光子晶体谐振腔的研究设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着回旋管向高频阶段发展,高次的谐波互作用研究已经成为成为重要方向。但是高次谐波的互作用有以下几个缺陷:互作用效率随着谐波次数的升高而迅速下降;同步范围窄,各项参数需要做进一步调整;不同的模式之间竞争严重。当普通的回旋管工作在高频时,效率很低,尤其是模式之间的竞争问题较难解决。因为基波和低阶谐波起振电流小,容易被激励,抑制了高次谐波振荡,因此,必须改进结构以抑制模式竞争、除去杂模,这样才能够有效地实现高次谐波互作用。
     上世纪八十年代中期,一种新的概念“光子晶体”被提出。它是一种由介质或者金属通过周期性排列而构成的一种人工材料,其最根本的特性是具有光子带隙。光子带隙的存在使得光子晶体拥有了频率选择特性,可以有效的对非工作模式进行抑制,实现单模传输的效果。这为解决高频结构的上述种种问题提供了可能。
     本文首先简单介绍了光子晶体的基本概念,然后通过时域有限差分法对两种基本模式下光子晶体禁带进行了分析计算。然后,根据所得的能带结构图,通过HFSS仿真,设计出了两种工作在我们所需频段且单模工作的光子晶体谐振腔。
According to the resonance condition for the excitation, the static axial magnetic field has inverse proportion of the cyclotron harmonic number. The static axial magnetic field will much be reduced, if operation frequency is in the harmonic state So harmonic wave interaction researches become more and more very important, with the development of gyrotrons. There are several disadvantages by the above merit, with the cyclotron harmonic number:The interaction effect falls much. The bandwidth becomes small, which needs modify the parameters continually. Mode competition upgrades. Special structure shall be promoted to solve these problems.
     The Photonic crystal is a new subject developed from 80 years of twentieth century. It is an artificial structure which has a periodic arrangement of metallic or dielectric materials. The greatest feature of Photonic crystal is the band structure, which makes it has the frequency selective characteristic. We may save these problems mentioned in the first paragraph.
     We first introduce the general idea of Photonic crystal. Then we use The Finite Difference Time Domain method to discuss two basic kind of geometry structure. After calculating the triangle lattice and square lattice we design two PBG resonators for Gyro klystrons working with single mode transmission and verify the result by HFSS.
引文
[1]廖复疆.大功率微波电子注器件及其发展.真空电子技术,1999,4:1-14
    [2]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.,1987,58(20):2059-2062
    [3]John S. Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    [4]John S. Localization of Light. Physics Today,1991,5,32-34
    [5]李曙光,刘晓东,侯蓝田.光子晶体进展及其应用.世界科技研究与发展,2001.23(6),7-11
    [6]欧阳整标,李景镇.光子晶体的研究进展.激光杂志,2000,21(2):4-6
    [7]John. D. Joannopoulos, Robert D. Photonic crystal:Molding the Flow of Light. USA:Princeton University Press,1995,3-21
    [8]殷海荣,光子晶体行波管研究:[博士学位论文].四川:电子科技大学2007.3,6-7
    [9]S. NODA, A.CHUTINAN and M. IMADA. Trapping and emission of photons by a single defect in a photonic band gap structure [J]. Nature 2000,407:608-610
    [10]J. M. Drake, A. Z. Genack. Observation of nonclassical optical diffusion. Phys. Rev. Lett.,1989, 63(3):259-262
    [11]R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science,2001,292(5541):77-79
    [12]J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Tran. On Microwave Theory and Techniques,1999,47(11): 2075-2084
    [13]孙运涛.光子晶体的负折射效应.物理光学,2007,44(1):51-56
    [14]D. R. Smith, P. Rye, C. V. David, et al. Design and measurement of anisotropic metamaterials that exhibit negative refraction. IEICE Tran. electron,2004,87(3):359-370
    [15]E. Yablonovitch, T. Gmitter, K. Leung. Photonic Band Structure:the Face-Centered-Cubic Case Employing Nonspherical Atoms. Phys. Rev. Lett.,1991,67:2295-2298
    [16]Gupta S, Tuttle G, Sigalas M, et al. Infrared filters using metallic photonic band gap structures on flexible substrates [J]. Appl. Phys. Lrtt.1997,71(17):2412-2414
    [17]V. Bergen,O. Gauthier-Lafaye, E. Costard. Photonic band gaps and holography. J. Appl. Phys. 1997,82(1):60-64
    [18]Jun Zhang, Hui-Huang Zhong, Ling Luo. A novel overmoded slow-wave high-power microwave generator. IEEE Trans. Plasma Science,2004,32(6):2236-2242
    [19]E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.,1987,58(20):2059-2062
    [20]YARIVA. Coupled-resonator optical waveguide:a proposal and analysis [J]. Opt. Lett,1999, 282:1679-1682
    [21]J R Sirigiri. Photonic-band-gap resonator gyrotron. Phys. Rev. Lett.,2001,86(7):5628-5630
    [22]Foresi J S, Villeneuve P R, Ferrera J, et al. Photonic-bandgap microcavities in optical waveguide. Nature,1997,390(6656):143-145
    [23]Lei X Y, Ding F, Zhang W Y, et al. Novel application of a perturbed photonic crystal: high-quality filter. Appl. Phys. Lett.,1997,71(20):2889-2891
    [24]谢东华,何晓东,于海霞等.一维光子晶体全角度反射镜[J].激光与光电子学进展,2005,42(12):55-58
    [25]D. R. Smith, S. Schultz, and N. Kroll. Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity. Appl. Phys. Lett.,1994,65(5):645-647
    [26]M. A. Shapiro, W. J. Brown, I. Mastovsky, et al.17GHz photonic band gap cavity with improved input coupling. Phys. Rev. Special Topics-Accelerators and Beams,2001, 4(4):042001
    [27]J. R. Sirigiri, K. E. Kreischer, J. Machuzak, et al. Photonic-band-gap resonator gyrotron, Phys. Rev. Lett.,2001,86(24):5628-5631
    [28]M. Schuster, O. Antoniuk, P. Lahl, et al. Resonant and waveguiding defect modes in a two-dimensional electromagnetic band-gap slab structure for millimeter wave frequencies. Journal of Applied Phys.,2005,97(4):044912
    [29]J. D. Joannopoulos, R. D. Meade, J. N. Wnn. Photonic crystals. United Kingdom:Princeton University Press,1995
    [30]王秉中.计算电磁学.北京:科学出版社,2003,150-161
    [31]谢拥军,王鹏,李磊,等Ansoft HFSS基础及应用.西安:西安电子科技大学出版社,2007,23-95
    [32]王文祥.微波工程基础.成都:电子科技大学,2006,34-54
    [33]王雷雷,罗勇,牟红兵,王永强.三角晶格金属柱PBG谐振腔的设计.现代电子技术,2010/16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700