虚拟数控铣削物理仿真关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟制造技术是传统制造技术与信息技术结合的产物,近年来已迅速发展成为制造业的热点和前沿学科,虚拟制造的研究与开发利用已受到世界各国的高度重视。虚拟数控加工技术是虚拟制造的核心内容,对充分发挥数控机床的潜能,提高数控加工效率和质量具有重要意义。
     本文采用理论分析与实验研究相结合的思路,针对数控铣削加工的特点,研究了铣削力建模、铣削温度建模、刀具磨损建模、加工质量预测、加工误差分析及补偿、加工参数优化等数控铣削物理仿真关键技术,论文的研究内容主要包括以下几个部分:
     虚拟数控铣削物理仿真系统总体规划研究。提出虚拟数控铣削物理仿真系统的体系结构,设计了系统仿真与分析流程;构建了仿真数据库的结构及功能模型;建立虚拟数控铣削仿真环境,实现了几何仿真与物理仿真的数据共享及高效集成,为进行虚拟数控铣削物理仿真研究奠定了基础。
     数控铣削过程物理仿真建模研究。综合考虑实际铣削加工过程中的各种影响因素,在实验的基础上建立与实际切削拟合程度高的铣削力、铣削温度及刀具磨损物理仿真数学模型。针对任意进给方向的球头铣刀切削微元进行铣削力分析及建模,在建模过程中综合考虑了主轴偏心、刀具受力变形和振动等因素对铣削力模型的影响;在实验的基础上建立球头铣刀铣削温度模型,提出应用移动热源法建立球头铣刀铣削过程中工件的温度场的数学模型,对铣削过程中的移动面热源的温度场进行动态仿真及有限元分析;充分考虑各种因素对刀具磨损的影响,选用不同的加工参数和刀具参数组合进行数控铣削实验,实现球头铣刀磨损建模与预测。通过实验验证了所建模型的正确性。
     数控铣削加工质量预测及加工误差分析。提出了基于有限元法的加工质量预测方法,在分析实际加工中影响加工质量的主要因素及有限元模拟关键技术的基础上,对加工质量中的表面粗糙度及形状精度进行算法评定理论及预测算法的研究,实现了数控铣削加工质量的分析及预测;对铣削过程中产生加工误差的主要因素进行分析,建立了球头铣刀受力变形、受热变形、刀具磨损及工件受热变形的加工误差模型,并建立了综合误差模型;针对综合误差补偿进行研究,在获得各影响因素综合误差补偿值的基础上,修改刀具轨迹坐标,实现对数控程序的调整。结合具体加工工件对主要模型及方法的正确性和可靠性进行了验证。
     数控铣削加工参数的优化研究。提出基于物理仿真的数控铣削加工参数优化建模方法,建立了较全面完善的目标函数、决策变量及约束条件优化模型;针对切削参数优化模型决策变量非负值、约束多、目标函数复杂等问题,对遗传算法进行改进,提出了改进的多目标优化并列选择遗传算法;建立基于改进的并列选择遗传算法的铣削参数多目标优化模型,基于虚拟数控铣削物理仿真系统预测出的仿真结果数据,获得最优的切削参数,通过加工实验验证优化效果,实现了提高加工质量、生产率和节约加工成本的目标。
     最后实现了虚拟数控铣削物理仿真原型系统。设计了系统的运行流程,实现了系统加工过程的几何仿真和物理仿真的集成,在XH715加工中心工艺系统下实现了产品几何建模,虚拟加工过程仿真、干涉、过切及欠切检验,铣削力仿真、铣削温度预测、表面粗糙度预测及加工误差分析,通过加工误差补偿及铣削参数优化,实现了对数控加工程序的调整和优化,通过系统仿真及预测结果与实际切削实验的对比分析,验证了系统的可靠性。
Virtual manufacturing technology is the integration of traditional manufacturing technology and information technology. In recent years it has been rapidly developed and become a focus and advanced subject in manufacturing. The research and development of virtual manufacturing has been attached great importance to countries in the world. Virtual NC machining technology is the core of virtual manufacturing. It has great significance to display NC machine tools's potentiality fully, and improve the efficiency and quality.
     In this dissertation, the idea of combining theoretical analysis and experimental research is used. Aiming at the characteristics of NC milling, the key technologies of physical simulation for NC milling including milling forces modeling, milling temperature modeling, cutter wear modeling, machining quality prediction, machining error analysis and compensation, machining parameter optimization are researched. The dissertation fastens on the following issues:
     The overall plan of physical simulation for virtual NC milling is researched. System structure of physical simulation for virtual NC milling is proposed. Process of system simulation and analysis is designed. The simulation database structure and function model is built. Simulation environment of virtual NC milling is built. Data sharing and efficient integration of geometric simulation with physical simulation is realized, by which laid the foundation for physical simulation for virtual NC milling.
     Physical simulation model of NC milling process is researched. Considering a variety of factors in the actual milling process, the physical simulation model fitted a high degree with actual cutting of milling forces, milling temperature and cutter wear are built based on test. Milling force acting on a cutting edge element of ball-end cutter at arbitrary feed direction is analyzed. Milling forces model of ball-end cutter cutting edge element is established by considering the impact of deformations caused by the milling forces, spindle eccentricity and vibration. Temperature simulation model of ball-end cutter milling is established on the basis of experiment. Mathematical model of temperature field when work piece is milled by ball-end milling cutter is established by using moving heat source theory. Then finite element analysis and dynamic simulation of the temperature field is carried out on the basis of considering the impact of various factors. Tool wear simulation model of ball-end milling is established by using different processing parameters and tool parameters for NC milling experiments, and by using multiple linear regression model to determine the various coefficients of tool wear. The experiment results show that the model is correct.
     A more comprehensive optimization model of objective function, decision variables and constraints is established. Genetic algorithm is improved for the non-negative, more constraints and more complex objective function of cutting parameters optimization model. An improved parallel multi-objective optimization genetic algorithm selection is established. A multi-objective optimization model of milling parameters selection based on improved genetic algorithm parallel is established. The optimal cutting parameters are obtained based on the simulation results predicted by physical simulation system for virtual NC milling. The machining experiments verify the effect of optimization. The target of machining quality improving, productivity and processing cost savings is achieved.
     Finally, the prototype system of physical simulation for virtual NC milling is implemented. Operation and implementation process of the system is designed. The integration of simulation and physical simulation in machining process is achieved. Product geometric modeling, virtual machining process simulation, interference, undercutting and less cutting test, milling force simulation, milling temperature prediction, prediction of surface roughness and machining error analysis are achieved in the technology system of XH715 processing center. NC program is adjusted and optimized by machining error compensation and milling parameter optimization. The reliability of the system is verified by analyzing the comparative results of simulation and the actual cutting tests.
引文
[1]肖田元等.虚拟制造.北京:清华大学出版社,2004
    [2]Edward Lin, Ioannis Minis.Contribution to Virtual Manufacturing Background Research, The report delivered to Lawrence Associates Inc.,1995
    [3]Grigore C B, Philippe C. Virtual Reality technology. New York:J Wiley&Sons Inc, 2003
    [4]黄明吉.虚拟数控技术及应用.北京:化学工业出版社,2005
    [5]Herbert S, Klaus B. Optimization of precision machining by simulation of the cutting process. Annals of CIRP,1993,42(1):55-58P
    [6]CARRINO L, GIORLEO G, POLINI W. Dimensional Errors in Longitudinal Turning Based on the Unifier Generalized Mechanics of Cutting Approach. Part I: Three-dimensional Theory. Machine tool & Manufacture,2002,42(5):1509-1515 P
    [7]葛研军.数控加工关键技术及应用.北京:科学出版社,2005
    [8]肖田元,韩向利,张林鍹.虚拟制造内涵及其应用研究.系统仿真学报,2001,13(1):118-123页
    [9]Lawrence Associate Inc, Virtual Manufacturing Technical Workshop,1994
    [10]谢甘第.虚拟现实技术及其在制造业中的应用.机电一体化,2001,(5):18-20页
    [11]朱名铨,张树生等.虚拟制造系统与实现.西安:西北工业大学出版社,2001
    [12]Yun Won-Soo, Jeong Hoon Ko, Lee Han UL etal. Development of a virtual maching system. Part 3:Cutting process simulationg in transient cuts. International Journal of Machine Tools and Manufacture,2002,42(7):1617-1626P
    [13]C.A.van, Luttervelt etal. Present Situation and Future Trends in Modelling of Machining Operations Progress of the CIRP Working Group "Modelling of Machining Operations", Annals of the CIRP,1998 (47):496-503P
    [14]EHMANN K.F, DEVOR R.K.A Frame for a Virtual Manufacturing System. Technical Papers of the North American Manufacturing Research Institute of SEM,1997: 191-196 P
    [15]VAN LUTTERVELT C A, CHILDS T. The State of the Art of Modeling in Machining Processes. CIRP-Annals Manufacturing Technology,2002,47(2):587-626 P
    [16]黄雪梅.虚拟数控车削加工物理仿真系统研究.东北大学博士论文,2001
    [17]姚英学,李荣彬.面向加工质量预测的虚拟加工检测单元的研制.中国机械工程,2000,5(11):520-524页
    [18]陈勇.平面铣削加工过程虚拟仿真系统的开发及其应用研究.华侨大学博士论文,2004
    [19]K.D.Bouzakis, P.Aichouh, K.Esftathlou. Determination of the geometry, cutting force and roughness in free surfaces finishing milling, with ball end tools. International Journal of Machine Tools and Manufacture,2003,43(5):499-514 P
    [20]Dilbag Singh,P.Venkateswara Rao.A surface roughness prediction model for hard turning process.The international Journal of Advanced Manufacturing Technology, 2007,32(11-12):1115-1124P
    [21]张滢,赵越.球头立铣刀铣削加工表面粗糙度仿真技术研究.机械设计制造,2006.12:90-92页
    [22]马玉林,付宜利,孙宏伟.虚拟加工中的加工误差分析与预测.机械工程学报.2002,38(11):139-142页
    [23]赵晓明,胡德金,赵国伟.5坐标数控加工中表面形貌的计算机仿真.上海交通大学学报,2003,37(5):690-693页
    [24]EHMANN K F, DEVOR R K. A Frame for a Virtual Manufacturing System. Technical Papers of the North American Manufacturing Research Institute of SEM,1997:191-196P
    [25]ALKAN M D. Development of Virtual Machine Tools. Japan:Proc. of The 4th Sino-Japan Con.on Cutting and Grinding Progress,1996:5-11P
    [26]任永强.数控机床误差高效测量、建模及补偿应用研究.上海交通大学博士论文,2004
    [27]葛研军,卢碧红,王启义.车削加工物理仿真实现技术.机械科学与技术,2001,(3):421-423页
    [28]邵晓东,王海洲,林朝旭.虚拟加工物理仿真中的误差分析研究.电子机械工程,2006,(2):56-59页
    [29]阎兵,张大卫,徐安平等.球头刀铣削过程动力学模型.机械工程学报,2002,(05):22-26页
    [30]E.Shmaoto,.YAltintas. Predietion of Shear Angle in Oblique Cutting with Maximum Shear Stress and Minimum Energy Principle.ASME International Mechanical Engineering Congress and Exposition,1997, MED-vol.6-1:121-128P
    [31]Yun W. S, Cho D. W. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling. International Journal of Machine Tools & Manufacture,2001,41:463-478P
    [32]E.Budka, Y.Altintas, E. J. A.Armarego. Prediction of Milling Force Coefficients from Orthogonal Cutting Data. Trans.ASME Journal of Manufacturing Science and Engineering,1996,118:216-224P
    [33]Zheng H. Q., Li X.P., Wong W. S., Nee A. Y. C. Theoretical modeling and simulation of cutting forces in face milling with cutter run out. International Journal of Machine Tools & Manufacture,1999,39:2003-2018P
    [34]M.Yang, H.Park.The Predietion of Cutting Force in Ball-End Milling. Int.J.Mach.Tools. Manuf,1991,31:45-54P
    [35]Chiou C. H., Hong M. S., Ehmann K. F. Instantaneous shear plane based cutting force model for end milling. Journal of Material Processing Technology,2005,170: 164-180P
    [36]Armarego E. J. A. The unified generalized mechanics of cutting approach-a step towards a house of predictive performance models for machining operations. Machining Science and Technology,2000,4(3):319-362P
    [37]王立涛,柯映林,黄志刚.航空铝合金7050-T7451铣削力模型的试验研究.中国机械工程,2003,14(19):1684-1686
    [38]汪通悦.基于并联机床的2A12铝合金铣削力的实验研究.机床与液压,2007,35(3):15-17页
    [39]李亮.钦合金高速铣削加工机理及工艺研究.南京航空航天大学博士论文,2004
    [40]Y. Altinta and P. Lee. A General Mechanics and Dynamics Model for Helical End Mills. CIRP Annals-Manufacturing Technology,1996,45:59-64P
    [41]KIM G. M, CHU C N. Mean Cutting Force Prediction in Ball-end Milling using Force Map Method. J. Mater. Process. Technol,2004,146(3):303-310P3
    [42]Ozel T., Altan T. Process simulation using finite element method-prediction of cutting force, tool stresses and temperatures in high-speed flat end milling. International Journal of Machiine Tools & Manufacture,2000,40(5):713-738P
    [43]郭淼,刘泓滨,王瑞杰等.高速铣削中铣削速度及背吃刀量对铣削力影响的有限元仿真.工具技术,2010,44:29-31页
    [44]黄志刚,柯映林,董辉跃.基于正交切削模拟的直齿圆柱铣刀前角优化.浙江大学学报(工学版),2005,39(6):780-784页
    [45]成群林,柯映林,董辉跃.航空铝合金铣削加工中切削力的数值模拟研究.航空学报,2006,27(4):724-727页
    [46]董辉跃,柯映林,成群林.航空铝合金材料三维铣削加工的有限元模拟与分析.浙江大学学报,2006,5:759-762页
    [47]Alique A., Haber R. E., Harber R. H. etc. A neural network-based model for the prediction of cutting force in milling process. A progress study on a real case. Proceeding of the 15th International Symposium on Intelligent Control, Patras, Greece,2000,121-125P
    [48]张臣,周儒荣.基于BP神经网络的球头铣刀铣削力建模与仿真.中国机械工程,2005,16(20):1791-1794页
    [49]Radhakrishnan T. Milling force prediction using regression and neural networks. Journal of Intelligent Manufacturing,2005,16:93-102P
    [50]Jaeger J.C. Moving Sources of Heat and the Temperature at Sliding Contacts. Journal and Proceedings Royal Society of New South Wales,1942,76:133-228P
    [51]Richardson D.J., Keavey M.A., Dailami F.Modelling of cutting induced workpiece temperatures for dry milling. International Journal of Machine Tools & Manufacture, 2006,46:1139-1145P
    [52]周忆,梁锡昌.超高速铣削加工的温度场计算及生产应用.中国机械工程,2003,14(13):1158-1160页
    [53]Hamid A.A., Wifi A.S., Gallab M. A three dimensional finite element thero-mechanical analysia of intermittent cutting process. Journal of Materials Processining Technology,1996,56:643-654P
    [54]Lazoglu I., Altintas Y. Prediction of tool and temperature in continuous and interrupted machining. International Journal of Machine Tools & Manufacture,2002, 42:1011-1022P
    [55]Zou J.M, Andersson M. Machinability of Abrasion Resistance Cast Iron with PCBN Cutting Tools.Materials and Manufacturing Processes,2008,23(5-6):506-512P
    [56]Ming-Chyuan Lu, Elijah Kannatey-Asibu. Flank Wear Effect On System Dynamics In Turning. Journal of manufacturing science and engineering,2002,124(4):779-808P
    [57]郭厚煜,官海兵,游全根.基于后刀面磨损的铣削加工误差研究.工具技术,2007,41(7):56-57页
    [58]张臣,周来水,安鲁陵等.球头铣刀刀具磨损建模与误差补偿.机械工程学报,2008,44(2):207-212页
    [59]LIN S C, CHANG M F. A Study on the Effects of Vibration on the Surface Finish Using a Surface Topography Simulation Model for Turning. Machine Tool & Manufacture,2000,38(01):763-782P
    [60]杨国哲,王伟,巩亚东等.关于虚拟车削加工中的粗糙度预测的研究.组合机床与自动化加工技术,2004,(01):9-11页
    [61]MIZUGAKI, KIKKAWA AWA. Theoretical Estimation of Machined Surface Profile Based on Cutting Edge Movement and Tool Orientation in Ball-nosed End Milling. Annals of the CIR,2003,52(1):49-52P
    [62]S. KUMANAN. C, P. JESUTHANAM. R, ASHOK Kumar. Application of Multiple Regression and Adaptive Neuro-fuzzy Inference System for the Prediction of Surface Roughness. International Journal Advanced Manufacture Technology,2008,35: 778-788P
    [63]孙林,杨世元.基于最小二乘支持矢量机的成形磨削表面粗糙度预测及磨削用量 优化设计.机械工程学报,2009,45(10):254-260页
    [64]E.M.Lim,H.Y.Feng,C.H.Menq,et al,The prediction of dimensional error for sculptured surface productions using the ball end milling process. part 1:chip geometry analysis and cutting force prediction, International Journal of Machine Tools & Manufacture, 1995,35(8):1149-1169P
    [65]JINHYEON LEE, SEUNGHANYANG. Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools. Machine Tool & Manufacture,2002, 42(01):147-155P
    [66]BLKRISHNA C BAO, YUNG C SHIN. A Comprehensive Dynamic Cutting Force Model for Chatter Prediction in Turning. Machine Tool & Manufacture,1999,39(8): 1631-1645P
    [67]杨润党.数控车削加工过程建模与仿真系统的研发.江苏大学博士论文,2003
    [68]张臣,周来水,安鲁陵等.刀具变形引起的球头铣刀加工误差建模.南京航空航天大学学报,2008,40(1):94-99页
    [69]Fuessell B.K,Ersoy C,Jerard R.B, Computer generated CNC machining federates. Proceedings of 1992 Japan-USA Symposium on Flexible Automation,1992:377-384P
    [70]Bilchev G, Parmee I. The Ant Colony Metaphor for Searching Continuous Design Spaces. Lecture Notes in Computer Science,1995:25-39P
    [71]Lee C. M., Kim S. W., Lee Y. H. The Optimal Cutter Orientation in Ball End Milling of Cantilever-Shaped Thin Plate. Journal of Materials Processing Technology,2004, 153:900-906P
    [72]Ratchev. S, Liu S, Huang W. An Advanced Based Force Induced Error Compensation Strategy in Milling. International Journal of Machine Tools and Manufacture,2006, 46(5):542-551P
    [73]Tlusty, Taylan Altan, Process simulation using finite element method-prediction of cutting force. Journal of Machine Tool & Manufacture,2000:713-738P
    [74]姜彬,杨树财,郑敏利,李振加.数控切削加工工艺参数的多目标优化.工具技术,2002,36(7):22-25页
    [75]程伟,梁萍.基于Web的数控加工切削参数优化系统的研究.新技术新工艺,2006(5):37-39页
    [76]Takata.S, Tsai.M.D, Inui. M, et al. A cutting system for machinability evaluation using a workpiece model,Annals of the CIRP,1993,42(1):417-421P
    [77]Ko J. H, Yun W. S, Cho D. W. Development of a virtual machining system. Part 1,2,3. International Journal of Machine Tools & Manufacture,2002,42:1595-1626P
    [78]SVETAN RATCHEV, EVAN GO VENDER. Force and Deflection Modeling in Milling of Low Rigidity Complex Parts. Materials Processing Technology,2003,143: 796-801P
    [79]SVETAN RATCHEV, STAN NIKOV, IDIR MOUALEK. Material Removal Simulation of Peripheral Milling of Thin Wall Low-rigidity Structures Using FEA. Advances in Engineering Software,2004,35(9):481-491P
    [80]Tang.Y.S, Chang. W.S, Dynamic NC simulation of milling operation. Computer-Aided Design,1993,25(12):769-775P
    [81]ENDRES W J. A dynamic Model of cutting force System in the Turning Process. proc. ASME,1999(8):408-416P
    [82]ZHANG G M, KAPOOR S G. Dynamic modeling and analysis of the boring machining system. ASME Journal of Engineering for Industry,1997:219-226P
    [83]卢碧红.虚拟数控车削加工精度预测系统研究.大连铁道学院博士论文,2003
    [84]黄雪梅,赵明扬.虚拟数控车削物理仿真系统的研究与开发.中国机械工程,2002,13(15):1336-1338页
    [85]刘强,尹力.一种面向数控工艺参数优化的铣削过程动力学仿真系统研究.中国机械工程,2005(13):1146-1149页
    [86]孙宏伟,马玉林.基于加工质量预测与分析的数控铣削过程仿真系统研究与开发.制造业自动化,2000,22(6):25-27页
    [87]李清.虚拟数控铣床加工过程仿真系统及相关技术的研究.天津大学博士论文,2004
    [88]Koren Y,Computer control of manufacturing systems, New York:McGraw Hill,1983
    [89]Altintas Y. The control of multiple constraints with an open architecture machine tool controller. ASME Journal of Manufacturing Science and Engineering,1996,118: 588-601P
    [90]刘战强,黄传真,万熠等.切削数据库的研究现状与发展.计算机集成制造系统,2003,9(11):937-943页
    [91]Cus F, et al. Database for technological information system. Journal of Materials Processing Technology,2004,157-158:75-81P
    [92]何志伟,严隽薇.数控加工过程建模和仿真的研究与应用.组合机床与自动化加工技术,2004(4):663-666页
    [93]张铁军,袁哲俊. 虚拟加工系统的组合化设计.组合机床与自动化加工技术,2000(1):17-19页
    [94]Roy. U, Xu Y.X.3-D object decomposition with extended octree model and its application in geometric simulation of NC machining. Robotics and Computer-integrated Manufacturing,1998,14(4):317-327P
    [95]ALKAN M D. Development of Virtual Machine Tools. Japan:Proc. of The 4th Sino-Japan Con.on Cutting and Grinding Progress,1996
    [96]罗堃.在微机上实现数控铣床加工仿真.计算机辅助设计与图形学学报,2000,12(3):203-206页
    [97]余湛悦,周来水,张臣.提高数控虚拟加工仿真速度和效果的关键技术研究.计算机设计与图形学学报,2004,16(5):64-84页
    [98]黄勇,张博林,薛运锋.UG二次开发与数据库应用基础与典型范例.北京:电子工业出版社,2008
    [99]黄翔,李迎光.UG应用开发教程与实例精解.北京:清华大学出版社,2005
    [100]范胜波.虚拟数控车削加工质量预测系统的研究.天津大学博士论文,2005
    [101]梅文涛,武文革,黄美霞.虚拟数控加工过程物理仿真模型的研究.机械设计与制造,2010(5):202-204页
    [102]Y Altintas, P. Lee. Mechanics and Dynamics of Ball End Milling. ASME J. Manuf. Sei. Eng,1998,120:684-692P
    [103]Ching-chin Tai, Kung-Hua Fuh. A predictive force model in ball-end milling including eccentricity effects. International Journal of Machine Tools & Manufacture, 1994,34(7):959-979P
    [104]G.M.Kim, P.J.Cho, C.N.Chu. Cutting Force Prediction of Sculptured Surface Ball-end Milling Using Z-map. International Journal of Machine Tools & Manufacture, 2000,40:277-291P
    [105]倪其民,李从心,吴光琳,阮雪榆.考虑变形的球头铣刀铣削力建模与仿真.机械工程学报,2002,38(3):108-112页
    [106]马万太,王宁生.考虑弹性变形时的球头铣刀切削力模型的研究.南京航空航天大学学报,1998,30(6):633-640页
    [107]TUGRUL OZEL, TAYLAN ALTAN. Process Simulation Using Finite Element Method and Prediction of Cutting Force, Tool Stresses and Temperatures in High Speed Flat-end Milling. Machine Tool & Manufacture,2000,40(2):713-738P
    [108]Lazoglu I., Altintas Y. Prediction of tool and temperature in continuous and interrupted machining. International Journal of Machine Tools & Manufacture,2002, 42:1011-1022P
    [109]EG. Ng, DK A SPIN WALL, BRAZIL. Modeling of Temperature and Force When Orthogonally Machining Hardened Steel. Machine Tool & Manufacture,1999,39(5): 885-903P
    [110]S.W.Kim, C.M.Lee. Evaluation of the thermal characteristics in high-speed ball end milling. Journal of Materials Processing Technology,2001,113:406-409P
    [111]郭强,谭光宇.三维槽型铣刀片铣削平均温度数学模型三维槽型铣刀片铣削平均温度数学模型.哈尔滨理工大学学报,2000,5(6):33-36页
    [112]C Andersson, M T Andersson, J E Stahl. Bandsawing. Part Ⅱ:Detecting positional errors, tool dynamics and wear by cutting force measurement. International Journal of machine Tools & Manufacture,2001,41(1):227-236P
    [113]M.D.Tsai S.Takata. Predietion of Chatter Vibration by Menas of a Model Based Cutting Simulation System. Annals of the CIRP,1990,39:447-451P
    [114]王敬春,冯明军.球头铣刀精铣铝合金叶片的磨损试验研究.工具技术,2008:(10):80-82页
    [115]He Yaoxiong, Zhou Yunfei, Zhou Ji. Generalized helical movement and geometric modeling of comp licated-shape revolving cutting tools. Acta Aeronautica et Astronautica Sinica,2002,23 (2):135-139P
    [116]Lazoglu I., Altintas Y. Prediction of tool and temperature in continuous and interrupted machining. International Journal of Machine Tools & Manufacture,2002, 42:1011-1022P
    [117]M. H. Sadeghi, H. Haghighat, M. A. Elbestawi. A Solid Modeler Based Ball-end Milling Process Simulation. Int J Adv Manuf Technol,2003,22:775-785P S. Engin, Y. Altintas. Mechanics and dynamics of general milling cutters. Part I:helical end mills. International Journal of Machine Tools and Manufacture,2001,41:2195-2212P
    [118]张臣.数控铣削加工物理仿真关键技术研究.南京航空航天大学博士论文,2006
    [119]W.A.Kline, R.E.DeVor, I.A.Shareef. The prediction of surface accuracy in end milling. ASME J.Eng.for Ind,1982,104:272-278P
    [120]陈勇,李雄伟,余铁岳等.再生振动和刀具偏心对立铣加工精度综合影响的研究.工具技术,2006,40:28-31页
    [121]G.M.Kim, P.J.Cho, C.N.Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map. International Journal of Machine Tools & Manufacture,2000, 40(2):277-291P
    [122]阎长罡,刘清荣,许立.基于主成份回归的铣削力系数辨识及仿真.制造业自动化,2007,29(9):33-36页
    [123]韩秋实.机械制造技术基础.北京:机械工业出版社,2005
    [124]孟辉,赵军,王素玉.高速切削温度场的有限元分析.工具技术,2005,39(4):21~23页
    [125]刘广军,谭光宇,李广慧.三维复杂槽型铣刀片温度场数学模型研究.黑龙江工程学院学报(自然科学版),2004,18(1):1-4页
    [126]汪洪峰,王立涛,张光胜.数控铣削加工过程中热源及温度场模型理论的研究.成组技术与生产现代化,2008,25(1):31-35页
    [127]Richard Y. Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments. The International Journal of Advanced Manufacturing Technology,2007,31(9~10):905-914P
    [128]吴泽群,刘亚俊,汤勇等.刀具后刀面磨损量对切削力及加工表面粗糙度的影响.工具技术,2005,39(5):37-38页
    [129]刘占强,艾兴.高速切削刀具磨损寿命的研究.工具技术,2001,35(2):3-7页
    [130]R.J.Kuo. Multi-sensor integration for on-line tool wear estimation through artificial neural networks and fuzzy neural network. Engineering Applicationsof ArtiRcial Intelligence,2000,13(3):249-261P
    [131]Y.Choi, R.Narayanaswami, A.Chandra. Tool wear monitoring in ramp cuts in end milling using the wavelet transform. International Journal of Advanced Manufacture Technology,2004,23(5-6):419-428P
    [132]郑建明,李言,肖继明等.基于神经网络的多特征融合刀具磨损量识别.机械科学与技术,2002,21(1):127~130页
    [133]王庆明,程耀东,朱国辉.刀具磨损形式与磨钝标准VB的选取.机械,1996,23(6):127-130页
    [134]LUC MASSET, JEAN-FRANCOIS DEBONGNIE. Machining Processes Simulation Specific Finite Element Aspects. Computational and Applied Mathematics,2004, 168:309-320P
    [135]PHANA A V, BARON L B. Finite Element and Experimental Studies of Diametric Errors in Cantilever Bar Turning. Applied Mathematical Modeling,2003,27(03): 221-232P
    [136]阎兵,张大卫,徐安平等.球头铣刀铣削表面形貌建模与仿真.计算机辅助设计与图形学学报,2001,13(2):135-140页
    [137]KAPOOR S G, DEVOR R E, ZHU R. Development of Mechanistic Models for the Prediction of Machining Performance:Model Building Methodology. Machining Science and Technology,1998,2(2):213-218P
    [138]JINHYEON LEE, SEUNGHANYANG. Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools. Machine Tool & Manufacture,2002, 42(01):147-155P
    [139]BLKRISHNA C BAO, YUNG C SHIN. A Comprehensive Dynamic Cutting Force Model for Chatter Prediction in Turning. Machine Tool & Manufacture,1999,39(8): 1631-1645P
    [140]杨培中,宋平.分型插值曲面与表面粗糙度的三维评定.机械工艺师.2000,(10):37-38页
    [141]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997
    [142]侯宇,张竞,崔晨阳.复杂线轮廓度误差评定方法.仪器仪表学报.2001,22(1): 104-106页
    [143]施法中.计算机辅助几何设计与非均匀有理B样条.北京:北京航空航天大学出版社,1994
    [144]王霄,刘会霞,杨润党等.虚拟数控加工过程物理仿真模型的建立.计算机仿真.2003,20(4):88-91页
    [145]H.A.Kishawy. An Experimental. Evaluation of Cutting Temperatures during High Speed Machining of Hardened d2 Tool Steel. Machining Seience and Technology, 2002, Vol.6(1):67-79P
    [146]Fuessell B.K, Ersoy C, Jerard R.B. Computer generated CNC machining federates. Proceedings of 1992 Japan-USA Symposium on Flexible Automation,1992:377-384P
    [147]Tamg Y S,Cheng C.I,Kao J.Y. Modeling of three-dimensional numerically controlled end milling operations. International Journal of Machine Tools&Manufacture,1995, 35(7):939-950P
    [148]Spence A.D, Altintas Y. A solid modeler based milling process simulation and planning system. ASME Journal of Engineering for Industry,1994,116(1):61-69P
    [149]Bilchev G,Parmee I. The Ant Colony Metaphor for Searching Continuous Design Spaces. Lecture Notes in Computer Science,1995:25-39P
    [150]Ratchev. S, Liu S, Huang W. An Advanced Based Force Induced Error Compensation Strategy in Milling. International Journal of Machine Tools and Manufacture,2006, 46(5):542-551P
    [151]Lee C. M., Kim S. W., Lee Y. H. The Optimal Cutter Orientation in Ball End Milling of Cantilever-Shaped Thin Plate. Journal of Materials Processing Technology,2004, 153:900-906P
    [152]张培培,套华,高晓兵.基于遗传模拟退火算法的铣削用量优化.组合机床与自动化加工技术.2007(3):26-29页
    [153]蒋亚军,娄臻亮,李明辉.基于模糊粗糙集理论的模具数控切削参数优化.上海交通大学学报,2005(7):79-83页
    [154]蒋异.数控加工切削参数优化匹配专家系统的研究.同济大学博士论文,2006
    [155]孙拥军,陈东栋.基于遗传算法的铣削用量优化.工具技术,2008,42(8):40-42页
    [156]张华军.铣削参数智能优化系统的研究与设计.太原理工大学博士论文,2008
    [157]Lawrence Davis. Performance of hybrid real coded genetic algorithms. International Journal of Computational Engineering Science,2001,2(4):583-601P
    [158]王亚子.小生境与并行遗传算法研究.中国人民解放军信息工程大学博士论文,2006
    [159]张松艳.选择算子与遗传算法的计算效率分析.宁波大学学报,2009,22(3): 126-131页
    [160]潘凤萍,巩敦卫,许世范.遗传算法变异算子可达性研究.中国控制与决策学术年会,2003,964-968页
    [161]高宇.基于多Agent的多级多目标规划遗传算法实现研究.吉林大学硕士论文,2007
    [162]李燕斌.静电梳齿结构的MEMS分析和优化设计.华中科技大学博士论文,2008
    [163]张翔.一种基于最优解定义的多目标优化数值解法.中国机械工程学会现代设计理论与方法学术研讨会,2001:22-24页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700