胶粘剂对镁/铝异种合金胶焊的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶焊技术是一种把焊接和胶接工艺相结合的复合连接方法,它充分发挥了焊接和胶接工艺的优点,其接头具有承载能力高、抗剥离性能好等特点。但是,目前采用的焊接热源仅有电阻焊和激光焊两种,焊接热源比较单一。同时,关于胶粘剂的加入对焊接热源的影响及其机制的研究也鲜有报道,大大限制了胶焊技术的发展和应用。因此,本文提出了将等离子弧焊和激光-钨极氩弧(Tungsten Inert Gas, TIG)复合热源焊技术与胶接技术相复合的新型胶焊方法,即等离子弧胶焊和激光-TIG复合热源胶焊技术,以镁/铝异种合金为研究对象,重点讨论了胶粘剂的加入对不同类型焊接热源和镁/铝异种合金接头组织结构的影响及其机制。本文主要研究内容与结论:
     1.采用等离子弧胶焊技术,以镁/镁同种合金为对象进行搭接连接。在确定等离子弧胶焊技术焊接性的同时,初步分析胶粘剂的加入对焊接过程的影响,并建立其观测分析系统,包括焊接等离子体形态、焊接电流、电压和焊接工件表面温度场的采集分析以及接头组织和力学性能的观察检测。结果发现,通过工艺参数的调节可以去除由于胶粘剂的加入而产生的接头不易成形和易出现气孔缺陷的负面影响,获得了良好成形的等离子弧胶焊接头。此外,研究发现,由于胶粘剂的加入,等离子弧形态在电流负半波区间发生拘束、收缩,焊接电流不变,焊接电压升高。接头熔池组织的晶粒细化,熔池金属的冷却速度提高。与等离子弧焊和胶接接头相比,等离子弧胶焊接头的拉伸剪切失效载荷增大。
     2.采用等离子弧胶焊技术,以镁/铝异种合金为对象进行搭接连接,系统分析胶粘剂的加入对等离子弧热源和镁/铝异种合金接头组织结构及力学性能的影响。结果表明,在镁/铝异种合金等离子弧胶焊过程中,由于胶粘剂的加入,其焊接等离子体形态发生拘束、收缩,大量镁原子进入到等离子弧的电离气氛中,改变了电离气氛的粒子组成,使等离子弧中镁原子和镁离子的谱线强度提高,电子温度降低,电子密度提高,焊接电流不变,但焊接电压升高。同时,使接头中熔池组织不均匀,熔池底部过渡区由连续、平滑转变为起伏、无序结构,增大了Al3Mg2层与a-Al之间的连接面积,并降低了接头的裂纹倾向性。此外,等离子弧胶焊接头的拉伸剪切失效载荷虽高于等离子弧焊接头但低于胶接接头。分析得出,提高焊缝拉伸剪切失效载荷的同时,降低胶粘剂的失效面积是提高镁/铝异种合金胶焊接头拉伸剪切失效载荷的根本方法。
     3.采用激光-TIG复合热源胶焊技术,以镁/铝异种合金为对象进行搭接连接,研究分析胶粘剂的加入对激光-TIG复合热源和镁/铝异种合金接头组织结构及力学性能的影响。结果发现,在镁/铝异种合金激光-TIG复合热源胶焊过程中,由于胶粘剂的加入,焊接等离子体形态发生膨胀,亮度增强。镁原子分布体积增大,氩原子分布体积缩小。对应其光谱谱线,镁原子和镁离子的谱线强度提高,氩原子和氩离子的谱线强度降低,TIG电弧的电子温度降低,电子密度提高。焊接电流几乎不变,但焊接电压增大。同时,焊接熔深增大,熔池金属的流动性增强,熔池底部过渡区由连续、平滑结构转变为起伏不平、无序结构,增大了A13Mg2层与a-Al层之间的连接面积,并降低了接头的裂纹倾向性。与激光-TIG复合热源焊接头相比,激光-TIG复合热源胶焊接头的拉伸剪切和剥离失效载荷均增大。
     4.通过对镁/铝异种合金等离子弧胶焊和激光-TIG复合热源胶焊过程中,焊接等离子体信息和接头组织结构及力学性能的采集、观测和检测,研究分析胶粘剂的加入对等离子弧热源和激光-TIG复合热源以及镁/铝异种合金接头组织结构的影响及其机制。研究表明,在等离子弧胶焊过程中,胶粘剂的加入促进了镁蒸气的蒸发,改变了等离子弧电离气氛的粒子组成,使之发生“热收缩”效应,导电通道收缩,等离子弧能量密度提高,获得了更大的焊接熔深。在激光-TIG复合热源胶焊过程中,胶粘剂的分解、气化增大了“匙孔”内压强,促进了“匙孔”内金属等离子体的逸出,降低了“匙孔”周围液态金属层的厚度。从而降低了“匙孔”内金属等离子体对激光束的弱化作用(吸收和散焦),增大了“匙孔”底部固态金属对激光能量的吸收速率,使激光束的穿透能力增强。同时,改变TIG电弧的电离气氛,引起电弧的“热收缩”,提高了电弧的能量密度。此外,胶粘剂的分解、气化和逸出,对熔池金属产生强烈的搅拌作用,破坏了接头组织的均匀性,使熔池底部过渡区由连续、均匀、平滑结构转变为凹凸起伏、无序结构,提高了A13Mg2层与a-Al层之间的连接面积,有助于增大焊缝的承载能力。
Weld bonding technology was a hybrid join method, combining the welding and adhesive bonding process. It took the advantages of the welding and adhesive bonding technique. The combined connections ensured better the carrying power and the peel performance. However, the welding source used in weld bonding process was few, which only contained resistance spot welding and laser welding at present. At the same time, the effect of adhesive on the welding source was almost not investigated. It limited the development of the weld bonding technology greatly. Therefore, "plasma arc weld bonding" (PAWB) and "laser-Tungsten Inert Gas (TIG) weld bonding" (LTWB) technology, two new weld bonding method, were presented in this paper. Through PAWB and LTWB process of Mg to Al alloy, the effect of adhesive on different welding source and structure of Mg/Al joint was investigated. The main research contents and results were as follow:
     1. PAWB process of Mg/Mg alloy was conducted, and the welding characteristic and weldability were investigated. The variety of welding process due to the addition of adhesive was observed and tested, including the welding plasma, welding current, welding voltage, temperature distribution on the surface of weldment, macrostructure, microstructure and mechanical property of joints. The results showed that the the welding problem, such as non-shape and pores, could be avoided by the adjustment of technics parameters, as a result a better PAWB joint was obtained. Besides, it was found that in PAWB process of Mg alloy, because of the addition of adhesive, the welding plasma contracted in alternating current electrode positive stage. The welding current was not changed, and the welding voltage was increased. The melton pool grain was refined. The heat-transfer rate between sheets was enhanced, leading to increment of cooling velocity of melton pool. PAWB joint showed higher tensile shear failure load comparing with plasma arc weld joint and adhesive bonding joint.
     2. PAWB process of Mg/Al alloy was conducted. The effect of adhesive on the plasma behaviors and structure and mechanical property of Mg/Al joint was investigated. The results showed that due to the addition of adhesive, the welding plasma contracted in PAWB process of Mg to Al alloy. More Mg atom entered the ionization atmosphere of plasma arc, and then ionized. The spectrum intensity of Mg and Mg+ increased. The electron temperature of the plasma arc reduced, and the electron density of the plasma arc increased. The welding current was not changed, and the welding voltage increased. At the same time, because the addition of adhesive, the joint structure was changed to non-uniform, the transitional zone between fusion zone and lower base metal was changed from smooth to wavily, as a result the connect area between Al3Mg2 layer and a-Al increased. Besides, the tensile shear failure load of PAWB joint was higher than plasma arc welding joint, and was lower than adhesive bonding joint. Based on investigation, it was concluded that increasing the carrying power of joint and dereasing the failure area of adhesive at the same time was the ultimate method to improve the carrying power of Mg/Al weld bonding joint.
     3. LTWB process of Mg/Al alloy was conducted. The welding weldability and the effect of adhesive on the welding source and structure and mechanical property of Mg/Al joint were investigated. The results showed that because of the addition of adhesive, the welding plasma expanded, and the brightness of which enhanced during the LTWB process of Mg to Al alloy. The spectrum intensity of Mg and Mg+increased, and the spectrum intensity of Ar and Ar+ dereased. The distribution of Mg atom increased, and the distribution of Ar atom dereased. The electron temperature of the arc plasma reduced, and the electron density of the arc plasma increased. The welding current was not changed, and the welding voltage increased. At the same time, the joint structure was changed to non-uniform. Transitional zone between fusion zone and lower base metal was changed to wavily and disordered. The connect area between Al3Mg2 layer and a-Al layer increased. Besides, LTWB joint showed higher tensile shear and peel failure load than laser-TIG welding joint.
     4. Through the investigation of PAWB and LTWB process of Mg to Al alloy, the effect mechanism of adhesive on the different welding source and Mg/Al joint structure was investigated. The results indicated that during PAWB process, the addition of adhesive casued more Mg atom to enter the ionization atmosphere of plasma arc, leading to the thermal contraction effect. The electric path contracted and the energy density of plasma arc increased, which was helpful to get a deeper penetration depth. During LTWB process, the adhesive decomposed and producted a lot of gases by the welding source, which increased the pressure inside the laser keyhole. It not only accelerated the escape of the metal plasma inside laser keyhole, but also reduce the the thickness of liquid metal layer around the laser keyhole. It casued that the absorption and the defocus effect of metal plasma on laser inside the laser keyhole decreased, and the absorb speed of solid metal for laser energy increased. The penetration power of laser beam was enhanced, thus the deeper penetration depth was obtained. Besides, more Mg atom entered the arc plasma and ionized instead of Ar atom. By the thermal contraction effect, the energy density of arc was also increased. For Mg/Al joint structure, because of the decomposition and gasitication of adhesive, the flow of molten pool metal was accelerated. The transitional zone between fusion zone and lower base metal was changed from smooth to wavily. The connect area between Al3Mg2 layer and a-Al layer was increased, which was helpful to increase the carry power of the joint.
引文
[1]Jones B. A Future for Weldbonding Sheet Steel [J]. Welding and Fabrication,1978, 46(7/8):415-420.
    [2]Ryazantisev I, Shavyrin V N. Strength characteristics of welded and bonded-welded joints [J]. Welding Production,1979,26(9):19-21.
    [3]Jones B, Williams N T. Fatigue in adhesive and weldbonded steel joints [J]. SAE,1986, 97(7):48-53.
    [4]纪东莲,王文先.胶焊技术与胶接接头的设计分析[J].汽车技术,1999,(3):19-21.
    [5]Messler R W. Weld-bonding:the best or worst of two processes? [J]. Industrial Robot, 2002,29(2):138-148.
    [6]Xia Yong, Zhou Qing, Wang P C. Development of high-efficiency modeling technique for weld-bonded steel joints in vehicle structures—Part Ⅰ:Static experiments and simulations [J]. International Journal of Adhesion & Adhesives.2009,29(4):414-426.
    [7]Xia Yong, Zhou Qing, Wang P C. Development of high-efficiency modeling technique for weld-bonded steel joints in vehicle structures—Part Ⅱ:Dynamic experiments and simulations [J]. International Journal of Adhesion & Adhesives.2009,29(4):427-433.
    [8]戴瑞玲,王玮.粘接点焊技术及最佳工艺参数的研究[J].机械强度,1996,18(3):64-67.
    [9]Somervuori M E, Alenius M T, Kosonen T. Corrosion fatigue of weld-bonded austenitic stainless steels in 3.5% NaCl solution [J]. Materials and Corrosion.2006,57(7): 562-567.
    [10]Arne Melander, Mats Larsson, Hanna Stensio, et al. Fatigue performance of weldbonded high strength sheet steels tested in Arctic, room temperature and tropical environments [J]. International Journal of Adhesion & Adhesives,2000,20:415-425.
    [11]Biswajit Tripathy, Srinivasan Suryanarayan. Vibration and buckling characteristics of weld-bonded rectangular plates using the flexibility function approach [J]. International Journal of Mechanical Sciences,2008,50:1486-1498.
    [12]Biswajit Tripathy, Srinivasan Suryanarayan. Analytical studies for buckling and vibration of weld-bonded beam shells of rectangular cross-section [J]. International journal of mechanical sciences,2009,51(1):77-88.
    [13]李春植,戴瑞玲,王玮.粘接点焊单搭接头的静力分析[J].机械强度,1997,19(2):21-24.
    [14]Sato R. Stress and rigidity analysis of spot-welded and weld-bonded members [J]. Welding International,1998,12(2):107-117.
    [15]Darwish S M, Ghanya A. Critical assessment of weld-bonded technologies [J]. Journal of Materials Processing Technology,2000,105:221-229.
    [16]A1-Samhan A, Darwish S M H. Finite element modeling of weld-bonded joints [J]. Journal of Materials Processing Technology,2003,142:587-598.
    [17]A1-Samhan A, Darwish S M H. Strength prediction of weld-bonded joints [J]. International Journal of Adhesion & Adhesives,2003,23:23-28.
    [18]常保华,史耀武,董仕节.胶焊接头的三维弹塑性应力分析[J].中国机械工程,1998,9(7):73-76.
    [19]赵波,岳鹏.单搭拉剪胶焊接头的应力和刚度分析[J].应用力学学报,2008,25(1):24-32.
    [20]Darwish S M, Al-Samhan A M. Peel and shear strength of spot-welded and weld-bonded dissimilar thickness joints [J]. Journal of Materials Processing Technology,2004,147: 51-59.
    [21]Darwish S M. Weldbonding strengthens and balances the stresses in spot-welded dissimilar thickness joints [J]. Journal of Materials Processing Technology,2003,134: 352-362.
    [22]Darwish S M, Al-Samhan A. Design rationale of weld-bonded joints [J]. International Journal of Adhesion & Adhesives.2004,24:367-377.
    [23]Darwish S M. Characteristics of weld-bonded commercial aluminum sheets (B. S.1050) [J]. International Journal of Adhesion & Adhesives,2003,23:169-176.
    [24]Darwish S M, A1-Samhan A. Thermal stresses developed in weld-bonded joints [J]. Journal of Materials Processing Technology,2004,153-154:971-977.
    [25]Darwish S M. Analysis of weld-bonded dissimilar materials [J]. International Journal of Adhesion & Adhesives,2004,24:347-354.
    [26]Santos I O, Zhang W, Goncalves V M, et al. Weld bonding of stainless steel [J]. International Journal of Machine Tools & Manufacture,2004,44:1431-1439.
    [27]常保华,史耀武,董仕节.胶粘剂厚度和弹性模量对胶焊接头应力分布的影响[J].材料工程,1998(5):19-23.
    [28]常保华,史耀武,董仕节.板厚对不同胶粘剂胶焊单搭接头中应力分布影响的数值分析[J].中国机械工程,1999,10(3):341-344.
    [29]常保华,史耀武,董仕节.胶焊接头中焊点大小对应力分布的影响[J].航空工艺技术,1999(1):22-24.
    [30]常保华,史耀武,陈建忠,等.边缘定位胶焊接头的应力应变分布和强度研究[J].材料科学与工艺,2000,8(1):63-67.
    [31]常保华,史耀武,董仕节.板宽对胶焊接头应力分布影响的数值分析[J].航空材料学报,1998,18(3):34-39.
    [32]常保华,史耀武,董仕节.搭接长度对胶焊接头应力分布的影响[J].机械强度,1999,21(2):109-111.
    [33]M M舍瓦尔兹著,袁文钊等译.金属焊接手册[M].北京:国防工业出版社,1988.
    [34]常保华,史耀武,董仕节.胶焊技术及其应用[J].焊接技术,1998,(1):9-12.
    [35]刘黎明,王红阳,王恒,等.镁合金激光胶接焊接头微观及力学性能[J].中国机械工程,2007,18(3):352-356.
    [36]Kemal Apalak M, Kemal Aldas, Faruk Sen. Thermal non-linear stresses in an adhesively bonded and laser-spot welded single-lap joint during laser-metal interaction [J]. Journal of Materials Processing Technology,2003,142:1-19.
    [37]Messler R W, Bohnenstiehl S, Levene J, et al. A pressure-assisted approach for laser-beam weld-bonding Al alloy structure for automobiles [J]. Assembly Automation 2004,24:370-378.
    [38]Messler R W, Bell J, Craigue 0, et al. Laser Beam Weld Bonding of AA5754 for Automobile Structures [J]. Welding Journal,2003,6:151-159.
    [39]王恒.镁、铝异种金属激光胶接焊工艺的研究[D]:硕士学位论文.大连:大连理工大学,2006.
    [40]Liu L M, WANG H Y, ZHANG Z D. The analysis of laser weld bonding of Al alloy to Mg alloy [J]. Seripta Materialia,2007,56(6):473-476.
    [41]Liu L M, Wang H Y. The effect of the adhesive on the micro-cracks in the laser welded Bonding Mg to Al joint [J]. Materials Science and Engineering A,2009,507:22-28.
    [42]Liu L M, Wang H Y, Song G, et al. Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminum alloy [J]. Journal of Materials Science,2007,42(2):565-572.
    [43]Wang H Y, Liu L M, Zhu M L, et al. Laser weld bonding of 6061A1 alloy to AZ31B Mg alloy [J]. Science and Technology of Welding & Joining,2007,12(3):261-265.
    [44]程振彪.轻材料中汽车上的应用[J].世界汽车,2000,4:14-15.
    [45]Miller W S, Zhang L, Bottenna J, et al. Recent Development in Aluminum Alloys for the Automotive Industry[J]. Materials Science and Engineering A,2000,280:27-49.
    [46]Masaaki Saito, Shuuichiro Iwatsuki, Kunihiro Yasunaga, et al. Development of Aluminum Body for the most Fuel Efficient [J]. Vehicle, JSAE Review,2000,21:511-516.
    [47]杨丽华.21世纪汽车发展趋势[J].汽车技术,2000,4:1-3.
    [48]陈小复.汽车用轻质材料研究[J].世界汽车,2000,12:13-16.
    [49]孙咏金.汽车车身结构的发展动向[J].世界汽车,1995,6:10-11.
    [50]华林.汽车铝板应用新进展[J].世界汽车,1995,4:20-23.
    [51]王竑,陈昌明,吴宪.铝在现代汽车轻量化中的作用[J].上海汽车,2004,12:32-34.
    [52]陆刚.铝、镁、钛合金材料在汽车工业中的应用和发展[J].材料天地,2005,(5):45-47.
    [53]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminum alloys for aerospace applications [J]. Materials Science and Engineering A,2000,280:102-110.
    [54]James Staley, Liu T, Hunt John, et al. Aluminum alloys for aerostructures[J]. Advance Materials Processing,1997,10-17.
    [55]张少华.铝合金在汽车上应用的进展[J].汽车工业研究,2003,(3):36-39.
    [56]吴水龙.铝合金焊接加工工艺及焊接裂纹的防止措施[J].中国新技术新产品,2010,(18):191-191.
    [57]何小民.铝合金先进焊接工艺[J].工艺技术与研究,2005,(1):36-39.
    [58]Zhang, Y M, Zhang S B. Double-sided arc welding increases weld jointpenetration [J]. Welding Journal,1998,77(6):57-61.
    [59]Pasi Hiltunen. Kemppi pro-evolution double pulse and aluminium welding [J].PRONEWS, 2002, (2):10-13.
    [60]李志远,钱乙余,张九海,等.先进连接方法[M].北京:机械工业出版社,2000.
    [61]Lucas W, Howes D S. Activating flux increasing the performance and productivity of the TIG and plasma process [J]. Welding and Metal Fabrication,1996, (1):11-17.
    [62]孙俊生,武传松. 等离子与钨极双面电弧焊接热过程的数值模拟[J].金属学报,2003,39(5):499-504.
    [63]Zhang Y M, Zhang S B. Welding Aluminum Alloy 6061 with the Opposing Dual-Torch GTAW Process [J]. Welding Research Supplement,1999,78(6):202-206
    [64]Rolf Larsson. Friction Stir Welding New technology changing the rules of game in Al construction [J]. Sveetsaren,2001, (3):12-15.
    [65]Mahoney M W, Rhodes C G. Properties of friction stir welded 7075 T651 aluminum [J]. Metallurgical and Materials Transactions A,1998,29(7):1955-1964.
    [66]Huang Y, Ridley N, Humphreys F J, et al. Diffusion bonding of superplastic 7075 aluminum alloy [J]. Materials Science and Engineering A,1999,266:295-302.
    [67]Guitterz L A, Neye G, Zschech E. Microstructure, hardness profile and tensile strength in welding of 6013 T6 extrusions [J]. Welding Journal,1996,75(4):115-121.
    [68]Belforte D A. Laser materials processing-the next generation of application [J]. Proc. 5th International Conference on Welding and Melting by Electron and LaserBeams,1993: 1-11.
    [69]邦达列夫,张克华(译).铝合金电子束焊接缺陷的预防和排除[J].航天工艺,1998,8(4):55-57.
    [70]黄儒瑛.6061/Sic铝基复合材料之高能量束焊接性质研究[D].硕士论文.台湾:国立中山大学材料科学研究所,2000.
    [71]Montemor M F, Simoes A M, Carmezim MJ. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection [J]. Applied Surface Science,2007,253:6922-6931.
    [72]Li W, Zhou H, Zhou W, et al. Effect of cooling rate on ignition point of AZ91D-0.98 wt.% Ce magnesium alloy [J]. Materials Letters,2007,61:2772-2774.
    [73]褚东宁.东风公司商用车轻量化材料的应用[J].汽车工艺与材料,2007,7:1-3.
    [74]殷建华.关于欧共体国家开展航空镁铸件研发的模式分析[J].世界有色金属,2007,8:65-69.
    [75]Sotomi Ishihara, Zhenyu Nan, Takahito Goshima. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Materials Science and Engineering A,2007,468-470: 214-222.
    [76]Uematsu Y, Tokaji K, Kamakurab M, et al. Effect of extrusion conditions on grain refinement and fatigue behavior in magnesium alloys [J]. Materials Science and Engineering A,2006,434:131-140.
    [77]黄晓艳,周宏.21世纪绿色工程材料—Mg合金[J].南方金属,2002,138:4-9.
    [78]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].机械工业出版社,2006.
    [79]丁文斌,蒋海燕,曾小勤,等.镁合金焊接技术研究进展[J].轻合金加工技术,2005,33(8):1-5.
    [80]Robert E B.53rd Annual World Magnesium Conference [J]. Light Metal Age,1996,54(8): 55-58.
    [81]王红英,李志军,梁雪峰,等.镁合金激光焊接技术的研究现状与应用[J].焊接,2005,(11):9-13.
    [82]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用[J].中国有色金属学,2005,15(2):165-178.
    [83]张滓,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [84]Stolbov V I, Eltsov V V. Repair of castings of magnesium alloys using three-phase arc [J]. Welding Production,1984,31(2):52-53.
    [85]Stolbov V I, Eltsov V V. Examination of the stress-strain state in repair welding casting defects in magnesium alloys using a thress-phase arc [J]. Welding Production,1985, 32(10):32-35.
    [86]Stolbov V I, Eltsov V V, Potekhin V P. Calculation of temperature distribution in repair welding magnesium castings using a three-phase arc [J]. Welding Production,1985,32(9): 43-47.
    [87]天津大学焊接教研室.金属熔化焊原理及工艺[M].北京:机械工业出版社,1979.
    [88]Marya M. Theoretical and experimental assessment of chloride effects in the A-TIG welding of magnesium [J]. Welding in the World,2002,46(7-8):7-21.
    [89]Marya M.Edwards G R. Chloride contributions in flux-assisted GTA welding of magnesium alloys-experiments demonstrated chlorides increased arc voltage, arc temperature, and weld penetration, with cadmium chloride being the most effective[J]. Welding Journal, 2002,81(12):291S-298S.
    [90]徐杰,刘子利,沈以赴,等.AZ31镁合金活性TIG焊接头分析[J].焊接学报,2005,26(10):54-58.
    [91]Lockwood L F. Gas metal-arc welding of AZ31B magnesium alloy sheet [J]. Welding Journal. 1963,42(10):807-818.
    [92]Rethemeier M, Wiesner S. Characteristic features of MIG welding of magnesium alloys [J]. Zeitschrift Fur Metallkunde,2001,92(3):281-285.
    [93]Wohlfahrt H, Rethlemeier M, Bouaif i B. Metal-inert gas welding of magnesium alloys [J]. Welding and Cutting,2003,55(2):80-84.
    [94]Richard P M. A critical review of laser beam welding [J]. Processing of SPIE,2005, 5706(11):11-24.
    [95]Sprow E E. The laser-welding spectrum:what it has to offer you [J]. Tooling and Production,1988,54(3):556-563.
    [96]Hirage H, Inoue T, Kamado S. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet [J]. Quarterly Journal of the Japan Welding Society, 2001,19(4):591-599.
    [97]邢丽,柯黎明,孙德超,等.镁合金薄板的搅拌摩擦焊工艺[J].焊接学报,2001,22(6):18-20.
    [98]Nakata K, Inoki S, Nagano Y, et al. Weld ability of friction stir welding of AZ91D magnesium alloy thixomolde sheet [J]. Journal of Japan Institute of Light Metals.2001, 51(10):528-533.
    [99]Larsson J K. Overview of joining technologies in the automotive industry [J]. Welding Research Abroad,2003,49 (6):29-45.
    [100]Cao X. A review of laser welding techniques for magnesium alloys [J]. Journal of Materials Processing Technology,2006,171(2):188-204.
    [101]刘中青,刘凯.异种金属焊接技术指南[M].机械工业出版社,1997.
    [102]William R O. Materials and Applications-part I Magnesiuam and Magnesium Alloys. Vol3. Welding Handbook (8th edition) [M]. American Welding Society,1996.
    [103]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].化学工业出版社,2004.
    [104]李亚江,王娟,刘鹏.特种焊接技术及应用[M].化学工业出版社,2004.
    [105]Baker Hugh. Alloy Phase Diagrams, ASM Handbook [M].ASM International,1992.
    [106]Somasekharan A C, MurrL E. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterizatio,2004,52(1):49-64.
    [107]Rattana Borrisutthekul, Yukio Miyashita, Yoshiharu Mutoh. Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-0 [J]. Science and Technology of Advanced Materials,2005,6:199-204.
    [108]李慧,钱鸣,李达.金属间化合物对AZ31B镁/6061铝异种金属激光焊接性的影响[J].激光杂志,2007,28(5):61-63.
    [109]Ben-Artzy A, Munitz A, Kohn G, et al. Joining of light hybrid constructions made of magnesium and aluminum alloys [J]. Magnesium Technology 2002. Seactle, WA, United States, 2002:295-302.
    [110]王恒,刘黎明,柳绪静.镁铝异种材料TIG焊接接头扩散行为分析[J].焊接学报,2005,26(7):5-8.
    [111]李亚江,刘鹏,耿浩然,等.镁铝异种材料TIG焊接接头微观组织分析[J].焊接学报,2006,27(10):65-69.
    [112]Liu Peng, Li Yajiang, Geng Haoran, et al. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials [J]. Materials Letters,2007,61:1288-1291.
    [113]Takehikow Yoshitaka. Resistance spot welding of a magnesium alloy AZ31B plate to a 1050 aluminum plate using Ag insert metal [J]. Journal of Japan Institute of Light MetalS,2004,54(7):293-297.
    [114]王德庆,刘日明,丁成钢,等.搅拌摩擦焊接技术的发展状况[J].大连铁道学院学报,2002,1:75-78.
    [115]史耀武,唐伟.搅拌摩擦焊的原理与应用[J].电焊机,2000,1:6-9.
    [116]Somasekharan A C. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterization,2004, 52(1):49-64.
    [117]Sato Y S, Hwan S, Park C, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scripta Materialia,2004,50:1233-1236.
    [118]Kwon Y J, Shigematsu I, Saito N. Dissimilar friction stir welding between magnesium and aluminum alloys [J]. Materials Letters,2008,62:3827-3829.
    [119]Cheh Y C, Nakata K. Friction stir lap joining aluminum and magnesium alloys [J]. Scripta Materialia,2008,58:433-436.
    [120]Yan Jiuchun, Xu Zhiwu, Li Zhiyuan, et al. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J]. Scripta Materialia,2005,53:585-589.
    [121]Kostka A, Coelho R S, Pyzalla A R, et al. Microstructure of friction stir welding of aluminium alloy to magnesium alloy [J]. Scripta Materialia,2009,60:953-956.
    [122]Liu Peng, Li Yajiang, Geng Haoran, et al. A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding [J]. Materials Letters,2005,59: 2001-2005.
    [123]刘鹏,李亚江,王娟.Mg/Al异种材料扩散焊界面组织结构和力学性能[J].焊接学报,2007,28(6):45-48.
    [124]赵丽敏,刘黎明,徐荣正,等.镁合金与铝合金的夹层扩散焊连接[J].焊接学报,2007,28(10):9-12.
    [125]Zhao Limin, Zhang Zhaodong. Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints [J]. Scripta Materialia,2008,58: 283-286.
    [126]Wang Juan, Li Yajiang, Liu Peng, et al. Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding [J]. Journal of Materials Processing Technology,2008, 205:146-150.
    [127]Ben-Artzy A, Stern A, Frage N, et al. Interface phenomena in aluminium-magnesium magnetic pulse welding [J]. Science and Technology of Welding and Joining,2008,13(4): 402-408.
    [128]Kore S D, Imbert J, Worswick M J, et al. Electromagnetic impact welding of Mg to Al sheets [J], Science and Technology of Welding and Joining,2009,14(6):549-553.
    [129]Liu Liming, Liu Xujing, Liu Shunhua. Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer [J], Scripta Materialia,2006, 55:383-386.
    [130]Wang, J, Feng J C, Wang Y X. Microstructure of Al-Mg dissimilar weld made by cold metal transfer MIG welding [J]. Materials Science and Technology,2008,24(5):827-831.
    [131]顾继友.胶接理论与胶接基础[M].北京:科学出版社,2003.
    [132]Ramazan Kahramana, Mehmet Sunarb, Bekir Yilbas. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive [J]. Journal of Materials Processing Technology, 2008, (205):183-189.
    [133]NIST Atomic Spectra Database [DB/OL]. http://physics.nist.gov/PhysRefData/ASD/ index.html
    [134]Griem H R. Plasma Spectroscopy [M]. New York:MCG raw-Hill,1964.
    [135]Griem H R. Spectral Line Broadening by Plasma [M]. New York:Academic,1974.
    [136]George B. Principles of laser plasmas [M]. New York:Wiley,1976.
    [137]Steen W M, Eboo M. Arc augmented laser welding [J]. Metal Construction,1979,7: 332-335.
    [138]Chen F F. Introduction to plasma physics [M]. New York:Plenum press,1974.
    [139]陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社,1996.
    [140]Kaplan A. A model of deep penetration laser welding based on calculation of the keyhole profile [J]. J Phys D:Appl Phys,1994,27:1805-1814.
    [141]Dowden John. The Theory of Laser Materials Processing [J]. Springer Science+Business Media B. V.,2009:196-203.
    [142]Steen W M. Laser Material Processing [M]. London:Springer-Verlag,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700