微细电火花加工中集肤效应的影响机理及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电火花加工技术是将常规电火花加工工艺微细化,用于实现微细尺度零件特征加工的特种加工技术。由于加工具有非接触、加工过程几乎无切削力,不受材料的强度、硬度限制等特点,微细电火花加工技术特别适合于高精度、无变形的微小零件特征的加工以及硬脆难加工材料的微细加工。加之其良好的数控兼容性,被认为是加工三维复杂微细结构最具潜力的方法之一。因此,微细电火花加工技术已经成为微细制造领域的一个重要方向,并且越来越广泛的应用于航空航天、电子信息、模具以及光学和医疗器械中关键零件的加工。
     然而,目前国内外学者对微细电火花加工的机理和工艺研究仍然不够。在加工机理研究方面,由于电火花加工本身就是一个复杂、瞬时、随机的过程,而加工尺度的缩小,加工条件的改变,尤其是高频脉冲的作用,给微细电火花加工的物理过程增加了更多的不确定因素;在工艺研究方面,电极损耗和放电加工对表面特性的改变严重影响了微细电火花加工的加工精度和质量。这些存在的问题限制了微细电火花加工技术的进一步发展。因此,从电火花加工微细化过程中加工条件的改变入手,研究微细电火花加工独特的放电机理,探讨高频脉冲作用对加工过程的影响,分析电极损耗现象的成因和抑制损耗的方法以及总结微细电火花加工微观表面特征规律与表面质量改善方法,具有重要的意义。
     本论文针对上述微细电火花加工技术研究存在的问题,开展了如下四个方面的研究工作:
     (1)研究了微细电火花加工的放电机理。分析了电火花加工微细化过程加工条件的改变以及这些改变带来的加工过程的影响。通过研究煤油介质的工作特性,讨论了放电击穿前微观粒子受外加能量作用的一系列状态变化以及放电击穿、火花维持和消电离过程中各物质能量之间相互作用的微观情况;建立了正离子场致电子发射模型,补充了流光理论解释击穿过程时在形成电离粒子数量方面的不足;研究了电极材料的抛出过程及能量转化问题。
     (2)研究了高频脉冲对微细电火花加工的影响。引入高频电磁场中集肤效应的概念分析高频脉冲的特殊作用过程,理论和实验验证了集肤效应对微细电火花加工的影响;总结了高频脉冲作用下电场强度与电流密度非均匀分布的规律,并由此分析了集肤效应对加工过程中放电点位置变化、材料蚀除形式、电极形状变化的影响结果;实验研究了通过改变加工脉冲频率获得不同端面形状电极的微细电极在线修形方法,尝试了运用电极修形后不同形状电极的平滑表面加工自由曲面的加工方法。
     (3)电极损耗的相关技术研究。采用复合电镀工艺在工具电极表面镀覆耐电蚀材料以制备耐损耗电极。实验证明这一方法有效的抑制了深孔加工中电极棱边损耗,改善了微孔的加工精度;提出了基于图像处理技术研究工具电极损耗、端面形状变化的研究方法,通过对加工后损耗电极图像轮廓特征的提取分析及损耗数据曲线的函数拟合,开辟了数字计算、分析微细电火花加工电极损耗的新路径;分析了微细电火花铣削加工中钨工具电极材料发生意外破损现象的原因,通过微细流场的仿真研究,揭示了导致破损的交变工作液压力的影响因素,并讨论了这种电极破损造成的危害及预防措施。
     (4)微细电火花加工电极表面特性的研究。实验观测了微细电火花加工电极表面的微观形貌,着重讨论了表面放电凹坑、球状凸起以及球形凹坑的形成过程;分析了电极表面的裂纹现象,分析不同的表面裂纹形成过程并加以分类,讨论了各类裂纹的抑制措施;观测了电极表面剥落现象,从裂纹的交织扩展和加工表面作用力两方面分析了表面剥落现象的成因,提出了部分避免表面剥落发生的措施。
     以上研究工作不仅进一步揭示了微细电火花加工中放电现象的物理实质,同时也为微细电火花加工技术的广泛应用提供依据。
Micro electrical discharge machining (micro EDM) is a nontraditional machining method to realize the manufacturing of micro scale parts and features by miniaturizing conventional electrical discharge machining (EDM) technology. Because of the advantages of noncontact machining and almost no cutting force within the processing, micro EDM can be applied in fabricating smaller parts and micro features with high precision and no distortion. For micro EDM processing is not limited by the strength and hardness of materials, it is very fit for the micro fabrication of hard and brittle materials. Additionally, micro EDM has been regards as one of the most potential methods to produce three-dimensional (3D) microstructures with complex structure owing to its outstanding compatibility with numerical control techniques. Therefore, micro EDM has become an important direction in micro manufacturing field, and has been more and more widely used to machining key parts in the fields of aerospace, electrommunication, mould, optical and medical instruments.
     However, the research on machining mechanism and technology of micro EDM is still not enough. In the term of mechanism research, as the EDM itself is a complex, transient and random process, and the decrease of machining scale, changes of machining conditions, especially the effect of high frequency pulses, add more uncertainty to the physical process of micro EDM; at the respect of technology research, the tool wears and the influences of discharge machining on surface properties seriously affect the machining accuracy and quality of micro EDM. These existing problems limit the further development of micro EDM technology. Thereby, by starting from the machining condition changes in miniaturization of EDM, it has an important significance to study unique discharge mechanism of micro EDM, discuss the influence of high frequency pulses on machining process, analyze the causes of tool wear and methods to reduce wear, and summarize the law of surface characteristics and methods to improve surface quality in micro EDM.
     The above problems in micro EDM are focused on in this thesis, and four main research aspects have been carried out as follows:
     (1) Study on the discharge mechanism of micro EDM. The machining condition changes in the process of EDM miniaturization and the influences of these changes on micro EDM processing are analyzed. Though the characteristic analysis of kerosene dielectric, a series of state changes of microscopic particles caused by the impact of external energy are discussed before the discharge breakdown, and the microscopic situations that various micro materials and energy interacts in discharge breakdown, spark maintenance and deionization processes are proposed; the model of positive ion field electron emission is present forward, this complement the streamer theory in the lack of ionized particle number; the electrode material removal process and energy conversion problem are conducted.
     (2) Study on the influences of high frequency pulses on micro EDM. The skin effect in high frequency electromagnetic field is introduced to analyze the special impact of high frequency pulses, and the influences of skin effect on micro EDM is demonstrated with electromagnetic field theory and experiments; nonuniform distribution laws of electric field intensity and current density under high frequency pulses are summarized, and based on this, the spark location change, form of material removal, tool shape change are analyzed; the online electrode modification method to obtain different tool end shape from changing machining pulse frequency is experimental studied, and the method through adopting the smooth surface of different tool shapes after electrode modification is tried to manufacture freeform surface.
     (3) Study on relative technology of tool wear. Composite plating is used to plating electrical erosion resistant material on tool surface for the fabrication of wear-resist electrodes. The experimental study proves that this method effectively reduces the edge wear in deep hole machining and improves the processing precision of micro holes; a way to study tool wear, tool end shape change based on image processing is put forward, through the contour extraction of worn tool from electrode image after machining and curve fitting of contour data, a new path to digital computation and analysis tool wear in micro EDM is opened; the reasons causing unpredictable failure of tungsten tool in micro electrical discharge milling are conducted, by simulation study of micro flow field, the influencing factors of alternating pressure of dielectric fluid causing the failure are revealed, and the harm of this unpredictable failure and its preventive measures are discussed.
     (4) Study on surface properties of electrode in micro EDM. The electrode surface topography after micro EDM is experimentally observed, the forming processes of surface discharge craters, globules of debris and micro spherical holes are focused on; the crack phenomena on electrode surface are investigated, different crack formations of various cracks are analyzed, and based on this, cracks are divided into groups, the restraining measures of every type of crack are discussed; surface exfoliation phenomenon is observed, the causing reasons of surface exfoliation are analyzed through the interlacing and expanding of cracks and surface forces, some methods to avoid surface exfoliation are proposed.
     These studies not only further reveal the physical essence of discharge process in micro EDM, but also provide a basis for widespread applications of micro EDM technology.
引文
[1]李明辉.电火花加工理论基础.北京:国防工业出版社,1989.
    [2]Masuzawa T. State of the Art of Micromachining. Annals of the CIRP,2000,49(2):473-488.
    [3]Masuzawa T, Fujino M, Kobayashi K et al. Wire electro-discharge grinding for micro-machining. Annals of CIRP,1985,34(1):431-434.
    [4]Yan B H, Huang F Y, Chow H M et al. Micro-hole machining of carbide by electrical discharge machining. Journal of Materials Processing Technology,1999,87:139-145.
    [5]Masuzawa T, Kuo C L, Fujino M. A combined electrical machining process for micro nozzle fabrication. Annals of the CIRP,1994,43 (1):189-192.
    [6]Chow H M, Yan B H, Huang F Y. Micro slit machining using electro-discharge machining with a modified rotary disk electrode (RDE). Journal of Materials Processing Technology,1999,91: 161-166.
    [7]Rajurkar K P, Yu Z Y.3D micro-EDM using CAD/CAM. Annals of the CIRP,2000,49(1):127-130.
    [8]Masuzawa T, Tonshoff H K. Three-dimensional micromachining by machine tools. Annals of the CIRP,1997,46(2):621-628.
    [9]朱宁,叶军,韩福柱等.电火花线切割加工技术及其发展动向.电加工与模具,2010,s1:53-59.
    [10]Mohri N, Saito N, Higashi M. A New Process of Finish Machining on Free Surface by EDM Methods. Annals of the CIRP,1991,40(1):207-210.
    [11]郭东明,赵福令.面向快速制造的特种加工技术.北京:国防工业出版社,2009.
    [12]Uno Y, Okada A, Hayashi Y et al. Surface Modification by EDM with Nickel Powder Mixed Fluid. Intenrational Journal of Electrical Machining,1999,4(1):47-52.
    [13]Wong Y S, Lim L C, Rahuman I et al. Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. Journal of Materials Processing Technology,1998,79:30-40.
    [14]Masanori K, Masahiro Y. Electrical Discharge Machining in Gas. Annals of the CIRP,1997,46(1): 143-146.
    [15]Simao J, Lee H G, Aspinwall D K et al. Workpiece surface modification using electrical discharge machining. International Journal of Machine Tools & Manufactrue,2003,43:121-128.
    [16]Stampfl J, Leitgeb R, Cheng Y et al. Electro-discharge Machining of Mesoscopic Parts with Electroplated Copper and Hot-pressed Silver Tungsten Electrodes. Micromech Microeng,2000,10: 1-6.
    [17]Muttamara A, Fukuzawa Y, Mohri N et al. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. Journal of Materials Processing Technology,2003,140:243-247.
    [18]Yu Z Y, Zhang Y, Li J et al. High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM. CIRP Annals-Manufacturing Technology,2009, 58:213-216.
    [19]Liu H S, Yan B H, Huang F Y et al. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. Journal of Materials Processing Technology,2005,169: 418-426
    [20]周晖.数控电火花加工工艺与技巧.北京:化学工业出版社,2009.
    [21]曹凤国,翟力军,杨大勇等.从第14届国际电加工学术会议看电火花加工技术的发展趋势.电加工与模具,2004,(5):1-6.
    [22]王振龙,赵万生,狄士春等.微细电火花加工技术的研究进展.中国机械工程,2002,13(10):894-898.
    [23]Ho K H, Newman S T. State of the art electrical discharge machining(EDM). International Journal of Machine Tools & Manufacture,2003,43:1287-1300.
    [24]汤泽隆,真柄卓司,今井祥人等.小径电极を用ぃた微细创成放电加工(第2报).型技术,1997,12(8):104-105.
    [25]Yu Z Y, Masuzawa T, Fujino M. Micro-EDM for three Dimensional Cavities -Development of Uniform Wear Method. Annals of the CIRP,1998,47(1):169-172.
    [26]Heeren P -H, Reynaerts D, Van Brussel H et al. Microstructing of silicon by electro-discharge machining (EDM)—Ⅱ:applications. Sensors and Actuators A:Physical,1997,61(1-3):379-386.
    [27]Tani T, Fukuzawa Y, Mohri N et al. Machining phenomena in WEDM of insulating ceramics. Journal of Materials Processing Technology.2004,149:124-128.
    [28]武尺英村,毛利尚武,古谷克司.微细电机ぬ用。-放电堆积加工(第1报)一堆ャ力二スムの检讨.電气加工学会蒜,2000,34(76):34-41.
    [29]Kunieda M, Y Miyoshi, Takaya T et al. High Speed 3D Milling by Dry EDM. Annals of the CIRP. 2003,5(1):147-150.
    [30]Albinski K, Musiol K, Miernikiewicz A et al. The temperature of a plasma used in electrical discharge machining. Plasma Sources Science Technology,1996,5(4):736-742.
    [31]Hockenberry T O. Geometrical formation of the discharge channel in narrow gaps. SME Paper, 1967.
    [32]Pandey P C, Jilani S T. Plasma channel growth and the resolidified layer in EDM. Precision Engineering,1986,8(2):104-110.
    [33]Eubank P T, Patel M R, Barrufet M A et al. Theoretical models of the electrical discharge machining proces—Ⅲ:The variable mass, cylindrical plasma model. Journal of Applied physics,1993.73(11): 7900-7909.
    [34]Descoeudres A, Hollenstein C. Optical Emission Spectroscopy of Electrical Discharge Machining Plasma. Journal of Physics D:Applied Physics,2004,37:875-881.
    [35]Descoeudres A, Hollenstein C, Demellayer R et al. Optical emission spectroscopy of electrical discharge machining plasma. Journal of Materials Processing Technology,2004,149:184-190.
    [36]Kojima A, Natsu W, Kunieda M. Observation of arc plasma expansion and delayed growth of discharge crater in EDM. Proceedings of the 15th International Symposium on Electromachining. Pittsburgh, USA.1-4.2007.
    [37]Kunieda M, Xia H, Nishiwaki N. Observation of Arc Column Movement during Monopulse Discharge in EDM. Annals of the CIRP,1992,41(1):227-230.
    [38]#12
    [39]亓利伟,楼乐明,李明辉.放电通道的波动性与电火花加工机理.上海交通大学学报,2001,35(7):989-992.
    [40]吴明华.电火花加工材料蚀除机理的新理论.电加工,1980,(3):7-13.
    [41]Tamura T, Kobayashi Y. Measurement of impulsive forces and crater formation in impulse discharge. Jounal of Materials Processing Technology,2004,149:212-216.
    [42]Lauwers B, Kruth J P, Liu W et al. Investigation of material removal mechanisms in EDM of composite ceramic materials. Journal of Materials Processing Technology,2004,149:347-352.
    [43]胡传锦,于家珊,张祥龄等.国外电火花加工物理本质概述.电加工,1979,(1):1-15.
    [44]郭永丰,白基成,刘晋春.电火花加工技术.哈尔滨:哈尔滨工业大学出版社,2005.
    [45]Trueman C S, Huddleston J. Material removal by spalling during EDM of ceramics. Journal of the European Ceramic Society,2000,20:1629-1635.
    [46]Singh A, Ghosh A. A theremo-electric model of material removal during electric discharge machining. International Journal of Machine Tools & Manufacture.1999,39:669-682.
    [47]刘媛,曹凤国,桂小波等.电火花加工放电爆炸力对材料蚀除机理的研究.电加工与模具.2008,(5):19-25.
    [48]DiBitonto D D, Eubank P T, Patel M R et al. Theoretical models of the electrical discharge machining process—Ⅰ:A simple cathode erosion model. Journal of Applied physics,1989,66(9): 4095-4103.
    [49]Patel M R, Barrufet M A, Eubank P T et al. Theoretical models of the electrical discharge machining proces—Ⅱ:The anode erosion model. Journal of Applied physics,1989,66(9):4104-4111.
    [50]Bozkurt B, Gadalla A M, Eubank P T. Simulation of erosion in a single discharge EDM process. Materials and Manufacturing Processes,1996,11(4):555-563.
    [51]Yeo S H, Kurnia W, Tan P C. Critical assessment and numerical comparison of electro-thermal models in EDM. Journal of Materials Processing Technology,2008,203:241-251.
    [52]赵万生.先进电火花加工技术.北京:国防工业出版社,2003.
    [53]王振龙,赵万生.微细电火花加工中电极材料的蚀除机理研究.机械科学与技术,2002,21(1):124-126.
    [54]崔景芝,曹国辉,王振龙.超短脉宽电火花加工工件表面蚀除模型分析.机械科学与技术,2007,26(4):434-436.
    [55]崔景芝.微细电火花加工的基本规律及其仿真研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [56]朱保国,王振龙.微细轴的电加工技术.电加工与模具,2005,4:1-4.
    [57]Lim H S, Wong Y S, Rahman M et al. A study on the machining of high-aspect ratio micro-structures using micro-EDM. Journal of Materials Processing Technology,2003,140:318-325.
    [58]Takezawa H, Hamamatsu H, Mohri N. Development of micro-EDM-center with rapidly sharpened electrode. Journal of Materials Processing Technology 2004,149:112-116.
    [59]Yamazaki M, Suzuki T, Mori N et al. EDM of micro-rods by self-drilled holes. Journal of Materials Processing Technology,2004,149:134-138.
    [60]Uhlmann E, Piltz S, Jerzembeck S. Micro-machining of cylindrical parts by electrical discharge grinding. Journal of Materials Processing Technology,2005,160:15-23.
    [61]Snoey R, Danw D, Jennes M. Survey of EDM adaptive control and detection systems. Annals of the CIRP,1982,31(2):483-489.
    [62]何广敏.镜面电火花加工工艺及超精规准脉冲电源的研究:(博士学位论文).哈尔滨:哈尔滨工业大学,1999.
    [63]张勇.微细电火花加工系统及其工艺技术研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2004.
    [64]Han F, Wachi S, Kunieda M. Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precision Engineering,2004,28:378-385.
    [65]江頭快,水谷腾己.低電源電压にょる放电加工の试み.电気加工学会全国大会講演输文集,2002:69-72.
    [66]霍孟友,艾兴,张建华.电火花精微加工脉冲电源设计.新技术新工艺,1999,(6):3-5.
    [67]Yu S F, Lee B Y, Lin W S. Wavefonm Monitoring of Electric Discharge Machining by Wavelet Transform. The International Journal of Advanced ManufacturingTeehnology,2001,17(5):339-343.
    [68]周明,贾振元,郭丽莎等.微细电火花加工间隙放电状态智能检测方法的研究.电加工与模具,2005,(6):17-22.
    [69]Imai Y, Nakagawa T, Miyake H et al. Local Actuator Module for Highly Accurate Micro-EDM. Journal of Materials Processing Technology,2004,149:328-333.
    [70]Beltrami I, Joseph C, Clavel R et al. Micro-and nanoelectric-discharge machining. Journal of Materials Processing Technology,2004,149:263-265.
    [71]Li Y, Guo M, Zhou Z et al. Micro Electro Discharge Machine with an Inchworm Type of Micro Feed Mechanism. Precision Engineering,2002,26:7-14.
    [72]Yu Z Y, Masuzawa T, Fujino M.3D micro-EDM with simple shape electrode. International Journal of Electric Machining,1998, (3):7-11.
    [73]赵万生,李志勇,王振龙等.微三维结构电火花铣削关键技术研究.微细加工技术,2003,(3):49-55.
    [74]Zhao W, Yang Y, Wang Z et al. A CAD/CAM system for micro-ED-milling of small 3D freeform cavity. Journal of Materials Processing Technology,2004,149:573-578.
    [75]Narasimhan J, Yu Z, Rajurkar K P. Tool Wear Compensation and Path Generation in Micro and Macro EDM. Transactions of the 32nd North American Manufacturing Research Conference/SME, 2004:151-158.
    [76]Sundaram M M, Rajurkar K P. Towards freeform machining by micro electro discharge machining process. Transactions of the 36th North American Manufacturing Research Conference/SME,2008: 381-388.
    [77]Kawakami T, Kunieda M. Study on Factors Determining Limits of Minimum Machinable Size in Micro EDM. Annals of the CIRP,2005,54(1):167-170.
    [78]国枝正典.放電加工の基礎と将来展望-Ⅱ将来展望.精密工学会志,2005,71(2):189-194.
    [79]国枝正典.放電加工の基礎と将来展望-Ⅰ基礎.精密工学会志,2005,71(1):58-62.
    [80]Kunieda M, Lauwers B, Rajurkar K P et al. Advancing EDM through fundamental in sight into the process. Annals of the CIRP,2005,54(2):599-622.
    [81]Matsuhara Y, Obara H. study on high finish machining in wire EDM. Journal of Electrical Machining Technology,2004,28(9):19-22.
    [82]科埃略R,阿拉德尼兹B.电介质材料及其介电性能.北京:科学出版社,2003.
    [83]Lewis T J. A new model for the primary process of electrical breakdown in liquids. Dielectrics and Electrical Insulation, IEEE Transactions on.1998,5(3):306-315.
    [84]Forster E O. Research in the Dynamics of Electrical Breakdown in Liquid Dielectrics. Electrical Insulation, IEEE Transactions on.1980, EI-15(3):182-185.
    [85]Beroual A. Electronic and gaseous processes in the prebreakdown phenomena of dielectric liquids. Journal of Applied Physics,1993,73(9):4528-4533.
    [86]Nakao Y, Nagasawa H, Yamaoka R. Influence of molecular structure on the propagation of streamer discharge in dielectric liquids. Journal of Electrostatics,1997,40&41:199-204.
    [87]Lesaint O, Gournay P, Tobazeon R. Investigations on Transient Currents Associated with Streamer Propagation in Dielectric Liquids. IEEE Transactions on Electrical Insulation,1991,26:699-707.
    [88]索来春,赵万生,梁力平等.混粉电火花加工极间介质击穿机理的研究.电加工与模具,2001,(5):10-13.
    [89]胡志强,甄汉生,施迎难.气体电子学.北京:电子工业出版社,1985.
    [90]陈宗柱.电离气体发光动力学.北京:科学出版社,1996.
    [91]吕战竹,赵福令,杨义勇.混粉电火花加工介质击穿及放电通道位形研究.大连理工大学学报,2008,48(3):373-377.
    [92]刘学悫.阴极电子学.北京:科学出版社,1980.
    [93]Wang Y, Zhao F. Research on discharging mechanism of powder mixed EDM.1st International Symposium on Digital Manufacture,2006,28s(10):417-422.
    [94]Luo Y F. An investigation into the actual EDM off-time in SEA machining. Journal of Materials Processing Technology,1998,74(1-3):61-68.
    [95]Schumacher B M. After 60 Years of EDM the Discharge Process Remains Still Disputed. Journal of Materials Processing Technology,2004,149(1-3):376-381.
    [96]崔景芝,王振龙.电火花加工过程中电极材料蚀除机理研究.电加工与模具,2006,(6):5-9.
    [97]Hockenberry T O, Williams E M. Dynamic Evolution of Events Accompanying the Low-Voltage Discharges Employed in EDM. IEEE Transactions on Industry and General Applications,1967, IGA-3(4):302-309.
    [98]Schuster R, Kirchner V, Allongue P et al. Electrochemical Micromachining. Science,2000,289: 98-101.
    [99]Mattis D C, Bardeen J. Theory of anomalous skin effect in normal and superconducting metals. Physical Review,1958,111(2):412-417.
    [100]Wheeler H A. Formulas for the skin effect. Proceedings of the IRE,1942,30(9):412-424.
    [101]Barka A, Bernard J J, Benyoucef B. Thermal behavior of a conductor submitted to skin effect. Applied Thermal Engineering,2003,23(10):1261-1274.
    [102]黄礼镇.电磁场原理.上海:人民教育出版社,1981.
    [103]Schacht B, Kruth J -P, Lauwers B et al. The skin-effect in ferromagnetic electrodes for wire-EDM. International Journal of Advanced Manufacturing Technology,2004,23:794-799.
    [104]Mohri N, Suzuki M, Furuya M et al. Electrode Wear Process in Electrical Discharge Machining. Annals of CIRP,1995,44(1):165-168.
    [105]Peng Z L, Wang Z L, Dong Y H et al. Development of a reversible machining method for fabrication of microstructures by using micro-EDM. Journal of Materials Processing Technology, 2010,210(1):129-136.
    [106]Virwani K R, Malshe A P, Rajurkar K P. Understanding Dielectric Breakdown and Related Tool Wear Characteristics in Nanoscale Electro-Machining Process. Annals of the CIRP,2007. 56(1):217-220.
    [107]王振龙.微细加工技术.北京:国防工业出版社,2005.
    [108]Karthikeyan G, Ramkumar J, Dhamodaran S et al. Micro electric discharge milling process performance:An experimental investigation. International Journal of Machine Tools & Manufacture, 2010,50:718-727.
    [109]Sun C H, Zhu D, Li Z Y et al. Application of FEM to tool design for electrochemical machining freeform surface. Finite Elements in Analysis and Design,2006,43:168-172.
    [110]王元刚.混粉电火花加工机理及关键技术研究:(博士学位论文).大连:大连理工大学,2008.
    [111]Sundaram M M, Rajurkar K P. Micro electro discharge machining by uniform tool shape method—study of relative wear. Transactions of the 35th North American Manufacturing Research Conference/SME,2007,35:137-144.
    [112]吕战竹.混粉电火花加工机理及应用研究:(博士学位论文).大连:大连理工大学,2005.
    [113]Tsai Y Y, Masuzawa T. An index to evaluate the wear resistance of the electrode in micro-EDM. Journal of Materials Processing Technology,2004,149(1-3):304-309.
    [114]Wang Y, Zhao F, Wang J. Wear-resist Electrodes for Micro-EDM. Chinese Journal of Aeronautics, 2009,22:339-342.
    [115]张旻.电加工用Cu-ZrB2复合镀层的制备及其电加工性能研究:(博士学位论文).大连:大连理工大学,2006.
    [116]Zhang M, Guo D M, Jin Z J. EDM performance of electroformed Cu-ZrB2 shell electrodes. Rapid Prototyping Journal,2009,15(2):150-156.
    [117]William B J Zimmerman. Multiphysics Modelling with Finite Element Methods. Singapore:World Scientific Publishing Co. Pte. Ltd.,2006.
    [118]Liu K, Ferraris E, Peirs J, Lauwers B et al. Micro-EDM process investigation of Si3N4-TiN ceramic composites for the development of micro-fuel-based power units. International Journal of Manufacturing Research,2008,3(1):27-47.
    [119]Capello E, Filice L, Micari F et al. Surface integrity and quality induced by EDM processes.13th International Symposium for Electromachining ISEM ⅩⅢ, Bilbao, Spain,2001:701-715.
    [120]Ramasawmy H, Blunt L, Rajurkar K P. Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die sinking EDM process. Precision Engineering. 2005,29(4):479-490.
    [121]Khanra A K, Pathak L C. Godkhindi M M. Microanalysis of debris formed during electrical discharge machining (EDM). Journal of Material Science,2007,42:872-877.
    [122]周继烈,凌湛,徐建中.硬质合金电火花加工裂纹特性分析.电加工与模具,2003,6:19-22.
    [123]Lee H T, Rehbach W P, Tai T Y et al. Relationship between electrode size and surface cracking in the EDM machining process. Journal of Materials Science,2004,39:6981-6986.
    [124]Iqbal A K M A, Khan A A. Influence of Process Parameters on Electrical Discharge Machined Job Surface Integrity. American Journal of Engineering and Applied Sciences,2010,3 (2):396-402.
    [125]Rajurkar K P, Zhu D, Wei B. Minimization of Machining Allowance in Electrochemical Machining. CIRP Annals—Manufacturing Technology,1998,47(1):165-168.
    [126]Masuzawa T, Yamamoto M, Fujino M. A micropunching System using Wire-EDG and EDM.9th International Symposium for Electromachining ISEM Ⅸ, Nagoya, Japan,1989:86-90.
    [127]戴子尧,李骅登,吕学杰.放电加工之表面裂纹敏感性研究.台湾金属热处理学会九十五年论文研讨会,2006.
    [128]Lee S H, Li X. Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide. Journal of Materials Processing Technology,2003,139(1-3):315-321.
    [129]吕占竹,赵福令,杨义勇.混粉电火花表面显微裂纹的研究.电加工与模具,2007,(2):9-12.
    [130]宋博岩,郭金全,胡富强等.难加工材料的电火花加工脉冲电源研究.电加工与模具,2006,(5):17-21.
    [131]Cao F. A New Technology of High Speed Machining Polycrystalline Diamond with Increased Electric Discharge Breakdown Explosion Force,9th International Symposium for Electromachining ISEM IX, Nagoya, Japan,1989:309-312.
    [132]Herrero A, Azcarate S, Rees A et al. Influence of Force Components on Thin Wire EDM.4th International Conference on Multi-Material Micro Manufacture (4M 2008), Cardiff, UK,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700