不同工质对MPT启动与稳定工作影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着对航天器推进系统性能要求的不断提高,电推进以其独有的优势引起了航天界的兴趣和重视,并越来越多的被应用到空间任务中。微波等离子推力器(MPT)是一种新型的电热型推力器,它具有比冲高、寿命长、羽流污染小等优点,具有广阔的应用前景。
     目前,主要的电推力器都进行了不同工质的实验研究,对工质的优化选择直接决定了MPT的性能和应用前景。本文对不同的推进工质进行MPT点火启动实验及真空稳定工作实验研究,并对结果进行分析、比较和研究,最终为MPT工程应用寻找最合适的推进工质。
     论文的工作和新见解主要包括:
     1 在设计状态和工作状态下,根据MPT的实验参数,对MPT使用不同工质时的性能进行了工程估算,这对MPT现阶段的实验研究和今后的研究有重要的指导意义;
     2 对于He、Ar推进工质,讨论微波的接头材料、探针与内导体的间隙、内导体的位置、微波的输入功率、工质的质量流量以及环境真空度对MPT真空启动和稳定工作的影响,并探讨微波的输入功率、工质的质量流量对谐振腔压强、推力、反射功率以及谐振腔温度的影响;
     3 对于N_2、H_2、NH_3、H_2O推进工质,主要讨论与He、Ar工质不同的特性,并从长远的眼光和工程应用的角度,认为其可行性不容置疑,潜在优势不可忽略,是未来MPT应用的主流推进工质。
     研究表明,对于MPT的探索性研究,He、Ar是两种适宜的推进工质,启动方便、工作稳定,特别有利于MPT的早期研究;但是从长远的眼光和工程应用的角度,N_2、H_2、NH_3、N_2H_4以及H_2O等作为MPT的推进工质,其潜在优势令人鼓舞。
With incessant requirements for high performance of spacecraft propulsion system, Electric Propulsion (EP) has become a focus of spaceflight field recently because of its particular advantages. Microwave Plasma Thruster (MPT) is a new type of electro-thermal thruster, which has widely applied prospect because of its high specific impulse, long lifetime, low plume contaminant and so on.
    So far, some electric thrusters have been made experiments on different propellants. Selecting optimum propellant determines the performance and the prospect of application of MPT. This paper aimes to accomplish ignition start-up and steady work experiments in vacuum environment using different propellant and to find optimum propellant for engineering application of MPT finally based on analyzing, comparing and researching the experimental results.
    The contents and new views of this paper include:
    1. According to the experimental parameters of MPT, the main performance parameters of different propellants have been given by engineering performance computation under designed and working states, which has great importance for the experimental research and the future work.
    2. For Helium and Argon, the factors which influence on MPT's vacuum steady work have been discussed such as the material of microwave tie-in, the distance between the probe and inner-conductor, the position of the inner-conductor, the input power of microwave, the mass flowrate of propellant and the vacuum pressure of environment, and the influence has been discussed of the microwave power and the mass flowrate of propellant on the pressure of the resonance cavity, thrust, reflected power and the temperature of the resonance cavity.
    3. For Nitrogen, Hydrogen, Ammonia and Vapour, the difference has been discussed between its and Helium and Argon. Based on a long time viewpoint and the engineering application, the feasiblity can't be suspected and the potential advantages can't be ignored which are major propellant for the MPT's research in the future.
    For MPT, Helium and Argon are appropriate propellants, which are suitable for the initial research of MPT. The experiments prove that MPT can start up easily and operate steadily. However, based on a long time viewpoint and the engineering application, MPT should apply such propellants as Nitrogen, Hydrogen, Ammonia, Hydrazine and Vapour.
引文
[1] 朱毅麟,电推进的现状与展望,上海航天,1998(3)
    [2] 毛根旺、韩先伟、杨涓、何洪庆,电推进研究的技术状态和发展前景,推进技术,2000(5)
    [3] J.Dunning NASA's Electric Propulsion Program: Technology Investments for the New Millenium, AIAA 2001-3224
    [4] R.A. Spores and G.G. Spanjers, Overview of the USAF Electric Propulsion Program, AIAA 2001-3225
    [5] R. Joseph Cassady, Overview of Major U.S. Industrial Programs in Electric Propulsion, AIAA 2001-322
    [6] Electric and Advanced Propulsion Activity in Russian, IEPC 01-005
    [7] O. A. Gorshkov, A. S. Koroteev, Overview of Russian Activities in Electric Propulsion, AIAA 2001-3229
    [8] G. Saccoccia, Overview of European Activities in Electric Propulsion, AIAA 2000-3149
    [9] G. Saccoccia, Overview of European Electric Propulsion Activities, AIAA 2001-3228
    [10] Kang Xiaolu, An Overview of Electric Propulsion Activities in China, IEPC 01-007
    [11] 毛根旺、何洪庆等,微波等离子推进器(MPT)的应用探索研究.推进技术,1998(3)
    [12] 毛根旺、马鸿雅、何洪庆,微波与等离子之间的相互作用,推进技术,1998(4)
    [13] M.M. Micci,, Prospects for Microwave Heated propulsion, AIAA 84-1390, 1984
    [14] P.B.Balam and M.M.Micci, Performance Measurement of a Resonant Cavity Electrothermal Thruster, IEPC-91-031
    [15] Kyoichiro Toki, Hitoshi Kuninaka, Kazutaka Nishiyama, and Yukio Shimizu, "Design and Tests of Microwave Ion Engine System for MUSES-C Mission", ISTS Paper 2002-b-1
    [16] Hitoshi Kuninaka, lkko Funaki and Kyoichiro Toki, "Life Test of Microwave Discharge Ion Thrusters for MUSES-C in Engineering Model Phase", AIAA 99-2439,June 1999
    [17] Hitoshi Kuninaka, lkko Funaki, Kazutaka Nishiyama, Yukio Shimizu and Kyoichiro Toki, "Result of 18000-hour Endurance Test on Microwave Discharge Ion Thruster Engineering Model", AIAA 2000-3276, July 2000
    [18] 孙再庸、毛根旺、何洪庆,微波电热推进,推进技术,1995(5)
    [19] 何洪庆,特种火箭发动机发展现状与趋势,宇航学会第四界液体火箭推进专业委员会学术研讨论文集,2000.7
    [20] 何洪庆,几种重要的电推力器的发展和应用,空间推进技术现状与发展会议论文集,2000.10
    [21] 吴建军、张传胜,电推进发动机及其实验室研究,空间推进技术现状与发展会议论文集,2000.10
    [22] P.B.Balam and M.M.Micci, Investigation of Free-floating Nitrogen and Helium Plasmas Generated in a Microwave Resonant Cavity, AIAA 89-2380
    [23] P.B.Balam and M.M.Micci, Performance Measurement of a Resonant Cavity Electrothermal Thruster, IEPC-91-031
    
    
    [24] Sullivan, D.J. and Micci, M.M., Development of a Microwave Resonant Cavity Electrothermal Thruster Prototype, IEPC 93-036
    [25] D. Nordling and M.M. Micci, Low-power Microwave Arcjet Performance Testing, IEPC-97-089, Aug. 1997
    [26] D. Nordling, F. Souliez and M.M. Micci, Low-power Microwave Arcjet Testing, AIAA 98-3499
    [27] V. Hruby, J. Monhesier, B. Pote, C. Freeman, Low power Hall Thruster Propulsion, IEPC 99-092
    [28] F.J. Souliez, S.G. Chianese, et al., Low-Power Microwave Arcjet Testing: Plasma and Plume Diagnostics and Performance Evaluation, AIAA 99-2717
    [29] K.D. Diamant, J.E. Brandenburg, R.B. Cohen, et al., Performance Measurements of a Water Fed Microwave Electrothermal Thruster, AIAA 2001-3900
    [30] M.R.Durbin and M.M.Micci, Analysis of a Microwave-heated Plasmas in Hydrogen, Helium and Nitrogen, AIAA paper 87-1013, May 1-3, 1987
    [31] V.P. Chiravalle, R.B. Miles and E.Y. Choueiri, Numerical Simulation of Microwave Sustained Supersonic Plasmas for Application for Space Propulsion, AIAA 2001-0962
    [32] 毛根旺、韩先伟、杨涓、黄晓砥、何洪庆,微波电热推力器启动与稳定过程的实验观测,宇航学报,第21卷增刊,2000(11)
    [33] 韩先伟,微波等离子推力器地面实验系统建设和(尾)羽流流动计算,硕士论文,西北工业大学,2000
    [34] 黄晓砥,微波等离子推力器的启动与稳定_工作探索研究,硕士论文,西北工业大学,2001
    [35] 杨涓,微波等离子推力器地面实验研究,博士论文,西北工业大学,2001
    [36] 魏坤,MPT微波源研制及系统效率分析,硕士论文,西北工业大学,2003
    [37] 郭霄峰主编,液体火箭发动机试验,宇航出版社,1990年12月
    [38] 朱宁昌主编,液体火箭发动机设计(上、下),宇航出版社,1994年8月
    [39] 华中主编,真空实验技术,上海科学出版社,1986年7月
    [40] 韩先伟,微波等离子推力器真空实验研究与卫星应用探索,博士论文,西北工业大学,2003
    [41] 屈崑,基于虚拟仪器技术的MPT测量系统,硕士论文,西北工业大学,2002
    [42] 唐金兰,微波等离子推力器谐振腔的数值模拟与小推力测量实验研究,博士论文,西北工业大学,2003
    [43] “D07系列质量流量控制器技术说明书”,北京:北京建中机器厂流量计分公司,2001.5
    [44] 毛根旺、张兆元,航天器推进系统,西北工业大学,1998.1
    [45] 毛根旺、张兆元,流体力学,西北工业大学,1994
    [46] Carl Nordling, Jonny Osterman,物理学手册,河南科学技术出版社,1986
    [47] 杨津基,气体放电,科学出版社,1983年8月
    [48] 罗思(J.R.Roth)著,工业等离子体工程,第1卷:基本原理,1998年9月
    [49] 克拉尔.N.A.,(美)特里维尔皮斯,A.W.著,等离子体物理学原理,原子能出版社,1983
    [50] N·A·克拉尔A·W·特里维尔皮斯,等离子体物理学原理,1983年12月
    [51] 杨涓,何洪庆,毛根旺等,微波等离子体推力器微波模式的合理选择,推进技术,1999
    
    (1)
    [52] 金佑民,樊友三编著,低温等离子体物理基础,清华大学出版社,1983
    [53] 朱士尧编著,等离子体物理基础,科学出版社,1983年10月
    [54] 陈熙,高温电离气体的传热与流动,科学出版社,1993
    [55] 唐金兰、何洪庆、毛根旺等,等离子推力器等离子体形成及其与微波耦合机理分析,固体火箭技术,2002(2)
    [56] 应嘉年,顾茂章,张克潜,微波与光波导技术,国防工业出版社,1994年11月
    [57] 孙道礼,微波技术,哈尔滨工业大学出版社,1988
    [58] W. Earl Morren and Gregory S. MacRae, Preliminary Endurance Tests of Water Vaporizers for Resistojet Applications, AIAA 1993-2403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700