchi optimization of the processing parameters[J].Journal of Materials Processing Technology,2001,113:521-526.
    [38]Wang Xibao,Liu Hua.Metal powder thermal behaviour during the plasma transferred-arc surfacing process[J].Surface and Coating Technology,1998,106:156-161.
    [39]康健,吴永泰.真空磁压缩等离子弧焊接方法的研究[J].焊接学报,1987,8(1):17-21.
    [40]ZHANG Y.M,ZHANG S.B.Double-sided arc welding increase weld joint penetration[J].Welding Journal,1998,77(6):57-61.
    [41]Wu C S,Sun J S.Numerical analysis of temperature field during double-sided arc welding of thick materials[J].Computational Materials Science,2002,25(3),457-468.
    [42]Zhang Y M,Zhang S B.Observation of the keyhole plasma arc welding[J].Welding Journal,1999,78(2):53-58.
    [43]白岩,高洪明,吴林,路浩.低碳钢熔化极等离子弧焊接工艺[J].焊接学报, 2007,27(9):59-62.
    [44]白岩,高洪明,吴林.等离子—熔化极气体保护焊电弧特性研究现状[J].电焊机,2007,37(9):17-19.
    [45]Essers W G,Jelmorini G,Tichelaar GW.Arc characteristics and metal transfer with plasma-MIG welding[J].Metal Construction and British Welding Journal,1972,4(12):439-447.
    [46]Essers W G,Jelmorini G,Tichelaar G W.The plasma-MIG welding process[J].Philips Welding Reporter,1972,8(4):1-7.
    [47]Church J.What is Plasma-MIG welding[J].Canadian Welder and Fabricator,1977,68(1):6-8.
    [48]Akulov A I,Bozhenko B L,Ronskii V L.Heating of electrode metal in consumable electrode plasma arc welding in argon[J].Welding Production,1983,30(2):6-8.
    [49]Bozhenko B L,Ronskii VL.Technology of consumable electrode plasma arc welding in argon[J].Welding Production,84,31(6):28-29.
    [50]Essers W G,Willems G A M,Buelens J J C,et al.Plasma-MIG welding-a new torch and arc starting method[J].Metal Construction,81,13(1):36-42.
    [51]田云,李德元,董晓强等.等离子MIG焊接铝合金的规范优化及组织分析[J].沈阳工业大学学报,2004,26(5):502-505.
    [52]张义顺,蔡静,李德元等.等离子MIG焊接温度场的有限元模拟[J].沈阳工业大学学报,2004,26(3):258-260.
    [53]Essers W G.New process combines plasma with GMA welding[J].Welding Journal,1976,55(5):394-400.
    [54]Wei Lu.Robust sensing and control of weld pool surface in gas tungsten arc welding and its modifications[D].Kentucky:Center for Manufacturing and Department of Electrical and Computer Engineering,University of Kentucky,2004.
    [55]陈裕川.等离子弧焊技术的新发展(二)[J].现代焊接,2008,(9):6-11.
    [56]Claus Bagger,Flemming O Olsen.Review of laser hybrid welding[J].Journal of Laser Application,2005,17(1):2-14.
    [57]王德民.短路过渡MAG焊熔池形状参数的视觉检测[D].济南:山东大学硕 士学位论文,2008.
    [58]秦国梁.大功率Nd:YAG激光焊接过程同轴视觉传感[J].机械工程学报,2004,40(7):180-185.
    [59]吕云飞.脉冲GMAW焊接电参数波形及熔滴过渡图像的同步在线检测[D].济南:山东大学硕士学位论文,2005.
    [60]陈武柱.CO2激光焊同轴视觉系统及熔透状态检测的研究[J].应用激光,2004,24(3):130-134.
    [61]高进强.不锈钢复合板(管)的焊接生产[R].天津大学博士后研究工作报告,2005
    [62]Y.M.Zhang,L.Li and R.Kovacevic.Monitoring of weld pool appearance for penetration control[J].Proceedings of the 4th International Conference on Trends in Welding Research.Gatlinburg,Tennessee.USA,June,1995.
    [63]R.Kovacevic,Y.M.Zhang and L.Li.Monitoring of weld joint penetration based on weld pool geometrical appearance[J].Welding Journal,1996,75(10).
    [64]王春明.激光焊接质量实时检测技术的研究现状[J].电焊机,2005,35(7):18-22.
    [65]Ladislav Grad,Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding[J].International Journal of Machine Tools &Manufacture,2004:555-561
    [66]Gu H,Duley W W.Statistical approach to acoustic monitoring of laser welding [J].Phys,1996,(29):556-560
    [67]Sukhomay Pal,Surjya K.Pal,Arun K.Samantaray.Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signal[J].Journal of Materials Processing Technology,2008,202(1-3):467-474.
    [68]段晓宁,武传松,胡家琨,贾传宝.弧焊机器人摆动跟踪时摆幅与频率的模糊模式识别[J].机械工程学报,2005,41(9):228-231.
    [69]武传松,胡庆贤,孙俊生.基于12维统计矢量的GMAW焊接过程监测模糊神经网络系统[J].机械工程学报,2004,40(1):151-154.
    [70]胡家琨,高进强,武传松.T形接头机器人CO2焊接过程实时监控.焊接学报,2006,27(6):79-82.
    [71]陈定华,吴林,徐庆鸿.微计算机测定焊接温度场的研究[J].哈尔滨工业大学学报,1981,No.12:1-11.
    [72]Steffens H D,Kayser H.Automatic control for plasma arc welding[J].Welding Journal,1972,51(6):408-418.
    [73]S.B.Zhang and Y.M.Zhang.Efflux plasma charge-based sensing and control of joint penetration during keyhole plasma arc welding[J].Welding Journal,2001,80(7):157-162.
    [74]胡百僖,黄从达,陶爱龙,李少平.利用声音信号进行脉冲等离子弧全位置焊接质量控制系统的研究[J].焊接,1980,(5):17-20.
    [75]Manz A F.Welding arc sounds[J].Welding Journal,1981,60(5):23-27
    [76]黄从达,胡白喜,陶爱龙.锅炉蛇型管等离子弧声控焊的微型计算机控制[J].电焊机,1984,(3):10-14.
    [77]王海燕,陈强等,等离子焊接熔池小孔尺寸的电弧信号检测[J].焊接学报.2000,21(3):24-26.
    [78]孙久文,陈强等.一种新型等离子小孔焊接熔透闭环控制系统[J].电焊机,2002,32(6):5-8,27.
    [79]王耀文,陈强,孙振国,孙久文,王海燕.等离子弧焊接穿孔行为的声信号传感[J].机械工程学报,2001,37(1):53-56.
    [80]CHEN Qiang,SUN Zhen-guo,SUN Jiu-wen,WANG Yao-wen.Closed-loop control of welding penetration in keyhole plasma arc welding[J].Transactions of Nonferrous Metals Society of China,2004,14(1):116-120.
    [81]Wang Yaowen,Chen Qiang,et al.Relationship between sound signal and weld pool status in plasma arc welding[J].Trans.Nonferrous Met.Soc.China,2001,11(1):54-57.
    [82]Dong Chunlin,Wu lin et al.Arc light Sensing of Keyhole Behavior in Plasma Arc Welding of Stainless Steel[J].ⅡW Doc.212-947-99
    [83]董春林,朱轶峰,张慧,邵亦陈,吴林.PAW过程弧光传感技术研究[J].机器人,2001,23(7):684-687.
    [84]董春林,吴林,朱轶峰,张慧,邵亦陈.不锈钢等离子弧焊正面弧光传感熔池小孔特征行为的研究[J].等离子加工技术,1999年增刊:49-52. 光传感研究[J].机械工程学报,1999,35(6):48-51.
    [86]王慧钧.图像传感变极性等离子弧焊缝稳定成形闭环控制[D].哈尔滨:哈尔滨工业大学博士学位论文,1998.
    [87]王慧钧,王其隆等.铝合金等离子弧焊穿孔熔池正面图向检测与处理[J].材料科学与工艺,1998,6(3):92-96.
    [88]Y.M.Zhang,S.B.Zhang,and Y.C.Liu.A plasma cloud charge sensor for pulse keyhole process control[J].Measurement Science and Technology,2001,12(8):1365-1370.
    [89]殷凤良,胡绳荪等.利用等离子体反翘控制穿孔等离子弧焊中小孔的稳定性[J].焊接学报,2006,(7):21-24.
    [90]胡春红.PLC控制等离子弧焊机的研究与等离子云信号的检测[D].天津:天津大学硕士学位论文,2003.
    [91]易小林,单平等.等离子弧焊中小孔检测的研究[J].焊接技术,2003,(1):12-14.
    [92]易小林.等离子弧焊中等离子云检测机理与模糊控制的研究[D].天津:天津大学博士学位论文,2002.
    [93]王划一.自动控制原理[M].北京:国防工业出版社,2001.
    [94]George E Cook.Weld modeling and control using artificial neural network[J].IEEE Transactions on industry application,1995,31(6):184-189.
    [95]傅育文.脉冲等离子弧焊接系统的研制[D].天津:天津大学硕士学位论文,2004.
    [96]董春林.等离子弧焊小孔行为的弧光传感研究[D].哈尔滨:哈尔滨工业大学博士论文,2001.
    [97]刘义彬,葛景国,倪纯珍等.等离子弧焊焊缝实时跟踪系统[J].焊管,2003,26(5):22-24.
    [98]葛景国.不锈钢等离子弧焊视觉传感及焊缝跟踪研究.上海:上海交通大学博士论文,2005.
    [99]朱玉欣.等离子弧焊小孔信号的等离子云传感研究[D].天津:天津大学硕士学位论文,2005.
    [100]韩俭.脉冲等离子弧焊接模糊控制系统的研制[D].天津:天津大学硕士学位论文,2005.
    [101]韩俭,胡绳荪,傅育文.脉冲等离子弧焊接的单片机控制系统[J].焊管,2004,27(6):54-57.
    [102]董春林,吴林,张慧,朱轶峰,邵亦陈.Front side keyhole detection in plasma arc welding of stainless steel[J].China Welding,1999,8(2):102-110.
    [103]Y.M.Zhang,Y.C.Liu.Control of dynamic keyhole welding process[J].Automa-tica,2007,43:876-884.
    [104]Y.M.Zhang,Y.C.Liu.Modeling and control of quasi-keyhole arc welding process[J].Control Engineering Practice,2003,11:1401-1411.
    [105]马立,胡绳荪,朱玉欣,殷风良.脉冲等离子弧焊穿孔熔池的等离子云传感.焊接学报[J].2006,27(2):73-76.
    [106]孔祥芬,胡绳荪,胡春红,傅育文.穿孔等离子弧焊的熔深检测[J].电焊机,2003,33(7):18-19.
    [107]孔祥芬.等离子弧焊接熔透控制信息检测与分析[D].天津:天津大学硕士学位论文.
    [108]易小林,单平,胡绳荪.等离子弧焊中小孔检测的研究[J].焊接技术,2003,32(1):12-14.
    [109]董春林,朱轶峰,张慧,邵亦陈.穿孔等离子弧焊正面弧光传感技术研究[J].机械工程学报,2001,37(3):30-33.
    [110]夏军.一种实用的高压开关电源采样隔离反馈电路[J].高压电器,2006,42(4):295-297.
    [111]邓焱,王磊.LabVIEW 7.1测试技术与仪器应用[M].北京:机械工业出版社,2004.
    [112]吕云飞,陈茂爱,李士凯,武传松.GMAW熔滴过渡主动控制模式下复合脉冲波形的设计[J].山东交通学院学报,2005,13(2):63-66.
    [113]陈茂爱,吕云飞,武传松.基于LabVIEW的熔滴过渡过程参数检测系统的方案设计[J].山东大学学报(工学版),2005,35(6):103-107.
    [114]王红茹.虚拟仪器-仪器发展的新时代[J].中国仪器仪表,1997,(5):43
    [115]Jia Chuanbao,Wu Chuansong and Zhang Yuming.A computer-based control system for keyhole plasma arc welding[J].China Welding,2007,16(1):7-10.
    [116]Li,L.,Brookfield,D.J.,and Steen,W.M.Plasma sensor for in-process,non-contact monitoring of the laser welding process[J].Measurement Science & Technology,1996,7(4):615-626.
    [117]方康玲,王新民,刘彦春.过程控制系统[M].武汉:武汉理工大学出版社,2001.
    [118]徐丽娜.数字控制-建模与分析、设计与实现(第二版)[M].北京:科学出版社,2006.
    [119]张明钧.智能控制技术[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [120]张裕明,吴林.焊接过程的现代控制分析与设计[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [121]孙增圻.计算机控制理论及应用[M].北京:清华大学出版社,1989.
    [122]王积伟,吴振顺.控制工程基础[M].北京:高等教育出版社,2001.
    [123]Morris Driels著,金爱娟,李少龙,李航夭译.线性控制系统工程[M].北京:清华大学出版社,2005.
    [124]魏克新,王云亮,陈志敏,高强.MATLAB语言与自动控制系统设计[M].北京:机械工业出版社,2004.
    [125]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1987.
    [126]史维祥,尤昌德.系统辨识基础[M].上海:上海科学技术出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700