可转位铣刀片温度场、应力场分析及槽型重构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要针对可转位铣刀片的温度场和应力场进行了理论分析和实验研究。在对可转位铣刀片温度场和应力场试验研究的基础上,进行有限元分析及耦合场分析,并针对铣刀片温度场和应力场的非稳态特性,开发了波形刃铣刀片模糊综合评判系统,基于温度场分析和温度场的评价准则进行槽型重构。
     本课题来源于国家自然科学基金项目“三维复杂槽型车铣刀片自组织优化设计的研究”。在综述了刀具技术的发展现状和国内外铣刀片的发展概况基础上,对有关铣刀片的铣削机理、刀具开发设计技术和槽型CAD/CAM技术的文献进行了系统全面的综述。
     论文首先对可转位铣刀片温度场、应力场进行了试验研究。利用动态数据采集系统对平前刀面铣刀片和波形刃铣刀片的铣削温度和铣削力同时进行了测量,得到了铣刀片各个测温点的温度以及前刀面刀-屑接触区的平均温度与时间之间的试验方程式,利用MATLAB软件,对采集到的力进行数据拟合,得到了波形刃铣刀片和平前刀面铣刀片X、Y、Z三向铣削力与时间之间的试验方程式。从试验角度比较出了两种槽型铣刀铣削温度和铣削力的大小。所得到的温度与力对时间的方程式,为铣刀片受热密度函数、受力密度函数的建立,为温度场和应力场有限元分析打下了基础。
     其次对可转位铣刀片温度场、应力场有限元分析及耦合进行了研究。基于传热学理论,利用热源法建立了铣刀片受热密度函数,可以得到任意槽型参数已知的铣刀片受热密度函数的模型和表面受热密度函数。对铣刀片的实体模型进行有限元网格划分,确定温度场分析的边界条件,对温度场进行了有限元分析。对五种不同槽型的铣刀片进行了不同切削参数的试验,建立了平前刀面铣刀片和波形刃铣刀片的表面受力密度函数。给出了波形刃铣刀片波形参数设计思想和受力密度函数的曲线及曲面模拟。选取切削过程中的任意时刻进行了应力场有限元分析,得到了波形刃铣刀片和平前刀面铣刀片的应力分布规律和受力变形情况,利用有限元分析软件ANSYS的多场耦合的分析功能,把温度场的分析结果作为体载荷,分别对波形刃铣刀片和平前刀面铣刀片进行了热应力分析,得出了两种铣刀片热应力和位移的分布规律。在热应力计算结果基础上,进一步对热应力与机械应力进行了耦合分析,得出了温度场与应力场耦合后的综合结果。通过对平前刀面铣刀片和波形刃铣刀片热力耦合物理场有限元计算结果与试验结果的对比,从耦合场层面上说明了带有槽型刀具切削性能的优越性。
     再次对可转位铣刀片温度场、应力场预测及模糊评判进行了研究。针对铣刀片温度场和应力场的非稳态特性,基于人工神经网络理论,采用BP神经网络Levenberg-Marquardt算法建立了三维复杂槽型铣刀片温度场和应力场预测模型,运用模糊数学理论,根据加工要求和专家分析,在VC++环境下,实现了对波形刃铣刀片模糊综合评判系统的开发。通过该系统可对多因素作用下的铣刀片温度场、应力场和耦合场的优劣进行评判,为铣刀片槽型参数的优化提供了评判依据。
     最后完成了可转位铣刀片的槽型重构设计。主要是基于温度场分析和温度场的评价准则进行槽型重构。建立槽型参数多目标优化数学模型,利用遗传算法求解了固定切削参数和给定约束下的优化槽型参数,槽型优化后的铣刀片耦合场明显优于其它槽型参数下的铣刀片耦合场。在Pro/E环境下,创建了波形刃铣刀片模型,利用Pro/TOOLKIT二次开发工具,采用异步模式完成了槽型参数化重构系统的开发,实现了利用友好的图形用户界面输入槽型设计参数来控制铣刀片复杂槽型生成的关键技术。
Theory analysis and experiment study of temperature field and stress field of turnable milling insert are mainly completed in the paper. On the basis of experiment study of temperature field and stress field of turnable milling insert, finite element analysis and coupling field analysis are implemented. In terms of unstable characteristics of temperature field and stress field of turnable milling insert a fuzzy synthesis judge system of wave edge milling insert is developed. Groove reconstruction is carried out based on temperature field analysis and temperature field evaluation guidelines.
     The research work comes from a project funded by NSFC (National Natural Science Foundation of China), which is "The research on self organization optimize design of milling insert with 3DM complex groove". After development status of tool technology and evolution survey of milling insert over the world, and still overview milling mechanism of milling insert, tool development and design technology and groove CAD/CAM technology.
     Firstly the experiment study of temperature field and stress field of turnable milling insert is implemented. Milling temperature and milling force of smooth front and wave edge milling insert is synchronously measured by applying dynamic data acquisition system. The temperature values of every measured point on milling insert are acquired and still experiment equation between average temperature of edge-chip contact area in front tool surface and time. The value collected carry through data fitting by MATLAB software and the experiment equations of X, Y, Z three directions milling forces and time for wave edge and smooth edge milling insert are obtained. From the experiment we compare milling temperature and milling force of two kinds of grooves milling. The equations gained between temperature and force and time are foundation for deriving heated density function, force density function and the finite element analyses of temperature field and stress field.
     Secondly the finite element analysis and coupling field of temperature field and stress field of turnable milling insert is studied. Based on heat transfer theory heated density function of milling insert is built up by using heat source method. So heated density function model and surface heated density function are gained when any groove parameters known of milling insert. The solid model of milling insert is meshed finite element and the boundary condition of temperature field is determined. The finite element analysis of temperature field is carried out. The experiments of milling insert with five sorts groove is completed when cutting parameters are different. The surface force density functions are set up for smooth front edge and wave edge milling insert. The wave parameters design concept of wave edge milling insert and curve and curved surface fitting of force density function are given. The finite element analysis of stress field in any the time during cutting process is implemented. The stress distribution rule and distortion of wave edge and smooth front edge milling are got. By multi-coupling field analysis function of finite element analysis software ANSYS heat stress analysis of wave edge and smooth front edge milling are given for the analysis results of temperature field as body load. The distribution rule of heat stress and displacement are obtained. On the basis of heat stress calculation the coupling between heat stress and mechanical stress is analyzed. We gain synthesis result of temperature field and stress field coupling each other. By comparing the finite element calculation results to experiment results of heat and force coupling physics field of smooth front edge and wave edge milling, cutting capability suoeriority of milling with groove is explained from coupling field.
     Thirdly the forecast and fuzzy judgement of temperature field and stress field of turnable milling is studied. According to nonstable performances of temperature field and stress field of milling, based on man nerve network thoery the forecast model of emperature field and stress field milling with 3DM complex groove is established by using Levenberg-Marquardt algorithm of BP nerve network. By employing fuzzy mathematics theory, in terms of machining requirements and specialist analysis fuzzy synthesis judgement system for wave edge milling is developed in VC++ environment. By using the system qualities of temperature field, stress field and coupling field in multiple factors action judged. It provides evaluation basis for optimization of milling groove parameters.
     Lastly groove reconstruction design of turnable milling insert is carried out. The groove reconstruction is mainly based on temperature field analysis and temperiture field judgement guideline. Multiple object optimization mathematical model of groove parameters is set up. Applying genetics algorithm solves optimizing groove parameters of changeless cutting parameters and given constraint. The milling coupling field after groove optimizing has markedly superiority over others. In Pro/E environment the solid model of wave edge milling insert is found. By using Pro/TOOLKIT secondary exploitation tool, groove parameters reconstruction system is developed by employing asynchronism mode. The key technology is fulfill by using friendly graph user interface inputs groove design parameters to control complex groove generation of milling insert.
引文
[1]沈壮行.中国工具工业的发展为什么赶不上现代制造业的需要.工具技术.2002.36(8):6-10页
    [2]方艾.数控机床及应用.北京:电子工业出版社,2002:5-7页
    [3]周泽华.金属切削理论.北京:机械工业出版社,1992:62-91页
    [4]Leading Edge Group.Industry News:Machine Tool Markets Analyzed.Cutting Tool Engineering.1996,48(5):2-4P
    [5]胡红兵.1991-1995年中国工具工业概况.工具展望.1997,31(1):1-6页
    [6]沈壮行.工具工业面临的严重挑战和发展对策.工具展望.1995,29(4):1-8页
    [7]陈昆.国内工具产品市场分析.工具展望.1996,30(3):1-3页
    [8]程伟.切削加工和刀具技术的现状与发展.工具展望.2002,36(2):3-6页
    [9]石东平,师汉民.硬质合金可转位刀片CAD/CAM.华中理工大学学报.1994,22(2):21-24页
    [10]曹振宇.九十年代的切削刀具.工具展望.1991,25(5):13-17页
    [11]王频,胡荣生.可转位刀片复杂断屑槽断屑机理探讨.工具展望.1994,28(1):35-41页
    [12]尹洁华编译.正前角刀片推动铣削生产率的提高.工具技术.1995,29(8):14-16页
    [13]R.Werheim,A.Satron and A.Ber.Modifications of the Cutting Edge Geometry and Chip Formation in Milling.Annals of the CIRP.1994,43(1):63-68P
    [14]The Association for Manufacturing Technology.IMTS96:What's in the Mix for 96.Cutting Tool Engineering.1996,48(5):4-11P
    [15]T.Hoshi.Development of High-performance Machining Technologies.International Conference on Machining Technology in Asian &Pacific Regions.Guangzhou,1993:24-30P
    [16]李儒荀.刀具设计原理与计算.江苏:江苏科学技术出版社,1985:35-44页
    [17]M.Kronenberg.Initial Contact of Milling Cutter and Workpiece.Machinery.1945,11(10):65-72P
    [18]H.Opitz,H.Beckhaus.Influence of Initial Contact on Tool Life When Face Milling High Strength Materials.Annals of the CIRP.1970,8(2):96-103P
    [19]H.Opitz,H.Beckhaus.Influence of Initial Contact on Tool Life When Face Milling High Strength Materials.Annals of the CIRP.1970,18(2):96-103P
    [20]星光一,星铁太郎.金属切削技术.北京:中国农业机械出版社,1983:46-68页
    [21]徐鸿钧,徐西鹏,林涛等.断续磨削时工件表面温度场解析.机械工程学报.1994,30(1):2-7页
    [22]王珉,黄华,张幼桢.难加工材料铣削加工中刀具温度场的计算与实验.机械工程学报.1987,23(4):12-17页
    [23]Hao Chunshui,Zhang Dong,Shi Gengru,et al.Study on Formation Mechanism of Adhering Layer Formed on Tool Face.Chinese Journal of Mechanical Engineering.1994,8(1):15-20P
    [24]美国金属学会.硬质合金工具的破损及其断裂韧性.北京:冶金工业出版社,1989:101-110页
    [25]机械电子工业部机械自动化研究所编.CAD/CAM技术及其在机械加工业中的应用.北京:兵器工业出版社,1989:1-18页
    [26][日]王辅基译.机械加工新技术.北京:科学文献出版社,1985:1-14页
    [27]戴同.CAD/CAPP/CAM基本教程.北京:机械工业出版社,1997:1-25页
    [28]曹志奎.机械CAD技术基础.上海:上海交通大学出版社,1996:1-16页
    [29]杨岳.CAM技术与应用.北京:机械工业出版社,1996:1-24页
    [30]孔庆复.计算机辅助设计与制造.哈尔滨:哈尔滨工业大学出版社,1994:1-12页
    [31]Bernard Nadel.Machining Software & Controls Supplement:Seats Knowledge.Cutting Tool Engineering.1997,49(5):52-56P
    [32]Gary Conkol Shopping for CAD/CAM.Cutting Tool Engineering.1995,47(3):50-65P
    [33]Beverly,A.Deckert.CAM Software Makes Its Mark.Computer Aided Engineering.1995,46(2):62-68P
    [34]王志刚.浅谈CAD/CAM一体化技术在可转位刀具中的应用.工具展望.1998,(2):8-11页
    [35]乔桂秀.可转位铣刀CAD/CAM的研究.哈尔滨理工大学硕士学位论文,1997:35-41页
    [36]李景涌.有限元法.北京:北京邮电大学出版社,1999:30-37页
    [37]陈精一.电脑辅助工程分析ANSYS使用指南.北京:中国铁道出版社,2000:50-58页
    [38]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,2000:81-85页
    [39]Karl Katbi.Modern Chip Groove.Cutting Tool Engeneering,April 1990:18-25P
    [40]章以均.国外CAD/CAM技术的发展.微型机及应用.1991,(7):8-9页
    [41]刘献礼,袁哲俊,陈波等.切削温度测量的等效热电偶法.计量学报.1999,(3):187-191页
    [42]刘献礼,陈波,孟安等.具有温度补偿的自然热电偶法测量切削温度的原理及计算方法.工具技术.1998,32(10):36-38页
    [43]刘立,唐超群.热电偶的自制方法与技巧.大学物理实验.2001,14(2):36-37页
    [44]刘战强,黄传真,万熠等.切削温度测量方法综述.工具技术.2002,36(3):3-6页
    [45]C.E.Leshock,Y.C.Shin.Investigation on cutting temperature in turning by a tool-work thermocouple technique.Journal of Manufacturing Science and Engineering.1997,11(119):502-508P
    [46]G.E.D'errico.A Systems theory approach to modeling of cutting temperature with experimental identification.Int.J.Mach.Tools Manufacture.1997,37(2):149-158P
    [47]郭强,谭光宇,董丽华等.三维复杂槽型铣刀片铣削平均温度数学模型.哈尔滨理工大学学报.2002,5(6):33-36页
    [48]李兆坤,谭光宇,刘广军.面铣铣削力试验分析及受力密度函数研究.机械设计与研究.2004,20(4):57-58页
    [49]张林鍹,童秉枢.并行工程中的装配仿真系统及其关键技术研究.计算机辅助设计与图形学报.1999,11(2):163-166页
    [50]Bernard Nadel.Machining Software & Controls Supplement:Seats Knowledge.Cutting Tool Engineering.1997,49(5):52-56P
    [51]刘广军,谭光宇,刘美娟等.波形刃铣刀片铣削温度试验分析.工具技术.2003,37(8):22-25页
    [52]王凤丽,徐宝富,溪鹰.三维复杂槽型铣刀片铣削温度试验研究.机电一体化.2004,2:20-23页
    [53]王志刚,李振加,王玉斌.波形刃铣刀片温度场的试验研究.工具技术.2006,40(3):71-73页
    [54]程耀楠,李振加,王满元.铣削力实验测试系统及功率谱分析在铣刀片槽型优选中的应用.黑龙江工程学院学报.2003,17(4):11-14页
    [55]朱瑞明,王振波,王志刚等.超细晶粒波形刃铣刀片切削性能实验研究.黑龙江工程学院学报.2006,20(1):11-15页
    [56]孙宝军,谭光宇.硬质合金铣刀片粘结破损的研究.机械制造.2006,44(507):54-55页
    [57]孙顺龙,谭光宇,孙玉静.波形刃铣刀片粘结破损试验分析.工具技术.2007,41(1):66-68页
    [58]董丽华.三维槽型刀片面铣刀切削机理及其CAD/CAM的研究.哈尔滨工业大学博士论文,1999:1-8页
    [59]孙凤莲,李振加,陈波.切削2.25Cr-1Mo钢刀-屑间的粘焊破损机理.哈尔滨理工大学学报.1997,5(2):1-3页
    [60]张闰红.三维复杂槽型铣刀片受力密度函数及应力场的研究.哈尔滨理工大学硕士论文,2004,3:10-15页
    [61]吴勃生,高东宇,李兆坤.波形刃铣刀片受力密度函数的研究.哈尔滨理工大学学报.2005,10(3):31-33页
    [62]程耀楠,李振加,郑敏利.波形刃铣刀片受力密度函数的研究及其应力场分析.黑龙江工程学院学报.2006,20(2):15-18页
    [63]张闰红,郑敏利,李振加.平前刀面铣刀片受力密度函数的研究.哈尔滨理工大学学报.2004,9(1):7-10页
    [64]王纪武,胡忠.高精度三维塑性有限元网格重划技术的研究.塑性工程学报.1998,5(1):15-19页
    [65]刘高.温度场的数值模拟.重庆:重庆大学出版社,1990:251-266页
    [66]孔祥谦.有限单元法在传热学中的应用(第二版).北京:科学出版社,1986:135-145页
    [67]李强,赵伟.MATLAB数据处理与应用.北京:国防工业出版社,2001:220-231页
    [68]郑敏利,李振加等.三维复杂槽型铣刀片铣削力的数学模型.制造技术与机床,2000,417(5):49-53页
    [69]郑敏利.切屑形成与折断过程及其预报系统.黑龙江科学技术出版社,2001:78-88页
    [70]李锡文,杜润生,杨叔子.铣削力模型的频域特性研究.华中理工大学.2000,34(7):133-139页
    [71]S.Fraser,M.H.Attia,M.O.M.Osman.Modeling,Identification and Control of Thermal Deformation of Machine Tool Structures.Part2:Generalized Transfer Function.Transactions of the ASME.1999,1(8):120-632P
    [72]陶海虹.三维复杂槽型铣刀片铣削力数学模型及应力场有限元分析.哈尔滨理工大学硕士论文,2000,3:33-39页
    [73]刘美娟,谭光宇,刘广军.基于ANSYS的三维复杂槽型铣刀片参数化建模.哈尔滨理工大学学报.2002,7(5):70-72页
    [74]齐惠,杨屹,蒋玉明.基于ANSYS软件二次开发的铸造充型和凝固耦合过程数值模拟研究.四川大学学报.2004,33(5):47-50页
    [75]M.K.Alam,R.L.Goetz,S.L.Semiain.Modeling of Thermal Stresses and Thermal Cracking During Heating of Large Lngots.Journal of Manufacturing Science and Engineering.1999,1(3):118-235P
    [76]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社,1999:185-188页
    [77]王玉斌,李振加,谭光宇等.波形刃铣刀片温度场边界条件的研究.工具技术.2004,38(11):16-19页
    [78]孙宝军,谭光字.三维复杂槽型铣刀片耦合场的数值模拟.工具技术. 2006,40(5):13-15页
    [79]张佩红.数控加工可转位铣刀片时M值的计算和测量.工具技术.2003,37(4):50-51页
    [80]谢庆生,尹健,罗延科.机械工程中的神经网络方法.北京:机械工业出版社,2003:98-105页
    [81]刘强,谭光宇,孙玉静.基于人工神经网络的三维复杂槽型铣刀片温度场预测.机械设计.2006,23(2):33-35页
    [82]何沛霖等.CNC系统可靠性的模糊评价.中国机械工程.1999,10(11):1280-1281页
    [83]刘普寅,吴孟达.模糊理论及其应用.北京:国防工业出版社,1998:85-92页
    [84]李洪兴.工程模糊数学方法及应用.天津:天津科学技术出版社,1993:56-66页
    [85]刘美娟.三维槽型铣刀片温度场分析及槽型重构技术研究.哈尔滨理工大学硕士论文,2003,3:22-32页
    [86]王凤丽.三维槽型铣刀片温度场可视化及评价准则研究.哈尔滨理工大学硕士论文,2003,3:35-44页
    [87]谢峰,赵吉文,张崇高等.金属切削刀具虚拟设计方法初探.工具技术,2005,39(10):16-18页
    [88]方宁,王珉.可转位刀片槽形设计的模糊(Fuzzy)综合评判.机械科学与技术,1995,14(6):5-6页
    [89]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999:178-198页
    [90]Holland J H.Adaptation in Nature and Artificial Systems.MIT Press,1992:44-59P
    [91]刘勇等.非数值并行算法(二)—遗传算法.北京:科学出版社,1995:125-136页
    [92]王小平,曹立明.遗传算法——理论、应用与软件实现.西安:西安交通大学出版社,2002:78-85页
    [93]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用.北京:科学出版社,2002:76-84页
    [94]Michalewicz Z.Genetic Algorithms+Data Structure=Evolution Program.Springer,1992:82-88P
    [95]李松晶等.采用遗传算法的新型节能电磁换向阀的优化设计.机械工程学报.2001,37(7):79-81
    [96]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计.北京:电子工业出版社,2003:100-109页
    [97]方兴,夏链,韩江.基于Pro/E的渐开线齿轮参数化设计系统的开发.合肥工业大学学报.2004(8):915-918页
    [98]何博.中文版Pro/ENGINEER Wildfire实用速成教程.北京:中国电力出版社,2004:156-166页
    [99]李世国.Pro/TOOLKIT程序设计.北京:机械工业出版社,2003:123-135页
    [100]张继春.Pro/ENGINEER二次开发实用教程.北京:北京大学出版社,2003:144-156页
    [101]王杰强等.中文Pro/ENGINEER Wildfire造型设计白金教学二次开发实用教程.北京:兵器工业出版社,2004:181-189页
    [102]朱传敏,王晓晨,王豫等.机械旋转系统动态性能监测及新技术开发.机械科学与技术,1998,17(5):820-822页
    [103]米明贤,蔡伟,史兴宽.铝合金高速铣削温度的动态测量.航空制造技术.2000(1):12-15页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700