金属工件加热过程的在线仿真与监控优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加热过程是金属工件热处理、压力加工等工艺的重要组成部分,通常在各种工业炉窑中实现。目前广泛采用的加热过程监控方法,是用炉内特定点的温度——炉温来间接地表征工件的温度、概略地监控工件的加热速度、加热均匀性和终点温度。由于工件加热过程是一个受诸多因素影响的复杂过程,炉温与工件温度之间的关系很不确定。因此,这种概略的工件加热过程监控技术会带来一系列问题,从而影响金属工件加热的质量、效率和能源消耗量。
     为解决这些问题,本文提出一种金属工件加热过程在线仿真与监控优化技术,以在线检测的金属工件表面温度作为边界条件在线仿真工件内部温度场,以温度场推断工件的相组织场和热应力场,并且以相组织场在线监控工件的加热终点,以热应力场在线监控工件加热速度。
     本研究以材质为45~#钢的长圆柱状工件为研究对象,通过数理分析建立了金属工件加热过程在线仿真监控的温度场、相组织场和热应力场耦合数学模型,采用有限差分技术对工件加热过程参数进行了数值离散,并且采用MATLAB7.4软件编制计算程序进行数值求解和动态监控界面设计,初步实现了长圆柱状金属工件加热过程温度场、相组织场和热应力场的在线仿真监控系统程序设计。
     在此基础上,通过设计试验方案,实际搭建了由被加热工件、电阻加热炉、温度传感器、温度信号采集仪和微型计算机组成的试验平台,将该系统实际应用于工件加热过程的工艺监控,并且对于在线仿真监控技术下的工件加热工艺效果与传统监控技术下的工件加热工艺效果进行了比较分析,证明本研究提出的金属工件加热过程在线仿真监控系统具有加热效果好、加热效率高和加热能耗低的显著特点,具有较大的技术进步作用、应用价值和推广前景。
The heating process of metallic work is an important part of many technologies such as heat treatment, pressure process and so on. The heating process is usually realized in various industrial furnaces. At present the supervisory control method of heating process widely used is that, the specified point temperature in furnace—furnace temperature is used to be taken as metallic work's temperature indirectly, to roughly monitor and control the heating rate ,uniformity and terminal temperature. Because the heating process is influenced by many complex factors, relations between the furnace temperature and metallic work's temperature are very indefinite. Therefore, this kind of roughly monitoring technology will bring series of questions, thus influence heating quality, efficiency and energy consumption.
     In order to solve this problem, this article proposed the technology of online simulation and supervisory control of heating process of metallic work. It uses metallic work's surface temperature as the boundary condition to simulate the interior temperature field of metallic work, by which it can infer the microstructure and stress field. It uses phase structure field to monitor and control the terminal temperature, and uses stress field to monitor and control the heating rate online.
     This article takes the 45~# steel cylinder work as the object of study, establishes the mathematical model of online simulation and supervisory control of heating process, which is discreted by finite different method, and carried on the solution operation with the MATLAB7.4 software coding.
     Based on this, this article designs the experiment scheme, and actually builds experiment platform which is composed of metallic work, electric resistance mill furnace, the temperature sensor, temperature signal collect instrument and microcomputer. And this system is applied in the actual heating process to monitor and control the heating technology. At the same time, comparing the heating technology under the online simulation and supervisory control technology with the traditional one , the result proves that the former one's heating effect is better than the latter's, the former one's efficiency is higher and the former one's energy consumption is lower. This technology have larger technological progress effect, application value and popularization prospect.
引文
[1]樊东黎等.热加工工艺规范[M].机械工业出版社,2003,1.
    [2]王秉铨.工业炉设计手册[M].北京:机械工业出版社,2002,10.
    [3]许天已.钢铁热处理实用技术[M].北京:化学工业出版社,2005,2.
    [4]王连勇,蔡九菊,孙广等.火焰炉节能分析[J].工业加热,2006,35(3):1-3.
    [5]Inoue T.,Janaka K..Elastic plastic analysis of quenching with the consideration of phase transformation[J].Jsoc Mat Sci Japan,1973(22):218-223.
    [6]Inoue T.,Funatani K.,Totten G..Processing modeling for heat treatment:current status and future developments[J].Shanghai Jiao Tong Unv,2000,5(1):16-25.
    [7]Denis S.,et al.Stress-phase transformation interaction of inter stresses[J].Mat Sci and Tech,1985(1):805-809.
    [8]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [9]Reti T,Fried Z.Multi-phase modeling of Austenite transformation processes during quenching processing[C].Proc of the 3rd Inter Conf on Quenching and Control of Distortion,1999,157-172.
    [10]徐祖耀.相变原理[M].北京:科学出版社,1988.
    [11]Denis S.,Archanbaull P..Prediction of residual stress and distortion of ferrous and non-ferrous metals:currentand future developments[C].Proc of the 3rd Inter Conf on Quenching and Control of Distortion,1999,236-276.
    [12]邹壮辉,高守义,张立文.淬冷热应力场研究和应用[J].金属热处理学报,1993,4(3):1-8.
    [13]刘庄,吴肇基,吴景之.热处理过程数值模拟[M].北京:科学出版社,1996.
    [14]Sohlberg B..Grey box modeling for model predictive control of a heating process[J].Journal of Process Control,2003,13(3):225-238.
    [15]Lu Q.,Vader R.,Kang J.,Rong Y.,Hoetzl M..Development of a computer-aided heat treatment planning system[J].Heat Treatment of Metals,2002,29(3):65-70.
    [16]刘向军,赵燕,潘小兵.步进式轧钢加热炉内钢坯加热过程的模拟研究[J].钢铁,2005,40(7):76-79.
    [17]姜毅泽,汪霞,张欣欣等.钢管再加热炉计算机控制数学模型及其应用[J].金属学报,2000, 36(4):429-432.
    [18]William D..Using on-line predictive computer modeling to optimize heat treat processing[J].Industrial Heating,1996,63(9):5.
    [19]Kang J.,Rong Y.K.,Wang W..Numerical simulation of heat transfer in loaded heat treatment furnaces[J].Journal de Physique Ⅳ(Proceedings),2004,120(12):545-553.
    [20]Gergely M.,Somogyi Sz.,Kohlheb R..Computerized property prediction and process planning in heat treatment of steels[J].Materials Science Forum,1994,163(2):657-666.
    [21]李殿中,张玉妥,刘实,李依依.材料制备工艺的计算机模拟[J].金属学报,2001,37(5):449-452.
    [22]中国热处理行业协会,中国机械工程学会热处理分会.热处理行业“十五”发展规划和2015年发展设想[J].金属热处理,2001(5):47-49.
    [23]阎承沛.计算机技术在我国热处理工业领域的应用和发展[J].金属热处理,2000(10):26-29.
    [24]宿德军,陈军.热处理过程数值模拟的研究现状和发展趋势[J].模具技术,2004(6):54-59.
    [25]王顺兴.实用热处理模拟技术[M].北京:机械工业出版社,2002.
    [26]赵洪壮,许红,刘相华,王国栋.热处理过程数值模拟综述[J].热处理,2004,19(1):6-11.
    [27]潘健生,张伟民,田东,顾剑锋,胡明娟.热处理数学模型与计算机模拟[J].中国工程科学,2003,5(5):47-54.
    [28]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [29]戈晓岚,王特典.工程材料[M].南京:东南大学出版社,2000,1.
    [30]顾建锋,潘健生等.9Cr2Mo冷轧辊加热过程的数值模拟[J].金属学报,1999,35(12):1266-1270.
    [31]刘雅政,徐进桥.相转变过程计算机模拟的研究与应用[J].鞍钢技术,2006(6):1-4.
    [32]M.Umemoto,N.Nishioka,I.Tamura.碳素钢等温及连续冷却时先共析铁素体析出动力学[J].第三届国际材料热处理大会论文选集.机械工业出版社,1985.
    [33]W.A.Johnson,R.F.Mehl.Reaction Kinetics of Nucleation and Growth[J].Trans.AIME,1939(135):416-518.
    [34]M.Avrami,Kinetics of Phase Change,Part1:General Theory,J.Chem.Phys,1939,7,1103-1112;Part2:Transformation Time Relations for Random Distribution of N-uclei,J.Chem.Phys,1940,8,212-224;Part3:Granulation,Phase Change and Microstructure,J.Chem.Phys,1941,9,177-184.
    [35]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学,2003,5.
    [36]李艳君.船体精度控制技术[D].大连理工大学,2005,56-59.
    [37]李维特,黄保海等.热应力理论分析及应用[M].北京:中国电力出版社,2004,2,90-94.
    [38]宋明谦.100MW汽轮机转子热热应力在线检测系统开发[D].华北电力大学,2006.
    [39]B.Hildenwall,T.Ericsson.Prediction of Residual Stresses in Case-Hardening Stee-Ls[C].Harde n-ability Concepts with Applications to Steel,1978,579-606.
    [40]郭宽良.计算传热学[M].合肥:中国科学技术大学出版社,1988.
    [41]余万华,刘新忠等.加热钢坯内部温度的计算机模拟[J].轧钢,2005,22(5):17-20.
    [42]赵渭国.室状热处理炉热工过程数学模型与自动控制的研究[D].东北大学,2001,21-26.
    [43]廖敦明,刘瑞祥等.基于有限差分法的铸件凝固过程热应力场数值模拟的研究[J].铸造,2003,52(6):420-425.
    [44]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [45]张凯举.钢铁冶金加热过程建模与综合优化控制方法的研究[D].大连理工大学,2004.
    [46]张志涌等.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003,3.
    [47]李显宏.MATLAB 7.x界面设计与编译技巧[M].北京:电子工业出版社,2006.
    [48]向先波,徐国华.Matlab环境下PC机与单片机的串行通信及数据处理[J].技术纵横,2004(12):27-31.
    [49]何强,何英.MATLAB扩展编程[M].北京:清华大学出版社,2002,6,258-265.
    [50]何学明,陈学东等.一种基于MATLAB的测量数据实时处理方法[J].自动化仪表,2005,26(4):45-47.
    [51]刘国福等.一种基于Matlab的ABS试验数据实时采集与处理方法[J].交通与计算机,2004,22(1):113-115.
    [52]樊东黎等.热处理技术数据手册[M].北京:机械工业出版社,2000,9,123-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700