吊艇架被动式抗摆技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吊艇架是用于降放和收回小艇的海上作业设备,它的任务是保证舰船上的小艇和人员快速、安全地降放至水面,并将小艇和人员安全地收回到舰船上。在高海况下,小艇受船舶摇荡运动影响产生摆振,使其成为了吊艇架系统安全高效运行的瓶颈。对吊艇架系统实施有效的抗摆控制可以极大的提高其海上作业的安全性和高效性,这在民用和军事领域均具有重要的意思和实用价值。
     本课题从工程应用出发,对吊艇架被动式抗摆技术进行了研究。首先分析吊艇架抗摆系统的结构及工作原理,研究吊艇架系统摆振动力学机理及液压阻尼器的基本原理,为吊艇架系统的动力学模型的建立和被动式抗摆系统的设计提供了理论依据和技术基础;船舶摇荡是吊艇架系统摆振的主要原因,在对船舶在海浪作用下的运动响应进行分析的基础上,建立了在船舶横摇、纵摇激励下,吊艇架系统与船舶摇摆之间的关系。其次,采用拉格朗日方程及其相关方法,建立了吊艇架系统二自由度摆振的数学模型,并仿真验证了其正确性;通过分析摆振模型并对其进行合理简化,建立了抗摆系统的单自由度动力学模型,根据影响小艇摆振的主要因素设计了抗摆液压阻尼装置的相关参数。最后,通过AMESim仿真软件建立了吊艇架系统的虚拟样机模型,在不同海况下,验证了被动式抗摆系统的有效性;通过改变船舶、小艇参数的方式验证了被动式抗摆系统的适应性能,并提出提高抗摆系统适应性能的有效方案。
     论文的仿真研究证明建立的数学模型及设计的抗摆系统理论上是可行的,有关研究内容正在相关实际工程中采用。
The davit is offshore operations equipment which is used in the retractable boat. Its mission is to ensure the ship’s boat and personnel quickly and safely put down to the surface, and the boats and personnel on the ship safely retracts Due to the influence of motion of the ship in abominable sea condition, the boat appears pendulating, the pendulation of the boat has become the bottleneck of safe and efficient system operation. Therefore, the anti-pendulation control of davit can greatly improve security and efficiency of offshore operations, the research has a great significance and in the civil and military areas.
     Aiming at the engineering application, the research is done on the passive style anti-pendulation of the davit in the paper. Firstly, structure and operational principle anti-pendulation system of the davit are analyzed. Dynamics mechanism of pendulation of davit system and basic principles of hydraulic damper device are studied. It provides a theoretical basis and technical basis for davit system dynamic modeling and design of passive style anti-pendulation system. Because motion of the ship is major cause of davit’s pendulation, the ship motion response under the action of wave is analyzed. On this basis, the relation between the davit system and the ship swinging movement are abstained under the excitation of the ship rolling, pitching. Secondly,by using the Lagrange equation and its relational methods, the davit system’s two degrees of freedom pendulum mathematical model is achieved. The simulation verifies the correctness of the mathematical model. The pendulum model which is analyzed, then it is reasonable to be simplified, a single degree of freedom dynamic model of the anti-pendulation device is achieved. The major factors affecting boat pendulation are analyzed, and then parameters of the anti-pendulation hydraulic damper device are designed. At the end, the virtual prototype model of davit system is achieved by the AMESim simulation software, and proves the effectiveness of passive style anti-pendulation system under different sea conditions. By changing the parameters of the ship and boat, the adaptable of anti-pendulation system is verified, and improving the method of adaptable of anti-pendulation system is given.
     Simulation studies of the paper show that the mathematical modeling and the anti-pendulation device which is designed is available in theory. The relational study contents of the paper are going to be used in relational engineering application.
引文
[1]蒋炳成.船舶救生设备的组成及其配置.广东造船.2002,1:21-25
    [2]刘震,宏海容,陈培基.吊艇架技术与标准的发展及相关问题讨论.船舶工程.2006,4(28):9-12
    [3] T. Vauthers. Joint Logistics over the shore operation in rough seas. Naval Engineers Journal. 1994,106(3):256-263
    [4] T. Vauthers, M. Mardiros. Joint Logistics over the shore operation in rough seas. Naval Engineers Journal. 1997,109(3):385-393
    [5]邹继刚,张杰.舰载特种起重机仿真系统.系统仿真学报.2002,14(1):23-25
    [6]邱志成,赵明扬,谈大龙等.一种具有波浪补偿和防晃功能的船用起重机.工程机械.1999,13(2):12-14
    [7]茅昕,金蓓.新型超低重力倒臂式吊艇架.船舶工程.2006,5:60-62
    [8] Tanizumi,k.,Youshimura T.,Hino Jnichi. Modeling of dynamic behavior and control of truck cranes. Journal of Electrical and Electronics Engineering. 1994,14(2):75-84
    [9] Beliveau J.G, Zhao X.Semi-passive damping of swinging motion of conference cranes. Proceedings of the Second Construction Specialty Conference, Montreal:IEEE Press.1997,54:127-133
    [10]王金诺,程文明,张质文等.集装箱起重机刚性减摇系统的动态仿真.铁道学报.1995,17(1):34-40
    [11] Hippe P. New approaches to the numerical solution of optimal control problems. Optimal Control. 1972,56(18):346-350
    [12] M.Fliess, P.Rouchon. A simplified approach of crane control via a generalized state-space model. Proceedings of the 30th Conference on Decision and Control:IEEE Press.1991,53(28):736-741
    [13] L.Y. Sakawa, A.Nakazumi. Optimal control of rotary cranes. Journal of Optimization Theory and Application. 1981,35(4):535-557
    [14] Alsop.K.,Sakawa.Y. Modeling and control of a flexible rotrary crane. International Journal of Control. 1985,107:200-206
    [15] Lee.H. Modeling and control of a three-dimensional overhead crane. Journal of Dynamic Systems. Measure-ment and Control.1998,120:471-476
    [16] Nayfeh,A.H and Masoud,Z.N. A supersmart controller for commercial cranes. Newsleter,International Association for Strual Control.2002,6(2):4-6
    [17] Bahram.K., Abdollah Homaifar.M. Feedback and feed-forward control law for a ship crane. Maryland Rigging System Proceedings of the American Control Conference. 2000,6:1047-1053
    [18] M.Imazeki, M.Mutaguchi. Active mass damper for stabilizing the load suspended on a floating crane. IHI Engineering Review. 1998,31(2):61-69
    [19]陆卫杰.舰艇并靠导弹补给及波浪补偿系统研究.南京理工大学博士论文. 2006
    [20]陆卫杰,芮筱亭.受控线性多体系统传递矩阵法.振动与冲击.2006,5(25):24-27
    [21]贾智勇.船上回转式吊车防摆控制系统研究.哈尔滨工业大学硕士论文.2007
    [22]邵曼华,寇雄,赵鹏程.几种船用起重机波浪补偿装置.机械工程师.2004,2:14-16
    [23]陈玉森,周福祥.船用起重机及液压系统.机电设备.1994,3:25-31
    [24]蒋国仁.港口起重机械.大连海事大学出版社.1995
    [25]蒋余良,眭国忠.高海况下小艇收放装置的技术与发展探讨.江苏船舶.2008,25(6):12-15
    [26]谢江怡.补给工作艇收放装置选型设计分析.船舶.2007,4:49-51
    [27]梁利华.液压传动与电液伺服系统.哈尔滨工程大学出版社.2005
    [28]张利平.液压传动与控制.西北工业大学出版社.2005
    [29]商大中.动力学分析基础.哈尔滨工程大学出版社.1999
    [30]刘巧灵.理论力学.科学出版社.2005
    [31]刘延柱,陈文良,陈立群.振动力学.高等教育出版.1998
    [32]余成波,何怀波,石晓辉.内燃机振动控制及应用.国防工业出版社.1997
    [33]王新,朱梓根.环型金属橡胶减振器.航空动力学报.1997,12(2):143-145
    [34]孟光,殷达章,姚国治.电流变阻尼器用于转子振动控制的实验研究.航空动力学报.1996,11(3):256-268
    [35] Yao G.Z, Meng G. Parameter estimation and damping performance of electro-heological damper. J. of Sound and Vibration. 1997,204(4):575-584
    [36]汪建晓,孟光.磁流变液阻尼器在转子系统振动控制中的应用.化学物理学报.2001,14(5):575-584
    [37]张同忠.粘滞阻尼器和铅阻尼器的理论与试验研究.北京工业大学硕士论文.2004
    [38]冯铁成.船舶摇摆与操纵.国防工业出版社.1980
    [39]金鸿章.船舶控制原理.哈尔滨工程大学出版.2005
    [40]刘应中,邹国平.船舶在波浪上的运动理论.上海交通大学出版社.1986
    [41]唐友刚,田凯强,张泽盛.船舶参数激励非线性横摇运动方程.船舶工程.1998,6:16-18
    [42]董艳秋.船舶波浪外荷和水弹性.天津大学出版社.1991
    [43]国振喜.工程微分方程的解法与实例.机械工业出版社.2004
    [44]蒋学栋.波浪作用下船舶运动的数值模拟.天津大学硕士论文.2003
    [45]薛定宇,陈阳泉.基于MATLAB-Simulink的系统仿真技术与应用.清华大学出版社.2002
    [46]赵彦玲,吴淑红.MATLAB与SIMULINK工程应用.电子工业出版社.2002
    [47]付永领,祁晓野,AMESim系统建模与仿真从入门到精通.北京航空航天大学出版社.2006
    [48]刘海丽.基于AMESim的液压系统建模与仿真技术研究.西北工业大学硕士论文.2006
    [49]邬国秀.基于AMESim的阀控液压缸液压伺服系统仿真.计算机应用技术. 2008,1:12-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700