大功率LED微相变热沉性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体封装工艺的完善、光通量和出光效率的提高,功率型LED已经在交通标志、城市景观、汽车照明、LED背光源、广告牌等特殊照明领域得到了广泛的应用,并向普通照明市场迈进。然而,随着LED芯片的输入功率不断提高,大耗散功率带来的大发热量及高出光效率给LED的封装工艺与设备提出了更新、更高的要求。目前功率型LED芯片尺寸仅为1mm×1mm~2.5mm×2.5mm,耗散功率为1W以上,其热流密度要求已达到100W/cm2以上,一旦温度超过一定值时,LED器件的失效率就会呈指数规律攀升,而使用传统实体热沉作为封装结构已无法满足高热流密度要求下的大功率LED的散热需求,因此,研究热阻低、散热效率高的新型封装热沉是大功率LED实现产业化亟待解决的关键技术之一。
     本文设计制造了一种利用相变传热原理进行散热的新型大功率LED微相变热沉,并对其与传统实体热沉的性能进行了对比实验研究,主要研究内容如下:
     1.微相变热沉的设计与制造。基于相变传热等强化传热原理,在匹配大功率LED封装要求下,设计与制造出一种新型微相变热沉。
     2.微相变热沉性能测试系统的开发。开发一套基于虚拟仪器的微相变热沉的性能测试系统,可以实现实验过程的实时监控,以及数据的在线采集、存储、分析处理等功能。
     3.微相变热沉性能测试平台的搭建。根据传热学基本原理,搭建可以进行微相变热沉性能测试的试验平台,在各种不同的工况下,进行微相变热沉的加热、冷却及温度测试等工作。
     4.微相变热沉传热性能研究分析。进行性能测试实验,根据所得实验数据,对不同加热功率、不同工质种类、不同倾斜角度、不同吸液芯下的微相变热沉的性能进行分析,并与传统实体热沉性能进行对比。
With the development and improvement of the packaging processing of semiconductor, luminous flux and luminous efficiency, power-type LED is widely used in traffic sign, urban landscape, auto lighting and LED billboard, and will stride toward the market of general lighting. Though the input power of LED chip continuously improve, it calls for the development of both packaging processing and equipment of LED in order to solve the problems caused by high heat and high luminous efficiency. At present, the dimension of power-type LED is 1mm×1mm~2.5mm×2.5mm, but its heating power is above 1W, so its heat flux density has reached above 100W/cm2. Once the temperature is over the extreme, the failure rate of LED will climb up exponentially. The traditional solid heat sink, which is used as the packaging structure, can not fulfill the requirement of thermal dissipation brought by high-power LED of high heat flux density. Therefore, in order to realize the industrialization of high-power LED, it is the key point to research the new packaging heat sink characterized by low thermal resistance and high heat transfer efficiency.
     A new micro-scale phase-change heat sink for high-power LED based on the principle of phase change thermal transmission is made in this thesis. An experiment is designed to compare the performance between this new type heat sink and traditional solid heat sink, and is introduced as followed:
     1. Design and manufacture of the micro-scale phase-change heat sink. Based on the principle of the heat transfer and the requirements of the packaging for the high-power LED, a new type of the micro-scale phase-change heat sink will be designed and produced.
     2. Research and development of the performance testing system for micro-scale phase-change heat sink. A performance testing system for micro-scale phase-change heat sink will be designed, which is based on the virtual instrument and can achieve the real-time monitoring during the experiment and the functions of the online collection, storage, analysis for the data.
     3. Production of the performance testing platform for the micro-scale phase-change heat sink. A performance testing platform for the micro-scale phase-change heat sink will be produced based on the principle of heat transfer, which can achieve the work for the heating, cooling and temperature testing of the micro-scale phase-change heat sink under the variety of operating conditions.
     4. Research and analysis for the micro-scale phase-change heat sink. The performance testing experiments will be carried out. The performance of the micro-scale phase-change heat sink of the different heating power, work fluid, wick structure and working angle will be analyzed, and the performance of the traditional solid one will be compared.
引文
[1]王耀明,王德苗,苏达.大功率LED的散热封装[J].江南大学学报(自然科学版). 2009, 8(1): 58-61
    [2] Hsu J T, Han W K, Chen C, et a1. Design of Muhichips LED Module for Lishting Application[A]. Proc. SPIE 4776[C]. 2002: 26-33
    [3] Kim L, Choi J H, Jang S H, et a1. Thermal Analysis of LED Array System with Heat Pipe. Thermochimica Acta, 2007, 455: 21-25
    [4]牛萍娟,陈乃金,李养贤,郭维廉, GaN基光电子材料及器件的研究[J].微纳电子技术, 2004, 41(12): 13-15
    [5]王春光. LED路灯的应用现状和发展[J].电气应用, 2009, 28(5): 4-6
    [6]苏达,王德苗.大功率LED散热封装技术研究的新进展.电力电子技术, 2007, 41(10): 13-15
    [7] Su Da, Wang De-miao. Technical Research on Heat-Release Package of High-power LEDs[J]. Semiconductor Technology, 2007, 32(9): 742-744,749
    [8] Su Ay, Liu Y. C., Chen C. Y.. Thermal diffusion Analysis for LED Module[J]. Heat Transfer-Asian Research, 2007, 36(8):449-458
    [9]张成敬,王春青.一种高功率白光LED灯具的封装热设计研究[J]. 2007, 8(5): 257-260
    [10] Ma Zetao, Zhu Daqing, Wang Xiaojun. Thermal Analysis of High-power Light-emitting Diode Packages. Semiconductor Optoelectronics in Chinese[J]. 2006, 27(1): 61-70
    [11]莫冬传,丁楠,吕树申.平板型环路热管应用于LED的启动特性研究[J].工程热物理学报, 2009, 30(10): 1759-1762
    [12]王国定,关于大功率LED光源热失散问题的讨论[A].第十一届全国LED产业与技术研讨会[C].江苏:中国物理学会, 2008: 49-51
    [13]钱可元,郑代顺,罗毅. GaN基功率型LED芯片散热性能测试与分析[J].半导体光电. 2006, 27(3): 236-239
    [14] Petroski J, Thermal challenges facing new generation light emitting diodes (LEDs) for lighting applications [J]. Proc. SPIE, 2002, 4776:215-222
    [15]张雪粉.大功率LED散热研究及散热器设计[D].天津:天津大学, 2007
    [16]叶峰,林海阔.大功率LED路灯产品的现状与问题分析[A]. 2009中国道路照明论坛[C].浙江:中国照明学会, 2009: 182-185
    [17]苏达,王德苗.大功率LED散热封装技术研究[J].照明工程学报, 2007, 18(2): 69-71
    [18]李炳乾.基于金属线路板的新型大功率LED及其光电特性研究[J].光子学报. 2005, 34(3): 372-374
    [19]王垚浩,余彬海,李舜勉.功率LED芯片键合材料对器件热特性影响的分析与仿真[J].佛山科学技术学院学报(自然科学版), 2005, 23(4): 14-17
    [20] Sheng Liu, TimLin, Xiao bing Luo, et a1. A Microjet Array Colling System For Themal Management of Active Raders and High-Brightness LEDs[A]. Electronic COmponents and Technology Conference[C]. 2006: 1634-1638
    [21]杨世铭,陶文铨.传热学[M].第三版.北京高等教育出版社, 1998: 6-12
    [22]魏琪,戴苏明.热质交换原理与设备[M].重庆大学出版社, 2007: 65-74
    [23] Arik M, Petroski J, Weaver S. Themal challenges in the future generation solid state lighting applications: Light emitting diodes[A]. Proceeding of IEEE Inter Societ Conference on Thermal Phenomena[C]. 2002: 113-120
    [24] Yuan Liulin, Liu Sheng, Chen Mingxiang, et a1. Thermal analysis of high power LED array packaging with microchannel Cooler[J]. Semiconductor optoelectronics, 2006, 27(6): 712-716
    [25]罗小兵,刘胜,江小平等.基于微喷射流的高功率LED散热方案的数值和实验研究[J].技术科学, 2007. 37(9): 1194-1204
    [26] Lan Kim, Jong Hwa Choi, Sun Ho Jang, et a1. Thermal analysis of LED array system with heat pipe [J]. Thermochimica Acta, 2007, 455: 21-25
    [27] Moo Whan Shin. Thermal design of high-power LED package and system [A] Advanced LEDs for Solid State Lighting[C]. Proceeding of SPIE, 2006, 6355: 9-21
    [28] Gwo-Jiun Sheu, Farn-Shiun Hwn, Shen-Hang Tu, et a1. The heat dissipation performance of LED applied a MHP [A]. Fifth Intemational Confercnce on Solid State Lighting, Proceeding of SPIE[C]. 2005, 5941: 13-20
    [29]刘美静,鲁祥友,华泽钊.冷却照明用大功率LED的回路热管的测试[J].制冷学报, 2008, 29(5): 39-42
    [30]莫冬传,丁楠,吕树申.平板型环路热管应用于大功率LED的实验研究[A].第十一届全国热管会议[C].威海: 2008: 309-313
    [31]陈平.小型圆热管内壁微沟槽挤压-犁削成形机理及传热性能研究[D].广州:华南理工大学, 2006
    [32]陆龙生.管式均热板多孔壁面沟槽复合毛细吸液芯成形机理研究[D].广州:华南理工大学, 2009
    [33] Steranka F. M., Bhat J., Collins D., et al. High Power LEDs-Technology Status and Market Applications[J]. Phys. Stat. sol., 2002, 194(2): 380-388
    [34] Rainer H.. Thermal management of golden dragon LED[R]. Osram Opto Semiconductors, October, 2008
    [35] Min sizong, Li junhui, Duan ji-an. Bump thermal management analysis of LED with Flipchip package[A]. ICEPT proceedings[C]. 2006: 544-552
    [36] Jung K. P., Hyun D. S., Young S. P., et al. A suggestion for high power LED package based on LTCC [A]. IEEE 56th Electronic Components and Technology Conference[C]. San Diego, California, USA. 2006: 1070-1075
    [37] Rao B. S., Hemambar C., Pathak A. V., et al. Al/SiC carriers for microwave integrated circuits by a new technique of pressureless infiltration[J]. IEEE Transaction on Electronics Packaging Manufacturing, 2006, 29(1): 58-63
    [38] Tae Y. C., Dimos P., Joy T., et al. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ωmethod[J]. Applied Physics Letters, 2005, 87(1): 013108-1
    [39]王启杰.对流传热与传质分析[M].西安:西安交通大学出版社, 1991: 95-105
    [40]戴锅生.传热学[M].北京:高等教育出版社, 1991: 20-30
    [41]俞佐平,陆煜.传热学[M].北京:高等教育出版社, 1995: 25-32
    [42]陈维汉,许国良,靳世平.传热学[M].武汉:武汉理工大学出版社, 2004: 12-29
    [43]章熙民,任泽霈,梅飞鸣.传热学[M].北京:中国建筑工业出版社, 1987: 30-46
    [44]顾维藻,神家锐,马重芳等.强化传热[M].北京:科学出版社, 1990: 55-69
    [45]王补宣,张金涛,彭晓峰.薄液膜表面蒸发对降液膜传熟和传质的影响[J].中国科学E辑, 2000: 216-221
    [46]彭晓峰,王补宣.毛细表面张力引起的液体流动在润湿[J].自然科学进展-国家重点实验室通讯, 1996, 6(4): 56-65
    [47]张金涛,王补宣,彭晓峰.内凹气液界面毛细压力在界面蒸发中的作用.中国科学E辑, 2002, 32(1): 37-42
    [48]胡学功.高性能微槽群相变散热系统的研究[D].中国科学院研究生院, 2005
    [49]裴念强.高压流体毛细特性及影响因素的实验研究[D].广州:中山大学, 2007
    [50] P. S. de Laplace, Mechanique Celeste[M]. Supplement to Book 10, 1806: 25-45
    [51] T.Young, Miscellaneous Works[M]. G. Peacock, ed., J. Murray. London: 1805, V01(I):418
    [52]黄祖洽.表面浸涧和浸润相变[M].上海科学技术出版社: 1994: 10
    [53]杨国忠.毛细辅助蒸发理论与实验研究[D].上海:上海科技大学, 2007
    [54] R.J.Raiff, P.C.Wayner Jr. Evaporation from a porous flow control element on a porous heat source[J]. Int. J. Heat Mass Trans., 1973, 16(10): 1919-1929
    [55]王金亮.毛细管内蒸发传热机理的分析[J].化工学报, 1999, 50(4): 435-442
    [56] P. S. Ayyaswamy, I. Catton,D. K. Edwards. Capillary flow in triangular grooves[J]. Journal of Applied Mechanics, 1974, 41(2): 332-336
    [57] J. A. Schonberg, S. DasGupta, P. C. Wayner Jr. An augmented Young-Laplace model of an evaporating meniscus in a microcharmel with high flux[J]. Experimental Thermal and Fluid Science, 1995, 10(2): 163-170
    [58] Scott K Thomas, Richard C. Lykins, Kirk L. Yerkes. Fully developed laminar flow in trapezoidal grooves with shear stress at the liquid-vapor interface[J]. Int. J. Heat Mass Trans., 2001, 44(18): 3397-3412
    [59] Teong-Se Suh, Ralph Greif, Costas P. Grigoropoulos. Friction in micro-channel flows of a liquid and vapor in trapezoidal and sinusoidal grooves[J]. Int. J. Heat Mass Trans., 2001, 44(16): 3103-3109
    [60]李艳.水平螺旋微槽管壁面升膜传热传质机理及在海洋平台海水淡化中的应用[D].山东:中国海洋大学, 2007
    [61]吴泽群.沟槽式小型圆热管制造工艺及传热性能研究[D].广州:华南理工大学, 2006
    [62]万珍平,汤勇.不锈钢填料三维翅结构的犁切/挤压成形工艺[J].华南理工大学学报(自然科学版), 2006, 34(2): 17-20
    [63]万珍平,燕辉,葛子平等.三维整体外翅片管滚压-犁切/挤压成形工艺[J].中国机械工程, 2009, 20(19): 2368-2371
    [64]陈志斌,汤勇,池勇. V型毛细微沟槽犁切-挤压成形试验研究[J].工具技术, 2007, 41(6): 71-74
    [65]向建化,汤勇,叶邦彦等.铜管外壁整体式三维翅片复合加工成形机理[J].华南理工大学学报(自然科学版), 2009, 37(9): 82-87
    [66]郑威.小型轴向槽道热管制备工艺研究及实验性能分析[D].山东:山东大学, 2007
    [67]李西兵,李勇,汤勇等.烧结式微热管吸液芯的成型方法[J].华南理工大学学报(自然科学版), 2008, 36(10): 114-119
    [68]张明.高性能平板热管均热器的研发及其传热特性的研究[D].北京:北京工业大学, 2009
    [69]庄骏,张红,热管技术及其工程应用[M],北京:化学工业出版社, 2000: 10-26
    [70]杨友平,王修芝.热管工质量的探究[J].太阳能, 2004(5): 55-56
    [71]蒋朝勇.新型微型平板热管的传热性能实验研究[D].长沙:长沙理工大学, 2009
    [72]马同泽,侯增祺等.热管[M].北京:科学出版社, 1983: 95-108
    [73]刘君华等.虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电予科技大学出版社, 2001: 159-168
    [74]杨乐平,李海涛,肖相生等.程序设计与应用[M].第二版.北京:电子工业出版社. 2005: 135-147
    [75]詹惠芹,古军,袁亮.虚拟仪器技术[M].西安:西安电子科技大学出版社,2007.
    [76]徐超. LabVIEW在测控系统中的应用[D].重庆:重庆大学, 2005
    [77]张燕.虚拟仪器技术在工程量测试实验教学中的应用研究[D].上海:华东师范大学, 2007
    [78]王红超.基于虚拟仪器技术的远程模糊PID温度控制系统[D].厦门:厦门大学, 2006
    [79]张毅,周绍磊等.虚拟仪器技术分析与应用[M].广州:机械工业出版社, 2004: 69-78
    [80]刘君华.现代测试技术与系统集成[M].北京:电子工业出版社, 2004: 198-207
    [81] National Instruments Corporation. LabVIEW User Manual. 2002
    [82] National Instrument Corporation. LabVIEW Data Acquisition Basics Manual. National Instrument, 2002
    [83]史君成,张淑伟,律淑珍. LabWindows虚拟仪器设计[M].北京:国防工业出版社, 2007: 30-45
    [84]刘改梅.基于虚拟仪器的远程测试系统[D].太原:中北大学, 2008
    [85] GOLDBERG H. What is Virtual Instrument[J]. IEEE Instrumentation&Measurement Magazine, 2000. 3(4): 10-13
    [86]薛晓颖.基于LabVIEW的虚拟传感器的设计与实现[D].合肥:合肥工业大学, 2009
    [87]杨忠仁,饶程,邹建等.基于LabVIEW数据采集系统[J].重庆大学学报, 2004,27(2): 32-35
    [88]王建群,南金瑞,孙逢春等.基于LabVIEW的数据采集系统的实现[J].计算机工程与应用, 2003(21): 122-124
    [89]刘国飞,黄文达,蔡聪波.基于LabVIEW的可控温LED电参数自动测试系统[J].电子测量技术, 2009, 32(7): 102-104
    [90]许立,刘恺.基于LabVIEW的钻削温度动态测试系统设计[J].工具技术. 2009, 43(9): 91-93
    [91]王晓,张宝怀.基于LabVIEW的换热器性能试验装置测控系统的开发[J].机械工程学报. 2009, 45(4): 309-312
    [92]张伟,刘红丽.基于LabVIEW的温度测控系统设计[J].国外电子元器件. 2008(12): 19-21
    [93]杨磊,方建成,赵紫玉等.基于LabVIEW的瞬态温度测试系统[J].仪表技术与传感器. 2008(6): 49-51
    [94]龙脉工作室,岂兴明,周建兴等. LabVIEW 8.2中文版入门与典型实例[M].北京:人民邮电出版社, 2008: 19-31
    [95]王海宝,吴光杰等, LabVIEW虚拟仪器程序设计与应用[M].成都:西南交通大学出版社, 2005: 23-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700