新型三坐标并联动力头的数控系统开发与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文密切结合一种用于大型铝合金结构件高速加工的新型三坐标动力头——A3头的高速高精度控制问题,系统研究了该动力头的运动学建模、轨迹插补算法、数控系统开发、动力学参数辨识与力矩控制等关键技术,论文取得如下创造性成果:
     (1)采用矢量链法建立了A3头的位置、速度和加速度模型,并构造出刀具欧拉角与A/B轴转角、角速度和角加速度间的映射关系,为后续的轨迹规划及动力学辨识与力矩控制提供了必要的模型。
     (2)针对所选用开放式数控系统的特点,研究了基于二次插补策略的轨迹插补方法。基于线性加速度运动规律和坐标轴分解原理,系统研究了点矢同步插补算法。针对刀具绕参考点作定点转动的情况,提出通过设置第二进给速率实现刀具矢量插补的算法,有效提高了插补过程中的计算效率。
     (3)提出基于工控机+可编程多轴运动控制器的开放式数控系统总体架构,并结合A3头外围设备的逻辑控制要求,搭建系统硬件平台。利用层次化设计思想,提出适合五轴联动数控加工的数控系统软件体系架构,并在LabVIEW环境中开发出控制系统软件平台的主要功能模块,有效地提高了软件工作效率与系统可靠性。
     (4)在运用虚功原理建立A3头刚体动力学模型的基础上,构造出系统动力学参数辨识模型。考虑A3头本身的结构特点及待辨识参数对其动力学特性的影响差异,提出一种分层递阶的辨识策略,通过适当的轨迹规划,有效消除或抵消库仑摩擦对辨识结果的影响,进而提高了动力学参数的辨识精度。通过在不同工况下的试验,验证了所提出辨识方法的正确性和有效性。
     (5)以动力学参数辨识结果建立力矩补偿模型,在单轴PD伺服控制算法的基础上,提出一种基于粗插补信息的动力学前馈控制方法。实验结果表明,相较单轴运动学控制,这种控制策略可有效降低关节伺服轴的跟随误差。
     上述工作为基于A3头的新型五轴高速加工装备的研发和实用化发展奠定了坚实的技术基础。
This dissertation deals with the key issues of high-speed and high-precisioncontrol of a novel3-DOF PKM (parallel kinematics machine) module named the A3head which is employed for large aluminum structural components high-speedmachining, covering a complete spectrum in terms of kinematic modeling, trajectoryinterpolation, development of CNC system, dynamic identification and torque controlmethod. The following contributions have been made.
     (1) By means of vector chain method, the kinematic models of the A3head areformulated for position, velocity and acceleration analyses. The mapping relationsbetween Euler angles and A/B angles are established in terms of angular position,angular velocity and angular acceleration. The above work provides necessarymathematical models for trajectory planning and torque control.
     (2) According to the characteristics of the open CNC system, the trajectoryinterpolation is studied on the basis of two-step interpolation strategy. Based on thelinear acceleration profile and the coordinate axis decomposition principle, thepoint-vector synchronous interpolation algorithm is studied systematically. Aiming atthe situation of tool rotating around the reference point, the vector interpolationalgorithms is accomplished by setting of the second feedrate, which improve theeffectiveness of interpolation computation.
     (3) Based on “IPC+Turbo PMAC” architecture, an open CNC systemframework of the A3head is proposed. Integrated with various peripheral equipments,the hardware platform is constructed. Adopting the modularization and hierarchydesign idea, the software architecture for five-axis machining is proposed andessential functions are developed in the circumstance of LabVIEW.
     (4) With the aid of the virtual work principle, the inverse dynamic model isformulated, allowing the model suitable for dynamic parameter identification to beestablished. Considering the characteristics of the load torques under differentworking conditions, a hierarchical strategy is proposed for dynamic parameteridentification. The merit of this strategy lies in that it enables the influences due to theCoulomb frictions to be counteracted or eliminated via proper path planning, therebythe identification accuracy to be significantly improved. The experiments under different working conditions are carried out to verify the validity and effectiveness ofthe proposed approach.
     (5) The dynamic torque compensation model is formulated by using the result ofdynamic parameter identification. On the basis of single-axis PD control, an approachfor feed-forward control is proposed at the coarse interpolation stage. Experimentalresults show that the proposed approach can effectively reduce the servo trackingerrors in the joint space in comparison with the single-axis kinematic control method.
     The outcomes lay a solid foundation for the development for the novelhigh-speed five-axis machine based on the A3head.
引文
[1]张曙, Heisel U,并联运动机床,北京:机械工业出版社,2003
    [2]汪劲松,黄田.并联机床——机床行业面临的机遇与挑战[J].中国机械工程,1999,10(10):1103-1107
    [3] Merlet J P. Parallel manipulators: state of the art and perspectives[J]. Advanced Robotics,1993,8(6):589-596
    [4] Neumann K E, Robot, US Patent No.4732525, Mar.22,1988
    [5] Neumann K E, System and Method for Controlling a Robot, US Patent No.6301525,Oct.9,2001
    [6] Neumann K E, Tricept applications, In: Proceedings of the3rd Chemnitz ParallelKinematic Seminar, Verlag Wissenschaftliche Scripten, Zwickau, Germany,2002:547-551
    [7] Neumann K E. Next generation tricept-a true revolution in parallelkinematics[C]//Proceedings of the fourth Chemnitz parallel kinematics seminar, Zwickau,Germany.2004:591-594
    [8] Online available at: http://www.ds-technologie.de
    [9] Hennes N. Ecospeed–An Innovative Machinery Concept for High-Performance5-Axis-Machining of Large Structural Components in Aircraft Engineering[C]//3rdChemnitz parallel kinematic seminar, Chemnitz, Germany.2002:753-762
    [10] Hennes N, Staimer D. Application of PKM in aerospace manufacturing-high performancemachining centers ECOSPEED, ECOSPEED-F and ECOLINER[C]//Proceedings of the4th Chemnitz Parallel Kinematics Seminar.2004:557-568
    [11] Online available at: www.fatronik.com
    [12] Kim H S, Tsai L W. Design optimization of a Cartesian parallel manipulator[J]. ASMEJournal of Mechanical Design,2003,125(1):43-51
    [13]刘悦,汪劲松,王立平.重型混联机床XNZH2430的静刚度优化[J].清华大学学报(自然科学版),2006,46(8):1418-1421
    [14]哈量研制成功六轴并联机床和3903型齿轮测量中心,工具技术,2002,36(4):25
    [15] Liu H, Huang T, Mei J, et al. Kinematic design of a5-DOF hybrid robot with largeworkspace/Limb–Stroke ratio[J], ASME Journal of Mechanical Design,2007,129(5):530-537
    [16]黄田,刘海涛,李曚,五自由度机器人,国家发明专利,公开号: CN1709657,2005-12
    [17]张祥,金振林.新型三自由度并联机床的工作空间分析[J].燕山大学学报,2006,30(2):147-150
    [18]张天明,韩先国.基于有限元3-RPS并联机床轻量化优化设计[J].北京航空航天大学学报,2010,11:009
    [19]胡明,田文元,蔡光起.并联机床驱动杆铰链位置误差分析[J].东北大学学报:自然科学版,2007,28(3):389-392
    [20]刘海涛,少自由度机器人机构一体化建模理论、方法及工程应用:[博士学位论文],天津;天津大学,2010
    [21] HUANG Tian, LIU Haitao. A parallel manipulator with two orientations and onetranslation [P].WO/PCT/2007/124637.2007
    [22] Li Y G, Liu H T, Zhao X M, et al. Design of a3-DOF PKM module for large structuralcomponent machining[J]. Mechanism and Machine Theory,2010,45(6):941-954
    [23] Kim D I. Study on interpolation algorithms of CNC machine tools[C]//IndustryApplications Conference,1995. Thirtieth IAS Annual Meeting, IAS'95., ConferenceRecord of the1995IEEE. IEEE,1995,3:1930-1937
    [24]叶伯生,杨叔子. CNC系统中三次参数样条曲线的插补算法[J].华中理工大学学报,1996,24(9):9-11
    [25] Omirou S L. Space curve interpolation for CNC machines[J]. Journal of materialsprocessing technology,2003,141(3):343-350
    [26]王辉,并联构型装备开放式数控系统关键技术研究与开发:[博士学位论文],天津,天津大学,2009
    [27]熊有伦,机器人学,北京,机械工业出版社,1993
    [28] Erkorkmaz K, Altintas Y. High speed CNC system design. Part I: jerk limited trajectorygeneration and quintic spline interpolation[J]. International Journal of Machine Tools andManufacture,2001,41(9):1323-1345
    [29] Müller M, Erd s G, Xirouchakis P. High accuracy spline interpolation for5-axismachining[J]. Computer-Aided Design,2004,36(13):1379-1393
    [30] Fleisig R V, Spence A D. A constant feed and reduced angular acceleration interpolationalgorithm for multi-axis machining[J]. Computer-aided design,2001,33(1):1-15
    [31] Ho M C, Hwang Y R, Hu C H. Five-axis tool orientation smoothing using quaternioninterpolation algorithm[J]. International Journal of Machine Tools and Manufacture,2003,43(12):1259-1267
    [32] Liu Y, Li H, Wang Y. Realization of a5-axis NURBS Interpolation with ControlledAngular Velocity[J]. Chinese Journal of Aeronautics,2012,25(1):124-130
    [33] Beudaert X, Lavernhe S, Tournier C. Feedrate interpolation with axis jerk constraints on5-axis NURBS and G1tool path[J]. International Journal of Machine Tools andManufacture,2012,57:73-82
    [34] Wang Y, Ma X, Chen L, et al. Realization methodology of a5-axis spline interpolator inan open CNC system[J]. Chinese Journal of Aeronautics,2007,20(4):362-369
    [35]汪劲松,王忠华,黄田.并联机床的非线性特性及其在插补精度分析中的应用术[J].中国科学E辑,2003,33(9):820-828
    [36]王忠华,汪劲松,杨向东,等. VAMT1Y虚拟轴机床数控系统直线和圆弧插补仿真研究[J].中国机械工程,1999,10(10):1121-1123
    [37]王洋,倪雁冰,黄田,等.并联机床插补算法与原理性插补误差预估[J].机械工程学报,2001,37(6):15-19
    [38] Zheng K J, Gao J S, Zhao Y S. Path control algorithms of a novel5-DOF parallel machinetool[C]//Mechatronics and Automation,2005IEEE International Conference. IEEE,2005,3:1381-1385
    [39] Weisel, Walter, Taking advantage of the PC platform, Robotics World,1999,17(3):6
    [40] Available at http://www.abb.com/
    [41] Available at http://www.sg-motoman.com.cn/
    [42] Available at http://www.fanuc.co.jp/
    [43] Available at http://www.deltatau.com/
    [44] Available at http://www.ni.com/
    [45] Available at http://www.parkermotion.com/
    [46] Available at http://www.googoltech.com.cn/
    [47] Available at http://www.softservo.com/
    [48] Tóth S J. New PC and LabVIEW based robot control system[J]. Mechanical Engineering,2000,43(2):179-188
    [49] Khalil W, Guegan S. Inverse and direct dynamic modeling of Gough-Stewart robots[J].Robotics, IEEE Transactions on,2004,20(4):754-761
    [50]蔡胜利,白师贤,3-TRS型并联机器人的动力学研究,机械科学与技术,1996,15(1):51-56.
    [51] Sugimoto K. Kinematic and dynamic analysis of parallel manipulators by means of motoralgebra[C]. ASME,1987
    [52] Ji Z, Study of the effect of leg inertia in Stewart Platforms. IEEE International Conferenceon Robotics and Automation,1993,121-126
    [53] Dasgupta B, Choudhury P. A general strategy based on the Newton–Euler approach forthe dynamic formulation of parallel manipulators[J]. Mechanism and Machine Theory,1999,34(6):801-824
    [54] Pang H, Shahinpoor M. Inverse dynamics of a parallel manipulator[J]. Journal of RoboticSystems,1994,11(8):693-702
    [55] Wang J, Gosselin C M. A new approach for the dynamic analysis of parallelmanipulators[J]. Multibody System Dynamics,1998,2(3):317-334
    [56] Zhang C D, Song S M. An efficient method for inverse dynamics of manipulators basedon the virtual work principle[J]. Journal of Robotic Systems,1993,10(5):605-627
    [57] Tsai L W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principleof virtual work[J]. Journal of Mechanical design,2000,122:3.
    [58] Cheng H, Yiu Y K, Li Z. Dynamics and control of redundantly actuated parallelmanipulators[J]. Mechatronics, IEEE/ASME Transactions on,2003,8(4):483-491
    [59] Grotjahn M, Heimann B, Kuehn J, Grendel H. Dynamics of robots with parallel kinematicstructure. Proceedings of the11th World Congress in Mechanism and Machine Science,2004,1689-1693.
    [60] Farhat N, Mata V, Page A, et al. Identification of dynamic parameters of a3-DOF RPSparallel manipulator[J]. Mechanism and Machine Theory,2008,43(1):1-17
    [61] Codourey A, Burdet E. A body-oriented method for finding a linear form of the dynamicequation of fully parallel robots[C]//Robotics and Automation,1997. Proceedings.,1997IEEE International Conference on. IEEE,1997,2:1612-1618
    [62] Armstrong B, Khatib O, Burdick J. The explicit dynamic model and inertial parameters ofthe PUMA560arm[C]//Robotics and Automation. Proceedings.1986IEEE InternationalConference on. IEEE,1986,3:510-518
    [63]王树新,张海根,黄铁球,机器人动力学参数辨识方法的研究,机械工程学报,1999,35(1):23-26
    [64] Guegan S, Khalil W, Lemoine P. Identification of the dynamic parameters of theorthoglide[C]//Robotics and Automation,2003. Proceedings. ICRA'03. IEEE InternationalConference on. IEEE,2003,3:3272-327.
    [65] Wiens G J, Parameter sensitivity in system identification of parallel mechanisms[C]//Proceedings of ASME2002Design Engineering Technical Conference and Computer andInformation in Engineering Conference,2002,721-730
    [66] Poignet P, Ramdani N, Vivas O A. Ellipsoidal estimation of parallel robot dynamicparameters[C]//Intelligent Robots and Systems,2003.(IROS2003). Proceedings.2003IEEE/RSJ International Conference on. IEEE,2003,4:3300-3305
    [67] Vivas A, Poignet P, Marquet F, et al. Experimental dynamic identification of a fullyparallel robot[C]//Robotics and Automation,2003. Proceedings. ICRA'03. IEEEInternational Conference on. IEEE,2003,3:3278-3283
    [68] J Wu J, Wang J, Wang L. Identification of dynamic parameter of a3DOF parallelmanipulator with actuation redundancy[J]. Journal of manufacturing science andengineering,2008,130(4)
    [69] Paccot F, Andreff N, Martinet P. A review on the dynamic control of parallel kinematicmachines: Theory and experiments[J]. The International Journal of Robotics Research,2009,28(3):395-416
    [70] Ghorbel F, Modeling and PD control of close-chain mechanism systems. IEEEConference on Decision and Control,1995,1:540-542
    [71] Sciavicco L, Chiacchio P, Siciliano B, Practical design of indepandent joint controller forindustrial robot manipulators. Proceedings of the American Control Conference,1992,2:1239-1240
    [72] Denkena B, Heimann B, Adbellatif H, et al. Design, modeling and advanced control of theinnovative parallel manipulator palida[C]//Advanced Intelligent Mechatronics.Proceedings,2005IEEE/ASME International Conference on. IEEE,2005:632-637
    [73] Honegger M, Brega R, Schweiter G. Application of a nonlinear adaptive controller to a6dof parallel manipulator[C]//Robotics and Automation,2000. Proceedings. ICRA'00.IEEE International Conference on. IEEE,2000,2:1930-1935
    [74] Natal G S, Chemori A, Pierrot F. Nonlinear dual mode adaptive control of PAR2: a2-dofplanar parallel manipulator, with real-time experiments[C]//Intelligent Robots andSystems,2009. IROS2009. IEEE/RSJ International Conference on. IEEE,2009:2114-2119
    [75] Vivas A, Poignet P. Predictive functional control of a parallel robot[J]. ControlEngineering Practice,2005,13(7):863-874
    [76]黄田,刘海涛,一种具有两转动和一平动自由度的并联机构, ZL200610013608.3,2008
    [77]赵学满,李永刚,新型三坐标并联动力头工作空间分析,机械设计,2010,27(11):65-68
    [78]王攀峰,相贯线切割机器人作业单元关键技术研究、方法及工程应用:[博士学位论文],天津,天津大学,2008
    [79]吴军,四自由度冗余并联机床的分析、辨识与控制,方法及工程应用:[博士学位论文],北京,清华大学,2007
    [80] Swevers J, Verdonck W, De Schutter J. Dynamic model identification for industrialrobots[J]. Control Systems, IEEE,2007,27(5):58-71
    [81] Khalil W, Ibrahim O. General solution for the dynamic modeling of parallel robots[J].Journal of Intelligent and robotic systems,2007,49(1):19-37
    [82] Mayeda H, Yoshida K, Osuka K. Base parameters of manipulator dynamic models[J].Robotics and Automation, IEEE Transactions on,1990,6(3):312-321
    [83] Bennis F, Khalil W, Gautier M. Calculation of the base inertial parameters of closed-loopsrobots[C]//Robotics and Automation,1992. Proceedings.,1992IEEE InternationalConference on. IEEE,1992:370-375
    [84] Gautier M, Khalil W. Direct calculation of minimum set of inertial parameters of serialrobots[J]. Robotics and Automation, IEEE Transactions on,1990,6(3):368-373
    [85] Gautier M. Numerical calculation of the base inertial parameters of robots[J]. Journal ofRobotic Systems,1991,8(4):485-506
    [86] Grotjahn M, Heimann B, Abdellatif H. Identification of friction and rigid-body dynamicsof parallel kinematic structures for model-based control[J]. Multibody System Dynamics,2004,11(3):273-294
    [87] Shang W, Cong S, Kong F. Identification of dynamic and friction parameters of a parallelmanipulator with actuation redundancy[J]. Mechatronics,2010,20(2):192-200
    [88] Abdellatif H, Heimann B. On compensation of passive joint friction in roboticmanipulators: modeling, detection and identification[C]//Computer Aided Control SystemDesign,2006IEEE International Conference on Control Applications,2006IEEEInternational Symposium on Intelligent Control,2006IEEE. IEEE,2006:2510-2515
    [89] Chen C T, Renn J C, Yan Z Y. Experimental identification of inertial and frictionparameters for electro-hydraulic motion simulators[J]. Mechatronics,2011,21(1):1-10
    [90] Gautier M, Khalil W. On the identification of the inertial parameters ofrobots[C]//Decision and Control,1988., Proceedings of the27th IEEE Conference on.IEEE,1988:2264-2269
    [91] Radkhah K, Kulic D, Croft E. Dynamic parameter identification for the CRS A460robot[C]//Intelligent Robots and Systems,2007. IROS2007. IEEE/RSJ InternationalConference on. IEEE,2007:3842-3847
    [92] Seeger G, Leonhard W. Estimation of rigid body models for a six-axis manipulator withgeared electric drives[C]//Robotics and Automation,1989. Proceedings.,1989IEEEInternational Conference on. IEEE,1989:1690-1695
    [93] Abdellatif H, Heimann B, Hornung O, et al. Identification and appropriate parametrizationof parallel robot dynamic models by using estimation statistical properties[C]//IntelligentRobots and Systems,2005.(IROS2005).2005IEEE/RSJ International Conference on.IEEE,2005:157-162
    [94] Van Den Hof P M J, Schrama R J P. Identification and control—closed-loop issues[J].Automatica,1995,31(12):1751-1770
    [95] Gautier M, Khalil W, Restrepo P P. Identification of the dynamic parameters of a closedloop robot[C]//Robotics and Automation,1995. Proceedings.,1995IEEE InternationalConference on. IEEE,1995,3:3045-3050
    [96] Ayusawa K, Venture G, Nakamura Y. Identification of the inertial parameters of ahumanoid robot using unactuated dynamics of the base link[C]//Humanoid Robots,2008.Humanoids2008.8th IEEE-RAS International Conference on. IEEE,2008:1-7
    [97] Pfeiffer F, Holzl J. Parameter identification for industrial robots[C]//Robotics andAutomation,1995. Proceedings.,1995IEEE International Conference on. IEEE,1995,2:1468-1476
    [98] Khalil W, Gautier M, Lemoine P. Identification of the payload inertial parameters ofindustrial manipulators[C]//Robotics and Automation,2007IEEE InternationalConference on. IEEE,2007:4943-4948
    [99] Olsen M M, Swevers J, Verdonck W. Maximum likelihood identification of a dynamicrobot model: Implementation issues[J]. The International Journal of Robotics Research,2002,21(2):89-96
    [100] Brancati R, Russo R, Savino S. Method and equipment for inertia parameteridentification[J]. Mechanical Systems and Signal Processing,2010,24(1):29-40
    [101] Díaz-Rodríguez M, Mata V, Valera á, et al. A methodology for dynamic parametersidentification of3-dof parallel robots in terms of relevant parameters[J]. Mechanism andMachine Theory,2010,45(9):1337-1356
    [102] Achili B, Daachi B, Ali-Cherif A, et al. A C5parallel robot identification and control[J].International Journal of Control, Automation and Systems,2010,8(2):369-377
    [103] Ha I J, Ko M S, Kwon S K. An efficient estimation algorithm for the model parameters ofrobotic manipulators[J]. Robotics and Automation, IEEE Transactions on,1989,5(3):386-394
    [104] Swevers J, Verdonck W, Naumer B, et al. An experimental robot load identificationmethod for industrial application[J]. The International Journal of Robotics Research,2002,21(8):701-712
    [105] Dutkiewicz P, Kozlowski K R, Wroblewski W S. Experimental identification of robot andload dynamic parameters[C]//Control Applications,1993, Second IEEE Conference on.IEEE,1993:767-776
    [106] Abdellatif H, Heimann B, Holz C. Time-effective direct dynamics identification ofparallel manipulators for model-based feedforward control[C]//Advanced IntelligentMechatronics. Proceedings,2005IEEE/ASME International Conference on. IEEE,2005:777-782
    [107] Armstrong B. On finding'exciting'trajectories for identification experiments involvingsystems with non-linear dynamics[C]//Robotics and Automation. Proceedings.1987IEEEInternational Conference on. IEEE,1987,4:1131-1139
    [108] J. Swevers, C. Ganseman, J. DE Schutter, H. Van Brussel, Experimental robotidentification using optimised periodic trajectories[J]. Mechanical Systems and SignalProcessing,1996,10(5):561-577
    [109] Swevers J, Ganseman C, Tukel D B, et al. Optimal robot excitation and identification[J].Robotics and Automation, IEEE Transactions on,1997,13(5):730-740
    [110] Presse C, Gautier M. New criteria of exciting trajectories for robotidentification[C]//Robotics and Automation,1993. Proceedings.,1993IEEE InternationalConference on. IEEE,1993:907-912
    [111] Gautier M, Khalil W. Exciting trajectories for the identification of base inertial parametersof robots[C]//Decision and Control,1991., Proceedings of the30th IEEE Conference on.IEEE,1991:494-499
    [112] Diaz-Rodriguez M, Iriarte X, Mata V, et al. On the experiment design for direct dynamicparameter identification of parallel robots[J]. Advanced Robotics,2009,23(3):329-348
    [113] Wu J, Wang J, You Z. An overview of dynamic parameter identification of robots[J].Robotics and Computer-Integrated Manufacturing,2010,26(5):414-419
    [114] Wu J, Wang J, Wang L, et al. Dynamics and control of a planar3-DOF parallelmanipulator with actuation redundancy[J]. Mechanism and Machine Theory,2009,44(4):835-849
    [115] Otani K, Kakizaki T, Kogure K. Dynamic parameter identification of an industrial robotand its application to trajectory controls[C]//Intelligent Robots and Systems,1992.,Proceedings of the1992lEEE/RSJ International Conference on. IEEE,1992,2:990-997
    [116] Sangveraphunsiri V, Chooprasird K. Dynamics and control of a5-DOF manipulator basedon an H-4parallel mechanism[J]. The International Journal of Advanced ManufacturingTechnology,2011,52(1-4):343-364
    [117] Shang W, Cong S, Zhang Y. Nonlinear friction compensation of a2-DOF planar parallelmanipulator[J]. Mechatronics,2008,18(7):340-346
    [118] Jankowski K P, Elmaraghy H A. Robust hybrid position/force control of redundantrobots[J]. Robotics and autonomous systems,1999,27(3):111-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700