纳秒脉宽脉冲电化学微加工机床关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学微加工技术(Electrochemical Micromachining,ECMM)由于具有加工单位小(0.1nm以下)、无宏观加工作用力、加工的表面质量好(无残余应力、表面变质层和热影响层)、工具无损耗、可实现多样化的工艺、具备三维加工的能力等众多突出优点而成为微细制造领域当中很有发展前途的热点研究课题。为了实现电化学微加工,需要采取有效措施克服传统电解加工所特有的杂散腐蚀现象,增强电化学反应的定域性;同时还要使加工系统的运动部件具有很高的运动精度,以满足微加工的要求。鉴于超短脉宽脉冲电源在保证加工精度和稳定性方面的特殊作用,本文以设计一套实现纳秒脉宽脉冲电化学微加工的机床为主要目标,对该机床的关键技术开展了相关研究。
     从电化学的基本原理出发,概括总结了纳秒脉宽脉冲电化学微加工的基本理论,阐释了纳秒脉宽脉冲电化学微加工能够实现微米/亚微米级精度加工的根本原因,建立了描述电化学微加工成形规律的理论模型,对其进行了数值仿真;实际构建了电化学微加工机床系统,介绍了电化学微加工机床的运动平台、加工电源、电解液槽、显微观测等各部分的硬件组成,控制系统硬件,控制流程及控制软件设计等方面的具体内容;针对纳秒脉宽脉冲电化学微加工加工状态的监测与控制中对于高频/甚高频信号高速采集的困难,提出了将极间的超短脉宽电压信号转化为近直流信号再进行采集的解决方法,设计了极间电压的转换调理电路,实现了对加工状态的自动识别与监控。
     首次提出一种新型柔性回转轴承及其主轴单元的设计方案。由于这种轴承利用柔性元件的弹性变形实现运动导向,因此其重复运动精度极高,理论上可以实现零误差的回转运动,而且其回转运动平稳、无机械摩擦磨损和运动间隙、无需润滑、可靠性高、结构适宜微小型化。从柔性回转轴承的设计理念和总体设计原则出发,提出了一系列的相关设计准则,对材料的选择、应力的分析与计算(如非线性有限元分析、静强度分析与抗疲劳设计)、回转误差,结构参数等进行了分析,给出了柔性回转轴承的设计实例;提出了轴承扭转管的制造工艺路线,并采取选用慢走丝电火花线切割加工方法(Low speed Wire EDM, LSWEDM)、减小加工过程中工件内部的残余应力、加强轴承扭转管的刚度(尤其是扭转刚度)等措施,实际加工出了柔性回转轴承扭转管结构,加工所得柔性片的厚度尺寸精度为±5μm,而处于相对分布角度的柔性片厚度之差则小至3μm,表面粗糙度可低至Ra0.3μm。提出了一种在内扭转管的两端配合限制同心度的装配方法,可有效防止因配合面垂直度误差所造成偏摆角度的“误差放大”现象。介绍了主轴单元各组成部分的选用或设计原则;对柔性回转轴承的振动特性和固有频率进行了理论分析和实际测试;针对微小型主轴系统回转精度测试的现实困难,探讨了几种可能的测试方法并分析了它们的特点和不足,为将来进一步精确评定回转误差或对误差进行补偿时正确选用测试方法提供了有益的参考。
     全面概述了微细工具电极的在线制作方法,并采用电化学腐蚀的方法,获得了直径φ20μm以下的微细圆柱状工具电极;讨论了在不锈钢工件上实现纳秒脉宽脉冲电化学微加工的试验思路,为进一步深入研究电化学微加工的机理和机床的实际应用奠定基础。
Electrochemical micromachining (ECMM) is a promising micromachining technology, since it offers several advantages which include absence of machining forces and residual stresses, no tool wear, good surface finish, adaptability to various processes, and ability to machine complex 3D micro features with the material removal/addition unit at the atomic scale (0.1nm or even smaller).
     To realize ECMM, the foremost thing is to prevent the stray erosion caused by the distributing electric field in the conventional ECM, which means the localization of electrochemical reaction should be improved. Motion platforms (linear stages and rotation stages) with high accuracy and resolution in an ECMM machine tool are needed as well to meet the requirements for micromachining. Based on the application of ultrashort voltage pulses to the localized electrochemical reactions, this study is aimed at developing an ECMM setup to achieve nanosecond voltage pulses ECMM and focuses on several key issues of electrochemical micromachine.
     the theory of ultrashort voltage pulses ECMM are summarized from the basic principle of electrochemistry and the related literature, which explains the principles for the micrometer and submicrometer machining by using ultrashort voltage pulses in ECMM. The equivalent electric circuit of electrochemical polarization is formed, and mathematical models describing the forming laws of ECMM are established. Simulations on the ECMM are carried out.
     An electrochemical machining system is developed. The elements of the machine setup are descirbed in detail, which includes the drive of the nanometer accuracy and resolution, power supply, machining chamber, microscope, etc. The control strategy and hardware and software for the control system are presented as well. A circuit enabling the transformation of the voltages between the cathode and anode is specially designed to solve the problems encountered in direct sampling of the ultrashort voltage pulses because of their very high equivalent frequencies. Thus autoidentification and controlling of machining is achieved.
     This dissertation proposes a novel concept of rotary flexural bearing that is based on the motion principles of elastic flexures to provide rotational oscillations of one complete revolution, therefore the repeatablility of the rotary motions guided by this type of bearing is expected to be very high (atomic scale), thus the error motions with extremely high accuracy (nanometer or less) can be obtained. The bearing is also characterized by smooth motions, no mechanical wear and no lubrication requirements, no gaps or interfaces, in addition to its compactness. The overall conceptual design of the bearing is presented. A design analysis on the various aspects of the bearing is provided, including material selection, stress analysis and calculations (such as nonlinear finite element analysis, static and fatigue strength designs), motion error analysis and error reduction strategy, parametric design, etc. A prototype bearing is presented. The machining route of the bearing tube is proposed from the analysis of the fabrication characteristics. Low speed Wire EDM (LSWEDM) is chosen as the machining method of the flexural bearing. Technical measures to reduce the residual stresses and strengthen the stiffness (especially the torsional stiffness) of the bearing tube are adopted. Dimensional accuracy of±5μm is obtained over the 150μm thickness for the bearing flexures and a variation of less than 3μm is achieved for the flexures of opposing sides, and surface roughness Ra of 0.3μm is obtained for the flexures of the entire bearing. The assembly methodology focuses on the reduction of radial motion error caused by the tilt angle between axes of the inner bearing tube and the outer bearing tube due to the“error enlargement effect”. A special assembly measure is suggested to confine the location of the both ends of the inner bearing tube, thus preventing the“error enlargement effect”from happening. The basic principle for component selection or designing of the spindle system is presented. The vibration characteristics of the bearing is theoretically analysed and experimentally measured. Several techniques concerning the micro spindle motion error measurements are discussed and compared to provide useful references for future use of motion error estimation or motion error compensation.
     On-the-machine tool-making methods are overviewed. Micro cylindrical electrodes with diameterφ20μm or less are obtained by using the electrochemical fabrication method with constant current density; The basic methods and key operating steps towards successful ECMM machining of micro features in stainless steel (SS) using nanometer voltage pulses are discussed, which is important to further unveil the machining mechanisms of ECMM and to lay foundation for future practical application of ECMM machine tool.
引文
[1]国家自然科学基金委编著.机械学科(E05)2006年度项目指南.北京,2006.
    [2]王先逵,李庆祥,刘成颖.精密加工技术使用手册.北京:机械工业出版社,2001, 236-386.
    [3] NEXUS Market Report. MST/MEMS Market Analysis III 2005-2009. http://www. enablingmnt.com/html/nexus_market_report.html, 2006.
    [4] Y. Ishikawa and T. Kitahara. Present and Future of Micromechatronics. In: 1997 International Symposium on Micromechatronics and Human Science, IEEE 1997: 13-20.
    [5] K. F. Ehmann, D. Bourell, M. L. Culpepper et al. WTEC Panel Report on Inter- national Assessment of Research and Development in Micromanufacturing (Final report). World Technology Evaluation Center (WTEC), Inc. http://www.wtec.org . 2005,1-259.
    [6]朱荻,张朝阳,明平美,等.微细电化学加工技术的研究与进展.见:2005年中国机械工程学会年会论文集,第11届全国特种加工学术会议专辑,2005, 46-54.
    [7] K.P. Rajurkar, G. Levy, A. Malshe, et al. Micro and Nano Machining by Electro- Physical and Chemical Processes. Annals of the CIRP, 2006, 55(2): 643-666.
    [8]庄富安.我微型工具机技术直追日德.台湾工商时报.2005年7月21日.来自:高雄应用科技大学机械工程系网址: http://www.me.kuas.edu.tw /ME-news/me- news12.htm. 2007.
    [9] L. Alting, F. Kimura, H.N. Hansen, et al. Micro Engineering. Annals of the CIRP, 2003, 52(2): 635-657.
    [10] V. Seidemann, S. Butefisch, S. Buttgenbach. Fabrication and Investigation of In-plane Compliant SU8 Sturctures for MEMS and Their Application to Micro Valves and Micro Grippers. Sensors and Acturators, 2002 (97-98): 457-461.
    [11]袁哲俊,王先逵.精密和超精密加工技术(第二版).北京:机械工业出版社,2007, 8-174.
    [12] T. Masuzawa. State of the Art of Micromachining. Annals of the CIRP, 2000,49(2): 473-488.
    [13]孙雅洲,梁迎春,程凯.微米和中间尺度机械制造.机械工程学报,2004,40(5):1-6.
    [14]周兆英,王晓浩,叶雄英,等.微型机电系统.中国机械工程,2000,11(1-2): 163-169.
    [15]李红涛,来新民,李成锋,等.介观尺度微型铣床开发及性能试验.机械工程学报,2006, 42(11):162-167.
    [16] J. Ni, Some Recent Advancement in Micro/Meso Scale Manufacturing. University of Michigan (research notes), 2004.
    [17]王文瑞.微型工具机技术探讨.机械工业(台湾),2006(3): 17-27.
    [18]张朝阳.纳秒脉冲电流微细电解加工技术研究: [南京航空航天大学博士学位论文].南京:南京航空航天大学,2006, 3-91.
    [19]石庚辰.微机电系统技术.北京:国防工业出版社,2002, 1-268.
    [20]苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社,2002, 1-243.
    [21]王成勇.《当代高新科技》经济科学出版社2004 (张启人,王卫国主编),第四章“先进制造技术”初稿.广东工业大学机电学院. http://web.gdut.edu.cn/ ~tzb/room/publications/AMT-lecture.pdf, 2008.
    [22] J.A. McGeough, M.C.Leu, K.P. Rajurkar, et al. Electroforming Process and Application to Micro/Macro Manufacturing. Annals of the CIRP, 2001,50(2): 499-514.
    [23] W. Qu,C. Wenzel, A. Jahn, et al. UV-LIGA: A Promising and Low-cost Variant for Microsystem Technology. 1999 IEEE: 80-383.
    [24] A S. Holmes Excimer Laser Micromachining with Half-tone masks for the Fabrication of 3-D Microstructures. IEE Proceedings -Science, Measurement and Technology,2004, 151(2): 85-92.
    [25]沈蓓军,王润文,路敦武,等.激光LIGA工艺制作微机械元件.仪器仪表学报,1999,20(4): 109-111.
    [26] Th.Schaller, L.Bohn, J.Mayer, et al. Microstructure Grooves with a Width of Less Than 50μm Cut with Ground Hard Metal Micro End Mills. Precision Engineering, 1999, (23): 229-235.
    [27]刘晋春,赵家齐,赵万生.特种加工(第4版).北京:机械工业出版社,2004, 1-196.
    [28]赵万生.先进电火花加工技术.北京:国防工业出版社,2003, 1-346.
    [29]徐盛林.绝缘体的电火花加工.电加工与模具,2002(2): 41-43.
    [30] T. Masuzawa, M.Fujino, K.Kobayashi. Wire Electro-Discharge Grinding forMicro-Machining. Annals of the CIRP, 1985, 34(1): 431-434.
    [31] C.L. Kuo, T.Masuzawa, M.Fujino. High-precision Micronozzle Fabrication. Micro Electro Mechanical Systems, 1992, MEMS Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. IEEE 1992 (4-7): 116- 121.
    [32] Z.Y. Yu, T. Masuzawa, M.Fujino. 3D Micro-EDM with Simply Shaped Electrode. Annals of the CIRP, 1997, 46(1): 1-8.
    [33]日本sodick公司,http://www.sodick.jp/info/pdf/info060104_AE05.pdf, 2009.
    [34] B.H.Kim, B.J. Park, C.N. Chu. Fabrication of Multiple Electrodes by Reverse EDM and Their Application in Micro ECM. J. Micromech. Microeng. 2006 (16): 843-850.
    [35] K.P. Rajurkar, G. Levy, A. Malshe, et al. Micro- and Nano Machining by Electro-physical and Chemical Processes. Annals of the CIRP, 2006, 55(2): 643-666.
    [36]徐家文,云乃彰,王建业,等.电化学加工技术——原理,工艺及应用.北京:国防工业出版社,2008, 1-344.
    [37]朱树敏,陈远龙.电化学加工技术.北京:化学工业出版社,2006, 1-264.
    [38] J.D. Madden, I.W Hunter. Three-Dimensional Microfabrication by Localized Electrochemical Deposition. Journal of Microelectromechanical Systems, 1996, 5(1): 24-32.
    [39] S.H. Yeo, J.H. Choo. Effects of Rotor Electrode in the Fabrication of High Aspect Ratio Microstructures by Localized Electrochemical Deposition. J. Micromech. Microeng., 2001 (11): 435-442.
    [40]唐兴伦,张之敬,王建平,等.高频群脉冲电化学微小型加工中的反向电流与压力波.中国机械工程,2004,15(21):1881-1886.
    [41] R. Schuster, V Kirchner, P Allongue, et al. Electrochemical Micromachining. Science, 2000,289: 98-101.
    [42] M.Kock, V.Kirchner, R.Schuster. Electrochemical Micromachining with Ultra- short Voltage Pulses- a Versatile Method with Lithographical Precision. Electrochimica Acta, 2003 (48): 3213-3219.
    [43] B.H.Kim, C.W.Na, Y.S.Lee, et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid. Annals of the CIRP, 2005, 54(1): 191-194.
    [44] V. Kirchner. Elektrochemische Mikrostrukturierung mit ultrakurzen Span-nungspulsen (Electrochemical Microstructuring with Ultrashort Voltage Pulses). Ph.D. dissertation, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 2002, 1-130.
    [45] S.H. Ahn, S.H.Ryu, D.K.Choi et al. Electro-chemical Micro Drilling using Ultra Short Pulses. Precision Engineering, 2004(28): 129-134.
    [46] F.M. Ozkeskin. Feedback Controlled High Frequency Electrochemical Micro- machining. Master Dissertation, Texas A&M University, 2008, 1-99.
    [47] S.S. Sundarram. Development of Electrochemical Micro Machining. Master Dissertation. Texas A&M University, 2008, 1-115.
    [48] T.Kurita, K.CHikamori,S.Kubota, et al. A Study of Three-dimensional Shape Machining with an ECμM System. International Journal of Machine Tools & Manufacture, 2006(46): 1311-1318.
    [49] B.Bhattacharyya, B. Doloi, P.S. Sridhar. Electrochemical Micro-machining: New Possibilities for Micro-manufacturing. Journal of Material Processing Technology, 2001(113): 301-305.
    [50]王明环.微细电解加工实验研究:[南京航空航天大学博士学位论文].南京:南京航空航天大学,2007, 30-49.
    [51]徐惠宇.微细电解加工系统及相关工艺的研究:[南京航空航天大学博士学位论文].南京:南京航空航天大学,2004, 1-95.
    [52]李小海,王振龙,赵万生.高频窄脉冲电流微细电解加工.机械工程学报,2006, 42(1): 162-167.
    [53]贾宝贤.多功能微细特种加工系统及关键加工技术的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2005: 27-28.
    [54]韩桂海.三维微细电解加工技术研究:[广东工业大学硕士学位论文].广州:广东工业大学,2005: 20-32.
    [55]曾繁章.微细电解加工装备开发与实验研究:[广东工业大学硕士学位论文].广州:广东工业大学,2006: 21-30.
    [56]戴一帆.超精密加工精度分析.中国机械工程,1999,10(2): 203-206.
    [57]刘贺云.精密加工技术.武汉:华中理工大学出版社,1991: 20-122.
    [58] H. Sung. High-Speed Fluid Bearing Micro-Spindles for Meso-Scale Machine Tools (mMTs). PhD Dissertation,Northwestern university, 2007, 1-408.
    [59]赵洪策.桌面式微型工厂的建模和仿真与可视化关键技术研究:[西北工业大学硕士学位论文].西安:西北工业大学,2001: 3-4.
    [60]微型工厂研究概况www.whlib.ac.cn/qingbaoyanjiu/trs/jiancekuaibao/yanjgh/200706/t20070622_2460.asp,,2007年6月.
    [61] E. Kussul, T. Baidyk, L. Ruiz-Huerta, et al. Development of Micromachine Tool Prototypes for Microfactories. Journal of Micromechnics and Microengineering, 2002(12): 795-812.
    [62] E.Kussul, T.Baidyk, L.Ruiz-Huerta, et al. Scaling Down of Microequipment Parameters. Precision Engineering, 2006(30): 211-222.
    [63]伊庭刚二.超精密加工机における机构设计と要素技术.机械の研究,1993,45(12): 3–7.
    [64] Nano Corporation. http://www.nanowave.co.jp/proeng/products/mts3_e.html, 2005.
    [65] T.Kitahara, Y. Ishikawa, T. Terada, et al. Development of Micro-Lathe. Journal of Mechanical Engineering Laboratory, 1996, 50(5):117-123.
    [66] Factory Max Co. Ltd. http://www.factorymax.co.th/catalog/picture/handgrinder/- d07419c415845b2c95097fad69b1d13c.pdf, 2009.
    [67]台湾工业技术研究院.微型工具机. http://www.itri.org.tw/chi/msl/p4.asp?- RootNodeId=070&NavRootNodeId=0733&NodeId=073322&ArticleNBR=215,2008.
    [68] Cranfield Precision, Cinetic Landis Ltd. Minature Air Bearing Spindle. http:// www.cranfieldprecision.com/,2009.
    [69]日本日立公司. http://www.hitachigst.com. 2009.
    [70]蒋利民,程泽宇,杜楠,等.镁合金表面微结构阵列的电化学微加工.物理化学学报,2008,24(7): 1307-1312.
    [71] T. Mineta. Electrochemical Etching of a Shape Memory Alloy Using New Electrolyte Solutions. Journal of Micromechanic and Microengineering, 2004,(14):76-80.
    [72] M.Datta. Microfabrication by Electrochemical Metal Removal. IBM Journal of Research and Development, 1998, 42(5): 655-669.
    [73]刘平. STM金属表面高分辨电化学刻蚀的研究:[天津大学硕士学位论文].天津:天津大学,2002: 34-35.
    [74] K. Chikamori. Possibilities of Electrochemical Micromachining. Int. JSPE, 1998,32(1): 37-38.
    [75] K. P. Rajurkar, D. Zhu. Improvement of Electrochemical Machining Accuracy by Using Orbital Electrode Movement. Annals of the CIRP, 1999, 48(1):139-142.
    [76] L. Cagnon, V. Kirchner, M. Kock, et al. Electrochemical Micromachining ofStainless Steel by Ultrashort Voltage Pulses. Z.Phys.Chem. 2003 (217): 299-313.
    [77] A.L.Trimmer, J.L.Hudson, M.Kock et al.Single-step Electrochemical Machining of Complex Nanostructures with Ultrashort Voltage Pulses. Applied Physics Letters, 2003,82(19): 3327-3329.
    [78] M Datta, D Landolt. Fundamental Aspects and Applications of Electrochemical Micro- fabrication. Electrochemical Acta, 2000, 45: 2535–2558.
    [79]韩子平.脉冲微细电解加工技术研究: [广东工业大学硕士学位论文].广州:广东工业大学,2008, 12-24.
    [80] P.Allongue, P.Jiang, V.Kirchner, et al. Electrochemical Micromachining of p-Type Silicon. J. Phys. Chem. B, 2004, 108 (38): 14434–14439.
    [81] B.Bhattacharyya, J.Munda, M.Malapati. Advancement in Electrochemical Micro -machining. International Journal of Machine Tools & Manufacture, 2004(44): 1577-1589.
    [82]彭思平,徐家文,李颖,等.微细电解加工机理探讨.电加工与模具,2005,2: 26-29.
    [83]李荻.电化学原理.北京:北京航空航天大学出版社,1999, 141-191.
    [84]查全性.电极过程动力学导论.北京:科学出版社,2002, 140-205.
    [85] A.L.Trimmer. Electrochemical Machining of Micro- and Nanostructures with Ultra-short Voltage Pulses. Ph.D. Dissertation, University of Virginia, 2005: 15.
    [86] J.A. Kenney and G. S. Hwang. Two-dimensional Computational Model for Electrochemical Micromachining with Ultrashort Voltage Pulses. Applied Physics Letters, 2004,84(19): 3774-2776.
    [87] J.A. Kenney and G. S. Hwang. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and Feature Profile Evolution. Nanotechnology 2005(16): S309–S313.
    [88] J.A. Kenney and G. S. Hwang. Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses, Predictions from Theory and Simulation. Electrochemical and Solid-State Letters, 2006,9(1): D1-D4.
    [89] J.A. Kenney and G. S. Hwang. Computational Analysis of Intratool Interactions in Electrochemical Micromachining with Multiple Tool Electrodes. Electrochemical and Solid-State Letters, 2006,9(9): D21-D23.
    [90] M.Kock. Grenzen und M?glichkeiten der elektrochemischen Mikrostrukturi- erung mit ultrakurzen Spannungspulsen. Ph.D. dissertation, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 2004: 18.
    [91] J. M.Joseph. Ultrashort Pulse Electrochemical Machining. Ph.D. Dissertation, University of Virginia, 2008, 1-156.
    [92] B.H.Kim, S.H.Ryu, D.K. Choi et al. Micro Electrochemcial Milling. J.Micro- mech. Microeng. 2005(15): 124-129.
    [93]哈尔滨工业大学博实精密测控技术有限公司. RBT-6DH02电化学加工系统使用说明书, 2008年.
    [94]铃木宪次.高频电路设计与制作.何中庸,译.北京:科学出版社,2005.来自:http://www.microearonline.com/otherproduct/radio/index.htm
    [95] Tektronix Co. Ltd. TDS1000和TDS2000系列数字存储示波器用户手册,2002.
    [96]华南理工大学科技开发公司.霍尔电流电压传感器变送器模块性能及应用. http://www.scut-co.com/maindoc/techtrade/Pdevice/other/documents/techsupport/application.pdf, 2002.
    [97]北京森社电子有限公司. LA、CHB霍尔电流传感器产品说明书, http://www.bjsse.com.cn/cn/uploadpic/products/2008919152245751.pdf, 2008.
    [98]朱荻,曲宁松.基于电化学原理的纳米制造.见:王国彪主编.纳米制造前沿综述.北京:科学出版社,2009, 136.
    [99]北京阿尔泰科技发展有限公司.PCI8735数据采集卡硬件(软件)使用说明书(6.0版), 2008.
    [100]杨辉,卢文庆.应用电化学.北京:科学出版社,2001, 1-150.
    [101]杜正春.镗削主轴回转误差测量与补偿系统的研究: [东南大学博士学位论文].南京:东南大学,2000, 21-25.
    [102] Unification Document Me: Axes of Rotation. Annals of the CIRP, 1976, 25(2): 545-564.
    [103] ANSI/ASME B89.3.4M, Axes of Rotation– Methods for Specifying and Testing.
    [104] E.R. Marsh. Precision Spindle Metrology. DEStech Publications, Inc., Lancaster, USA, 2008:1-160.
    [105]《机械工程标准手册》编委会.机械工程标准手册轴承卷.北京:中国标准出版社,2002.
    [106] K.F. Hii, R.R. Vallance, R.D. Grejda, et al. Error Motion of a Kinematic Spindle. Precision Engineering, 2004, 28: 204-217.
    [107]邹茜,孟永钢,温诗铸,等.硬盘驱动器主轴系统的现状及发展,机械工程学报, 2002, 38(6): 1-4.
    [108]王飏,王军,王瓯.电磁悬浮轴承的发展及在鼓风机上的应用前景.风机技术,2008(02): 75-77, 81.
    [109] http://en.wikipedia.org/wiki/Magnetic_bearing, 2008.
    [110] A. H. Slocum. Fundamentals of Design. (Topic 10). MIT Course Textbook, 2007.
    [111]薛实福,李庆祥.精密仪器设计.北京:清华大学出版社,1991: 140-146.
    [112] S.W. Gan, H.S. Lim, M. Rahman, et al. A Fine Tool Servo System for Global Position Error Compensation for a Miniature Ultra-precision Lathe.International Journal of Machine Tools and Manufacture, 2007,47(7-8): 1302-1310.
    [113] S.Rakuff, J. F. Cuttino. Design and Testing of a Long-range, Precision Fast Tool Servo System for Diamond Turning, Precision Engineering, 2009, 33(1): 18-25.
    [114] Y.M. Moon, B.P. Trease, S.Kota. Design of Large-Displacement Compliant Joints. ASME Transactions, Journal of Mechanical Design, 2005, 127(4): 788-798.
    [115] K.F. Hii, R.R.Vallance, R.D.Grejda, et al. Error Motion of a Kinematic Spindle. Precision Engineering, 2004(28): 204-217.
    [116] B. Zhang. Course Handouts: Measurement Techniques——Definition of Terms Measurement Errors. University of Connecticut, 2008.
    [117] Moore Tool Company. http://www.mooretool.com/. 2008.
    [118]李团结.柔性机构的结构拓扑特征及其自由度分析.机械科学与技术,2003,22(1): 107-109.
    [119] P. Schellekens, N. Rosielle, H. Vermeulen, et al. Design for Precision: Current Status and Trends. Annals of the CIRP, 1998, 47(2):557-586.
    [120] Massachusettes Institute of Technology. http://ocw.mit.edu/NR/rdonlyres/ Mechanical-Engineering/2-75Precision-Machine-DesignFall2001/D7E3E591-71AD-4CD7-B507-50CB993B0987/0/topic3fundamentalprinc-iples.pdf,“Precision Machine Design: Topic3——Fundamental Principles”, Course Tutorial, 2001.
    [121] W. O. Schotborgh, F. G.M. Kokkeler, H. Tragter et al. Dimensionless Design Graphs for Flexure Elements and a Comparison between Three Flexure Elements. Precision Engineering. 2005,29: 41-47.
    [122] L.L. Howell. Compliant Mechanisms. John Wiley & Sons, Inc., New York,2001.
    [123] M.L.Culpepper, Soohyung Kim. Design of a Reconfigurable, Monolithic Compliant Mechanism for a Six-axis Nanomanipulator. Proceedings of ASME DETC 2004, International Design Engineering Technical Conference September 28– October, Salt Lake City, Utah: 1-5.
    [124]于靖军,周强,毕树生,等.基于动力学性能的全柔性机构优化设计.机械工程学报,2003, 39(8): 32-36.
    [125]数字化手册系统(软件版)编写委员会.机械设计手册(软件版)R2.0.北京:机械工业出版社, 2002.
    [126]高源.微操作系统及其微装配作业研究: [西安交通大学硕士学位论文].西安:西安交通大学, 2002, 1-63.
    [127] Precision Steel Warehouse, Inc. http://www.precisionsteel.com/tech_data /prope-rty.asp?n_cat_id=5&did=41&lid=9, 2006.
    [128] Automation Creations Inc. http://asia.matweb.com/, 2006.
    [129]韦德骏.材料力学.北京:机械工业出版社,1996, 200-400.
    [130]王珉,左敦稳.抗疲劳制造原理与技术.南京:江苏科学技术出版社, 1999: 2-30.
    [131]赵少汴.抗疲劳设计.北京:机械工业出版社,1994, 180-200.
    [132] G.Sines. Behaviour of Metals Under Complex Stresses. In: Sines G,Waisman J L, editors. Metal Fatigue. McGraw-Hill, New York, 1959: 145-169.
    [133] ANSYS Inc. ANSYS Software, version 9.0, 2004.
    [134] Solidwork Inc. Solidworks Software, version 2005, 2004.
    [135]杜平安.有限元网格划分的基本原则.机械设计与制造,2000(2): 34-36.
    [136] Mechanics Group, ANSYS, Inc. Contact Analysis in ANSYS. (Report PPT), 2004 International ANSYS Conference.
    [137] MathWorks Inc. MATLAB Software. Version 6.5.1 Release 13, 2003.
    [138]江宗威.牙医手机之气体轴承性能分析研究:[台湾清华大学硕士学位论文].台北:清华大学,中华民国94年, 2005, 10.
    [139]孙耀杰,卢西敏,滕霖.挠性接头电火花线切割加工工艺探索.航空精密制造技术,2001,37(5): 16-19.
    [140]中国机械资讯网,http://www.cmiw.cn/?action-viewnews-itemid-276025,2008
    [141]左敦稳.现代加工技术.北京:北京航空航天大学出版社,2005, 360.
    [142]王克锡编译.钛合金的电火花加工.机械工人(冷加工),2004(1): 24.
    [143]中华人民共和国航空工业部部标准,“钛合金热处理工艺说明书”,HB/Z 137-88.
    [144]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005,67-80, 99-109.
    [145] KCI Publishing. http://www.stainless-steel-world.net/titanium/ShowPage.aspx? pageID=201, 2009.
    [146]超冷理论. http://www.cryogenic.com.tw/cn/cn/3-1.asp?m_language=2, 2009.
    [147]杨铭文,郑文彬,陈永传.以超深冷处理改善碳工具钢的耐磨性研究.台湾金属热处理学会95年度年会,来自网络:http://www.yoke.net/chinese/pbt08.htm.
    [148] A. James, P. A.Simth. Apparatus and Method for the Deep Cryogenic Treatment of Materials. US. Patent 4,739,622. 1988.
    [149] http://www.webs1.uidaho.edu/imap/new_page_8.htm.
    [150]阿奇夏米尔集团.高精密慢走丝线切割机的世界顶级精品首次在中国亮相.世界制造技术与装备市场,2005(2):67-70.
    [151]成大先.机械设计手册第1卷.北京:化学工业出版社,2002.
    [152] A. B. Puri, B. Bhattacharyya. Modelling and Analysis of the Wire-tool Vibration in Wire-cut EDM .Journal of Materials Processing Technology, 2003,141(3): 295-301.
    [153] D.F. Dauw, I. Beltrami. High-precision wire-EDM by on-line wire positioning control. Annals of the CIRP, 1994,43(1): 193-197.
    [154] I. Beltrami, A. Bertholds, D.Dauw. A simplified post process for wire cut EDM. Journal of material Processing Technology, 1996, 58: 385-389.
    [155] A.B. Puri, B. Bhattacharyya. An analysis and optimization of the geometrical inaccuracy due to wire lag phenomenon in WEDM. International Journal of Machine Tools & Manufacture,2003,43(8): 151-159.
    [156]迟关心,周晶洁,黄瑞宁等.微细电火花线切割加工误差分析.现代制造工程,2006(6): 37-40.
    [157]曹凤国.电火花加工技术.北京:化学工业出版社,2005, 1-330.
    [158]周东.线切割加工中电极丝的正确选用.模具制造技术,2004(5):62-66
    [159]邓星钟.机电传动控制(第4版).武汉:华中理工大学出版社,1998, 90-455.
    [160] Helical Products Company, Inc. http://www.heli-cal.com, 2008.
    [161]阮忠唐.联轴器、离合器设计与选用指南.北京:化学工业出版社,2006, 5-7,140-142.
    [162]周明衡.联轴器选用手册.北京:化学工业出版社,2001, 68-83.
    [163]濮良贵,纪名刚.机械设计(第七版).北京:高等教育出版社,2001.
    [164]黄长艺,严普强.机械工程测试技术基础.北京:机械工业出版社,1996,69-73, 148-158.
    [165] Lion Precision Inc. http://www.lionprecision.com, 2008.
    [166] ADE Technologies Inc. http://www.adetech.com, 2009.
    [167] ADE Technologies Inc. Understanding Capacitive Position Sensors. http://www. adetech.com, 2009.
    [168] MTI Instruments,Inc. Using Capacitance Sensors to Measure Position, Vibration and Displacement of Small Targets. http://www.mtiinstruments.com,2009.
    [169] K. Fujimaki and K. Mitsui.Radial Error Measuring Device Based on Auto- collimation for Miniature Ultra-high-speed Spindles. International Journal of Machine Tools and Manufacture,2007,47(11):1677-1685.
    [170]黄德欢.纳米技术与应用.上海:中国纺织大学出版社,2001, 20-29.
    [171]王昆,朱荻,曲宁松,等.微细电解线切割加工的模型分析与试验研究.2007年中国机械工程学会年会论文集,第12届全国特种加工学术会议专辑:158-161.
    [172] D. Zhu, K. Wang, N.S. Qu. Micro Wire Electrochemical Cutting by Using In. Situ Fabricated Wire Electrode. Annals of the CIRP, 2007,56(1): 241-244.
    [173] H.S.Shin, B.H. Kim, C.N.Chu. Analysis of the Side Gap Resulting from Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses. J. Micromech. Microeng. 2008, 18: 1-6.
    [174] S. H. Choi , S. H. Ryu, D. K. Choi , et al. Fabrication of WC Micro-shaft by Using Electrochemical Etching. Int. J.Adv. Manuf. Technol, 2007 (31): 682-687.
    [175]朱保国.脉冲电化学微细加工关键技术研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2007, 20-22,75-86,
    [176]孙立忠,王振龙,朱保国.超短脉冲微细电解加工试验研究.航空精密制造技术,2007, 43(6):34-37.
    [177] Y. M. Lim and S. H.Kim. An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micropin. International Journal of Machine Tools and Manufacture 2001,41: 2287-2296.
    [178] Y. M. Lim, H. J. Lim, J. R. Liu, et al. Fabrication of Cylindrical Micropins with Various Diameters using DC Current Density Control. Journal of Materials Processing Technology, 2003, 141: 251-255.
    [179]朱荻.微纳米制造技术课件.南京:南京航空航天大学,2008.(网络资料).
    [180]赵万生.基于刃口电极微细电解磨削的微细电极在线制造方法.中国国家发明专利说明书,专利号ZL 200610027966.X.
    [181]王振龙,曹国辉,张永生,等.空气中微细电火花沉积与去除可逆加工技术研究.机械工程学报,2004,40(11): 88-92.
    [182]曹国辉,王振龙,迟关心,等.基于单脉冲放电的钨微细电极快速成形方法及其应用研究.机械工程学报,2003, 39(7): 43-47.
    [183] H.Takezawa, H.Hamamatsu, N.Mohri. Development of Micro-EDM-center withRapidly sharpened electrode. Journal of Materials Processing Technology, 2004,49:112-116.
    [184]王磊.微细群孔电解加工关键技术研究:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2007, 33.
    [185]朱荻,曲宁松,胡洋洋.金属微细群柱结构电解反拷加工方法及专用工具.中国国家发明专利说明书,申请号200810022328.8.
    [186]胡洋洋,朱荻,曲宁松.高深宽比微细金属群柱结构的电化学加工方法及专用工具.中国国家发明专利说明书,申请号200810022330.5.
    [187] D.T. Pham, S. S. Dimov, S. Bigot, et al. Miro-EDM Recent Developments and Research Issues. Journal of Materials Processing Technology, 2004, 149(1-3): 50-57.
    [188]王振龙.微细电火花加工关键技术研究: [哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2000, 25-30.
    [189]张勇.微细电火花加工系统及其工艺技术研究: [哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2004: 44-47.
    [190] B.J. Park. Microfabrication by Electrochemical Machining and Deposition. http://www.mech.northwestern.edu/MFG/AML/US-Korea/Presentations/ByungJinPark.ppt , 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700