模板电解加工群孔基础研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在21世纪的航空航天、电子、仪器、纺织、印刷、医疗器械和汽车等工业领域中,以微小群孔为关键结构的零部件使用越来越广泛,例如光纤连接器、喷丝板、电子显微光栅、微喷嘴、过滤网,冷气导管和印刷电路板等。目前,加工微小群孔的方法主要有:机械加工、激光加工、电火花加工、掩模电解加工和电子束加工。但这些加工方式或多或少均存在着一些问题,机械加工易产生内应力和毛刺;激光加工效率高,但其加工后的孔壁有再铸层和微裂纹;在电火花加工中工具电极有损耗;掩模电解加工工艺复杂。
     针对在金属薄板上一次加工密集性群孔,本文提出了一种新颖的加工群孔技术,即模板电解加工技术。该技术为群孔加工提供了一种新的思路。
     本文围绕模板电解加工技术进行了基础研究,并利用该技术进行了航空发动机上导向叶片内前、后冷气导管的加工,主要内容包括以下几个方面:
     (1)提出了模板电解加工技术。该技术是基于电化学阳极溶解理论,利用模板的选区限制工件蚀除的区域,在工件上加工出与模板上图案相似结构的一种特种加工工艺。本文选用的模板是具有特定镂空图案的薄板,与工件相互独立,两者可分离。加工时,将具有某种图案的模板紧贴于工件,并保持模板与工件之间无缝隙,防止电解液渗入到模板与工件之间,造成杂散腐蚀。该技术具有独特的电流场特性,是一种简单易行、低成本的金属微结构制造技术。
     (2)根据模板电解加工的特点,构建了模板电解加工试验系统。该系统主要包括以下几个部分:模板制作单元、电解液系统、夹具装备和电源等,实现了快速、有效地加工群孔,满足了实际加工的需要。
     (3)根据电场基本理论,建立了三种加工方式(有导电层式模板电解加工、双阴极式模板电解加工以及屏蔽式模板电解加工)的电场模型。基于该电场模型,利用有限元技术分析工件蚀除表面的电流密度分布规律,并对加工过程进行模拟和试验验证,优选出加工精度最高的加工方式,即双阴极式模板电解加工方式。在其基础上,进一步探讨了双阴极式模板电解加工电参数和模板参数对加工精度的影响。
     (4)采用了主动分流侧流式双向进液电解液流动方式。通过建立不可压缩流场模型,对在正流/侧流进液方式下加工区内的流速、压力分布进行了分析和试验验证。与传统正流式加工相比,分流正流式使加工区内流速分布更均匀,避免了中心区流速过低的现象。探讨了主动式/被动式双向进液侧流加工区内的流场特性,结果表明主动式加工区内流速、压力分布均匀、加工稳定,加工出群孔孔径一致性高。同时对具有蛇形流道的模板电解加工进行探讨,对利用分块式模板在大面积金属薄板上加工密集性群孔进行了可行性研究,并获得了孔径一致性较好的结构。
     (5)基于模板电解加工的特点,采用了辅助阳极法和增大模板上小孔开口角度的方法来提高孔的加工精度。过程分析和试验表明,辅助阳极法加工有利于减小孔锥度,提高加工精度;模板上小孔的开口角度对工件蚀除形貌有较大的影响,增大模板上小孔的开口角度,可减小孔的锥度,大幅度提高孔径的一致性。
     (6)模板电解加工技术应用于某型航空发动机上导向叶片内前、后冷气导管的研制。针对冷气导管加工精度要求高、无毛刺、低成本和批量生产的要求,采用了双阴极主动分流式模板电解加工技术,加工出符合设计要求的产品,精度控制在0.06mm以内。
Structures of multiple micro-holes are applied widely in the field of aviation, space, electronics, instrument, textile, printing, medical, and automobile, such as optical fiber connector, spinneret, electron microscopic grating, micro-nozzle, filter screen, cooling holes in jet turbine and printed circuit boards. Various techniques have been developed to produce multiple micro-holes in different ways such as mechanical drilling, laser beam machining (LBM), electrical discharge machining (EDM), through mask electrochemical micromachining (TMEMM) and electron beam machining (EBM). Each of methods has its inherent disadvantages for machined micro-holes in sheet metal. Mechanical drilling presents several problems related to internal stress and a burr. LBM has the advantage of high machining efficiency, and but it causes the formation of heat-affected zones and microcracks on the workpiece. The tool electrode wear takes place during the EDM process. TMEMM involves many working procedure.
     A novel processing method, electrochemical machining (ECM) using mask, is presented in order to manufacture multiple micro-holes in sheet metal at the same time. The thesis would provide a new idea for the fabrication of multiple holes.
     Basic researches have been carried out, and tube for air coolant in guide vane of a new aeroengine is machined by the technique. This dissertation consists of six sections. The main contents are as follows:
     (1) The ECM using mask is proposed. According to theories of electrochemical anodic dissolution, the mask pattern will be transferred to the workpiece in an electrolytic cell. During the machining process, the stencil mask is closely clung to the surface of the workpiece rather than bonded to the workpiece. The proposed microstructure fabrication technique offers some unique advantages over other technology such as electric field distribution and the fashion of electrolyte flow, simple and easy implementation and low cost.
     (2) On the basis of analyzing the characteristics of the proposed technology, the experimental system has been set up which consists of mask fabrication unit, electrolyte circulating system, electrode holder and power supply. The microstructures with multiple micro-holes are fabricated fast and efficiently which fulfills the requirements of the actual processing.
     (3) Based on the theories of electric field, three models of electric field in interelectrode gap are built respectively. Finite Element Method is used to solve the model, and analysis of current density distribution on the workpiece surface is carried out. For better understanding the process, the dissolving process is analyzed and numerical simulation is verified experimentally. The three machining mode are observed comparatively, and the best mode, (ECM using a dual cathode), is selected out. The current density distribution is possibly influenced by the following parameters: thickness of the copper sheet, thickness of insulation layer, hole diameter, hole space and applied voltage. In this thesis, the influences of five parameters on the machining accuracy are discussed during EMM using a dual cathode.
     (4) An electrolyte flow mode, active distributary mode, was proposed. An incompressible flow field mode describing the distribution of electrolyte flow in the interelectrode gap is developed and verified at positive flow or side stream. A new electrolyte flow mode is named as the beam positive flow which is established and analyzed. Compared with the traditional positive flow, the flow mode overcomes low velocity in the center of processing zone results in a uniform distribution of electrolyte flow. The results show that the side stream mode of active distributary improves the holes diameter consistency and machining accuracy contracted to the side stream mode of passive ditributary. A two-dimensional incompressible flow field mode of serpentine channel is carried out, and microstructure with good uniformity of diameters is obtained.
     (5) According to characteristics of ECM using mask, two process methods were presented to improve the machining accuracy. The effects of auxiliary anode and mask wall angle on the machining accuracy are discussed. The holes taper is decreased by using the auxiliary anode. The process analysis and experiment results show that mask wall angle has great influence on the eroded workpiece surface topography. The holes diameter consistency is greatly improved, and the holes taper are reduced with the mask wall angle increasing.
     6) ECM using a dual cathode and the active distributary mode of flow field are applied in the development of a certain tube for air coolant in guide vane of an aeroengine. Because the requirement of high machining accuracy, no burr, low cost and mass production of the tube for air coolant, it was difficult to be machined by other technology. The results revealed that the machining accuracy could be improved to 0.06mm with the technology.
引文
[1]《电解加工》编译组.电解加工[M].国防工业出版社, 1977.
    [2]刘晋春,赵家齐等编著.特种加工[M].机械工业出版社, 1994.
    [3]王建业,徐家文编著.电解加工原理及应用[M].国防工业出版社, 2001.
    [4] Alan C W, Charles M, Michael M, et al. Shape changes during through-mask electrochemical micromachining of thin metal films [J]. Journal of Electrochemical Society, 1992, 139(2): 99~506.
    [5]王同生,冯建.空气导管阻尼套群孔照相电解加工技术研究[J].航空制造技术, 2003, 6: 59~61.
    [6]王同生.冷气导管照相电解加工[J].航空制造技术, 2008, 4: 83~85.
    [7]光机电信息编写组编.微孔阵列加工[J],光机电信息, 2000, 17(6): 15~17.
    [8] Chikamori K. Possibilities of Electrochemical Micromachining [J]. Internatinal Journal of Japan Society, Processing Engeering, 1998, 32(1): 37~41.
    [9] Osenbruggen C V, Regt C D. Electrochemical micromachining [J]. Philips Technical Review, 1985, 42(2): 23~32.
    [10] Landolt D, Chauvy P F, Zinger O. Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments [J]. Electrochimica Acta, 2003, 48(30): 3185~3201.
    [11] Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: a critical appraisal [J]. Electrochimica Acta, 2001, 46(24): 3913~3929.
    [12] Chauvy P F, Landolt D. Unusual cavity shapes resulting from multistep mass transport controlled dissolution: Numerical simulation and experimental investigation with titanium using oxide film laser lithography [J]. Journal of Applied Electrochemistry, 2003, 33(2): 135~142.
    [13] Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses:a versatile method with lithographical precision [J]. Electrochimica Acta, 2003, 48(22): 3213~3219.
    [14]张朝阳,朱荻,王明环.超短脉冲电流微细电解加工技术研究[J].中国机械工程,2005, 16(14): 1295~1298.
    [15] Sen M, Shan H S. Analysis of hole quality characteristics in the electro jet drilling process [J]. International Journal of Machine & Manufacture, 2005, 45(15): 1706~1716.
    [16] Xiong L, Yang L. Electrochemical micromachining of titanium surfaces for biomedicalapplications [J]. Journal of Materials Processing Technology, 2005, 169(2): 173~178.
    [17] Rosset E, Landolt D. Experimental investigation of shape changes in electrochemical micromachining through photoresist masks [J]. Precision Engineering, 1989, 11(2):79~82.
    [18] Dubey A K, Yadava V. Laser beam machining-A review International journal of machining tools & manufacture [J]. International Journal of Machine Tools and Manufacure, 2008, 48(6): 609~628.
    [19] Boyce B L, Reu P L, and Robino C V The constitutive behavior of laser welds in 304L strainless steel determined by digital image correlation [J]. Metallurgucal and Materials Transactions, 2006, 37(8): 2481~2492.
    [20] Ozgedik A, Cogun C. An experimental investigation of tool wear in electric discharge machining [J]. The International Journal of Advanced Manufacturing Technology, 2006, 27(6): 488~500.
    [21] Kern P, Veh J, Michler J. New developments in through-mask electrochemical micromachining of titanium [J]. Journal of Micromechanics and Microengineering, 2007, 17(9): 1168~1177.
    [22] Wilson J F, Practice and theory of electrochemical machining [J]. Wile-interscience, NY, 1971.
    [23]刘明,谢常青,王从舜等编著.微细加工技术[M].北京:化学工业出版社, 2004.
    [24]黄燕花,董申,袁光辉,等.微电极精密车削技术[J].电加工与模具, 2003, 4: 14~16.
    [25] Schaller T, Bohn L, Mayer J, et al. Microstructure grooves with a width of less than 50μm cut with ground hard metal micro end mills [J]. Precision Engineering, 1999, 23(4): 229~235.
    [26] Fofonoff T A, Martel S M, Hatsopoulos N G, Donoghue J P Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 10~14.
    [27] Kang M C, Je S K, Kim K H, et al. Cutting performance of CrN-based coatings tool deposited by hybrid coating method for micro drilling applications [J]. Surface & Coatings, 2008, 202(23): 5629~5632.
    [28]应人龙,曾莉群,顾大强.微小孔加工技术综述[J]. 2008, 36(6): 144~148.
    [29] Joo B Y, Rhim S H, Oh S L. Micro-hole fabrication by mechanical punching process [J]. Journal of Materials Processing Technology, 2005, 170(3): 593~601.
    [30]梁洁萍,周知进.微小孔加工与微细钻头[J].湘潭师范学院学报(自然科学版), 2004, 26(12): 56~58.
    [31]王立平,杨叔子,扬兆军,王立江.低频振动钻削提高微小钻头寿命机理的研究[J].工具技术, 1998, 32(5): 3~5.
    [32]郭磊,杨崇倡,戴惠良,孙瑞玉.喷丝板大长径比微小导孔加工工艺[J].工具技术, 2008,42(1): 97~99.
    [33]杨兆军,王勋龙,杨兆华.微小孔钻削加工的难点及其技术对策[J].机械工程师, 1997, 5: 15~16.
    [34] Wong B T, Menguc M P, Vallance R R. Nano-scale machining via electron beam and laser processing [J]. Transactions of the ASME, 2004, 126(4): 566~576.
    [35]杨洗陈,王刚,赵友博,王明伟.飞秒激光制备阵列孔金属微滤膜[J].中国激光, 2007, 34(8): 1155~1158.
    [36]胡凤兰,董丽君,高为国.利用激光进行微小深孔的特种加工[J].煤矿机械, 2009, 30(2): 108~109.
    [37]左铁钏著. 21世纪的先进制造-激光技术与工程[M].科学出版社,北京: 2007.
    [38]潘开林,陈子辰,傅键中.激光微细加工技术及其在MEMS微制造中的应用[J].制造技术与机床, 2002, 3: 5~7.
    [39]郭文渊,王茂才,张晓兵.镍基超合金激光打孔再铸层及其控制研究进展[J].激光杂志, 2003, 24(4): 1~3.
    [40]刘军.航空发动机气膜冷却孔的打孔工艺[J].航空发动机, 1995, (2): 31~36.
    [41]张晓兵,李其连,王健.激光加工小孔工艺及其孔壁再铸层对DZ22高温合金疲劳性能的影响[J].航空制造技术, 1995, 2: 20~22.
    [42] Menz W. LIGA and related technologies for industrial application [J]. Sensoers and Actuators A: Physical, 1996, 54 (1~3): 785~789.
    [43] Leng Y. Aplications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and systems: a review [J]. Journal Microelectronics and Microengineering, 2004, 35(2): 131~143.
    [44] Kupka R K, Bouamtane F, Cremers C, Megtert S. Microfabrication: LIGA-X and applications [J].Applied Surface Science, 2000, 164(1): 97~110.
    [45] Qu W, Wenzel C, Jahn A, et al. UV-LIGA: A promising and low-cost variant for microsystem technology [J]. Conference on Optoelectronic and Microelectronic Materials and Devices, 1999, 380~383.
    [46] Lorenz, Despont H, Fahrni M N, et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS [J]. Sensors and Actuators A (Physical), 1998, A64 (1): 33~39.
    [47] Sato H, Houshi Y, Shoji S. Three-dimensional micro-structures consisting of high aspect ratio inclined micro-pillars fabricated by simple photolithography [J]. Microsystem Technologies,2004, 10(6-7): 440~443.
    [48] Cheng C H, Chen S C, Chen Z S. Multilevel electroforming for the components of a microdroplet ejector by UV-LIGA technology [J]. Journal of Micromechanics and Microengineering, 2005, 15(4): 843~848.
    [49] Holmes A. Laser fabrication and assembly processing for MEMS [J]. Proceedings of the SPIE-the International Society for Optical Engineering, 4274, 297~306.
    [50] Holmes A S. Excimer laser micromachining with half-tone masks for the fabrication of 3-D microstructures [J]. IEE Proceedings Science Measurement Technology, 2004, 151(2): 85~92.
    [51]沈蓓军,王润文,路敦武,等.激光LIGA工艺制作微机械元件[J].仪器仪表学报, 1999, 20(4): 109~111.
    [52] Yang C R, Hsieh Y S, Hwang G Y. Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process [J].Journal of Micromechanics and Microengineering, 2005, (14): 480~489.
    [53]彭良强,徐韬光,韩勇,等.质子LIGA工艺的探讨[J].微纳电子技术, 2002, (5): 34~36.
    [54]北京市《金属切削理论与实践》编委会.电火花加工[M].北京出版社, 1980.
    [55]翁明浩.微细阵列轴孔的电火花和电化学加工工艺研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学, 2007.
    [56]贾宝贤,王振龙,赵万生.基于特种加工的微小孔加工技术[J].电加工与模具, 2005, 2: 1~5.
    [57]马星辉,高国富,赵波,董小磊.精密微小孔加工技术进展[J].电加工与模具, 2008, 5: 13~18.
    [58] Ekmekci B. Residual stresses and white layer in electro discharge machining (EDM) [J]. Applied Surface Science, 2007, 253(23): 9234~9240.
    [59] Kaminski P C, Capuano M N. Micro hole machining by conventional penetration electro discharge machine [J]. International Journal of Machine Tools & Manufacture, 2003, 43(11): 1143~1149.
    [60] Abbas N M, Solomon D G, Bahari M F. A review on current research trends in electrical discharge machining (EDM) [J]. International Journal of Machine Tools & Manufacture, 2007, 47(7-8): 1214~1228.
    [61] Kunieda M, Lauwers B, Rajurkar K P, Schumacher B M. Advancing EDM through fundamental insight into theprocess [J]. Annals of the CIRP, 2005, 54(2): 64~87.
    [62]雷卫宁,朱荻.微细孔电加工技术[J].航空精密制造技术, 2001, 37(3): 11~15.
    [63] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining process [J]. Transactions of the ASME, 1996, 118(4): 490~498.
    [64]施文轩,张明歧,殷旻,等.电射流加工工艺研究和发展[J],电加工与模具, 2001, 1: 36~39.
    [65] Johns B A. Advanced machining techniques for turbine blades [J]. Industrial Lubrication and Tribology, 1984, 36(1): 4~9.
    [66] Ahmed M S, Duffield A, Deep hole drilling using ECM [J]. Technical Paper-Society of Manufacturing Engineering, 1989, 809~816.
    [67] Sastry S D. Electro-stream drilling of high speed steel [J]. M.Tech.Theses in Indian Institute of Technology Kanpur, 1999, 7~12.
    [68] Bhattacharyya B, Munda J, Malapati M. Advancement in electrochemical micro-Machining [J]. International Journal of Machine Tools & Manufacture, 2004, 44(15): 1577~1589.
    [69]李英杰,李福援,纪峰,安蓉.电液束加工小孔质量的试验研究[J].机械科学与技术, 2007, 26(5): 619~622.
    [70]吴蒙华.硬质合金的双极性脉冲电液束加工工艺研究[J].大连大学学报, 2002, 23(2): 1~5.
    [71] Sen M, Shan H S. Analysis of hole quality characteristics in the electro jet drilling process [J]. International Journal of Machine Tools & Manufacture, 2005, 45(15): 1706~1716.
    [72] Lu X, Leng Y. Electrochemical micromachining of titanium surfaces for biomedical applications [J]. Journal of Materials Processing Technology, 2005, 169(2): 173~178.
    [73] WangW, Zhu D, Qu N S. Effects of electrode insulation thickness on electrochemical drilling stability and accuracy [J]. Thansactions of Nanjing University of Aeronautics & Astronautics, 2009, 26(3): 163~169.
    [74] Rosset E, Landolt D. Experimental investigation of shape changes in electrochemical micromachining through photoresist masks [J]. Precision Engineering, 1989, 11(2): 79~82.
    [75] Shenoy R V, Datta M, Romankiw L T. Investigation of island formation during through-mask electrochemical micromachining [J]. Journal of Electrochemical Society, 1996, 143(7): 2305~2309.
    [76] West A C, Madore C, Matlosz M, Landolt D. Shape changes during through-mask electrochemical micromachining of thin metal films [J]. Journal of Electrochemical Society, 1992, 139(2): 499~506.
    [77] Shenoy R V, Datta M. Effect of mask wall angle on shape evolution during through-mask electrochemical micromachining [J]. Journal of Electrochemical Society, 1996, 143(2): 544~549.
    [78] Kozak J, Rajurkar K P, Makkar Y. Selected problems of micro-electrochemical machining [J]. Journal of Materials Processing Technology, 2004, 149(1-3): 426~431.
    [79] Madore C, Piotrowski O, Landolt D. Through-mask electrochemical micromachining of titanium [J]. Journal of the Electrochemical Society, 1999, 146(7): 2526~2532.
    [80] Madore C, Landolt D. Electrochemical micromachining of controlled topographies on titanium for biological applications [J]. Journal of the Electrochemical Society, 2000, 16(7): 1326~1332.
    [81] Madhav D. Microfabrication by through-mask electrochemical micromachining [J]. Proceedings of the SPIE-the International Society for Optical Engineering, 1997, 3223: 178~184.
    [82] Datta M. Fabrication of an Array of Precision Nozzles by Through-Mask Electro chemical Micromachining [J]. Journal of Electrochemical Society, 1995, 142(11): 655~669.
    [83] Datta M. Microfabrication by electrochemical metal removal [J]. IBM Journal of Research and Development, 1998, 42(5): 655~669.
    [84] Mineta T. Electrochemical etching of a shape memory alloy using new electrolyte solutions [J]. Journal of Micromechanic and Microengineering, 2004, 14(1): 76~80.
    [85] Cheng C H, Chen S C, Chen Z S. Multilevel electroforming for the components of a microdroplet ejector by UV LIGA technology [J]. Journal of Micromechanics and Microengineering, 2005, (15): 843~848.
    [86] Chen D, Jing X, Fang D M, et al. Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology [J]. Journal of Microelectronics and Microengineering, 2007, 38(1): 120~124.
    [87]伊福廷,张菊芳,彭良强,等.利用紫外光刻技术进行SU-8胶的研究[J].微纳电子技术, 2003, 7(8): 126~128.
    [88] Becnel C, Desta Y, Kelly K. Ultra-deep x-ray lithography of densely packed SU-8 features:Ⅰ. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results [J]. Journal of Micromechanics and Microengineering, 2005, 15(6): 1242~1248.
    [89] Sensu Y, Sekiguchi A, Miyake Y. Study on improved resolution of thick film resist [J]. Proceedings of SPIE-the International Socity for Optical Engineering, 2001, 4345(11): 921~935.
    [90] Kubenz M, Ostrzinski U, Reuther F, et al. Effective baking of thick and ultra-thick photoresist layers by infrared radiation [J]. Microelectronic Engingeering, 2003, (67-68): 495~501.
    [91] Nilson R H, Griffiths S K. Acoustic Agitation for Enhanced Development of LIGA PMMA Resists [J]. Proceedings of SPIE-the International Society for Optical Engineering, 2000, 4174: 66~76.
    [92] Nilson R H, Griffiths S K, Ting A. Modeling acoustic agitation for enhanced development ofPMMA resists [J]. Microsystem Technologies, 2002, 9(1-2): 113~118.
    [93] Williams J D, Wang W. Using megasonic development of SU-8 to yield ultra-high aspect ratio microstructures with UV lithography [J]. Microsystem Technologies, 2004, 10(10): 694~698.
    [94]余祖元,郭东明,贾振元.微细电火花加工技术[J].中国科技论文在线, 2007, 2(3): 214~220.
    [95]古文才,郭钟宁,于兆勤,刘小康.微细阵列孔加工技术及其应用[J].机电工程技术, 2008, 37(10): 13~19.
    [96]周晓光,马莹,韩福柱,祝明德.基于电火花线切割加工德微细阵列电极加工[J].电加工与模具, 2008, 2: 1~4.
    [97] Wang M H, Zhu D, Peng W. Experimental research on electrochemical micromachining [J]. Advanced Design and Manufacture to Gain a Competitive Edge, 2008, (7): 775~783.
    [98]蔡积庆.高密度超精细线路印制板用铜箔[J].印制电路信息, 2003, 12: 36~40.
    [99]郝志勇,李玲.印制电路板用无卤无磷阻燃型环氧树脂研究动态[J].热固性树脂, 2008, 23(1): 45~48.
    [100]刘书祯.印刷电路板用铜箔的表面处理[J].电镀与精饰, 2008, 30(2): 17~21.
    [101]林有希,高诚辉,陈志华.电路板复合材料微小孔加工技术[J].工具技术, 2006, 40(6): 28~32.
    [102] Johan M. Laser beam machining (LAM) state of the art and new opportunities [J]. Journal of Materials Processing Technology, 2004, 149(1~3): 2~17.
    [103]林其水.印制电路板制作中激光钻孔应注意的问题[J].印制电路信息, 2009, 9: 15~18.
    [104]雷群.激光技术在印刷电路板行业的应用[J].印制电路信息, 2009, 9: 22~26.
    [105] Hirogaki T, Aoyama E, Inoue H. Laser drilling of blind via holes in aramid and glass/epoxy composites for multi-layer printed wiring boards [J]. Composites: Part A, 2001, 32(7): 963~968.
    [106]张朝阳,朱荻,王明环.纳秒脉冲微细电化学加工的理论及试验研究[J].机械工程学报, 2007, 43(1): 208~212.
    [107]王贤成,狄士春,迟关心,等.高频窄脉冲微细电解加工试验研究[J].机械工程师, 2004, 7: 40~42.
    [108]陈明,王明环,彭伟.不同流场构型对微细螺旋孔电解加工的影响[J].机电工程, 2009, 26(10): 87~89.
    [109]马晓宇,李勇,吕善进.加工间隙内电解产物对微细电解加工的影响分析[J].电加工与模具, 2008, (6): 31~35.
    [110]贾明浩.电解加工的流场设计[J].模具制造技术, 2006, 12: 56~59.
    [111] Rajurkar K P, Zhu D, Wei B. Minimization of machining allowance in electrochemical machining [J]. Annals of the CIRP, 1998, 47(1): 165~168.
    [112] Purcar M, Dorochenko A. Advanced CAD integrated approach for 3D electrochemical machining simulations [J]. Journal of Materials Processing Technology, 2008, 203 (1-3): 58~71.
    [113]张美丽,朱荻,徐正扬.基于ANSYS分析的钛合金电解辅助阳极设计[J].机械科学与技术, 2007, 26(9): 1141~1443.
    [114]李志永,朱荻,孙春华,王蕾.发动机叶片电解加工阴极设计有限元数值解法研究[J].中国机械工程, 2004, 15(13): 1151~1154.
    [115]赵建社,徐家文,王福元,吴小康.整体构件数控电解加工数字化仿真技术[J].南京航空航天大学学报, 2007, 39(3): 333~337.
    [116]赵建社.异形型腔电解加工阴极的数字化设计[J].航空学报, 2006, 27(5): 939~943.
    [117]李志永,朱荻.叶片电解加工阴极设计CAD/CAE/CAM专家系统[J].北京航空航天大学学报, 2006, 32 (1): 103~107.
    [118]陈远龙,朱树敏.脉冲电流参数对电解液非线性特性及锻模电解加工的影响[J].电加工, 1991, 2: 10~14.
    [119]李志永.基于电解液非线性特性的叶片电解加工阴极设计[J].机械设计与制造, 2007, 1: 67~69.
    [120]葛媛媛,徐家文,赵建社,王福元.镍基高温合金GH4169电解加工ηw-i曲线测定[J].宇航材料工艺, 2006, 4: 38~41.
    [121]王蕾,朱荻,李志永.采用非线性电解液的叶片电解加工阴极设计[J].机械科学与技术, 2006, 25(20): 229~232.
    [122] Wang J Y. The investigation of the mechanism of high frequency short pulse electrochemical machining [J]. Journal of South China University of Technology (Natural Science Edition), 2001, 30(1): 6~11.
    [123]朱树敏.低浓度硝酸钠电解液的特性和应用[J].电加工与模具, 1983, 4: 11~15.
    [124]北京机床研究所十室.电解液和电解液系统与工艺的关系[J].电加工与模具, 1974, 2: 29~53.
    [125] Rajurkar K P, Zhu D. Improvement of electrochemical machining accuracy by using orbital electrode movement [J]. Annals of the CIRP, 1999, 48(1): 139~142.
    [126] Wilson J. Practice and theory of electrochemical machining [M]. New York: Wiley Interscience, 1971.
    [127]北御門良夫.電解加工法の研究[R].山梨大學工學部研究報告, 1966, 17(12): 1~5.
    [128] Bhattacharyya B, Malapati M, Munda J, Sarkar A. Influence of tool vibration on machining performance in electrochemical micro-machining of copper [J]. International Journal of Machine Tools & Manufaccture, 2007, 47(2): 335~342.
    [129]刘状,邱中军,衡冲.基于阴极周期往复运动的微细电解加工系统[J].传感器与微系统, 2009, 28(3): 67~69.
    [130] Ebeid S J, Hewidy M S, Youssef A H. Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology [J]. Journal of Materials Processing Technology, 2004, 149(1-3): 432~438.
    [131]彭婧,贾明浩,孟军.混气电解加工探讨[J].机械, 2010, 37(5): 59~66.
    [132]吴高阳,张之敬,王志芳,付伟.高频群脉冲电化学加工在微制造中的应用[J].机械工程学报, 2006, 42(5): 60~64.
    [133] Wang J Y, Silva A D, Yu Y Q, Han G J. New approach to enhance the accuracy of ECM high-precision short pulses ECM (HSPECM) [J]. Journal of Materials Processing Technology, 2004, 149(1-3): 382~383.
    [134]沈健,陈心昭,朱树敏.振动进给与脉冲电流电解加工的工艺特性[J].农业机械学报, 2002, 33(3): 110~114.
    [135]吴文权.流体绕多个钝体不稳定分离流动数值仿真[J].华东工业大学学报, 1997, 19(3): 1~8.
    [136]陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展, 2002, 12(9): 964~969.
    [137]孙德军,胡国辉,尹协远,等.圆柱绕流低维Galerkin方法的推广[J].中国科学技术大学学报, 1997, 27(3): 266~272.
    [138]程永光.基于插值的Lattice Boltzmann方法非均匀网格算法[J].武汉水利电力大学学报, 2000, 33(5): 26~31.
    [139] Muralami S, Mochida. 3-D numerical simulation of air-flow around a cubic model by means of the k-εmodel [J]. Journal of Wind Engineering and Aerodynamics, 1988, 31(3): 327~338.
    [140] Muralami S, Mochida. On turbulent vortex shedding flow past 2D square cylinder predicted by CFD [J]. Journal of Wind Engineering and Aerodynamics, 1995, 54(3): 191~211.
    [141] Yu D H, Ashan. K. Numerical simulation of flow around rectangular prism [J]. Journal of Wind Engineering and Aerodynamics, 1997, 67(2): 195~208.
    [142]徐元利,徐元春,梁兴,张进国. FLUENT软件在圆柱绕流模拟中的应用[J].水力电力机械, 2005, 27(1): 39~41.
    [143] Amalnik M S, McGeough J A. Intelligent concurrent manufacturability evaluation of design for electrochemical machining [J]. Journal of Materials Processing Technology, 1996, 61(8): 130~139.
    [144] Risko D G., Davydov A D. Manufacturing applications and productivity limitations of electrochemical machining [J]. Manufactruing Science and Engineering ASME, 1993, 64: 701~711.
    [145]范哲建,马保吉,王天诚.嵌入磁路的电解加工技术[J].机械工程学报, 2006, 42(2): 96~100.
    [146] Park B J, Kim B H, Chu C N. The effects of tool electrode size on characteristics of micro electrochemical machining [J]. Annals of the CIRP, 2006, 55(1): 197~200.
    [147] Rajurkar K P, Kozak J, Wei B, McGeough J A. Study of pulse electrochemical machining characteristics [J]. Annals of the CIRP, 1993, 42(1): 231~234.
    [148]刘壮,刘燕,王维,曲宁松.提高小孔电解加工精度的试验研究[J].机械科学与技术, 2009, 28(3): 380~385.
    [149]刘改红,李勇,陈旭鹏.微细电解加工用电极的侧壁绝缘及应用试验[J].电加工与模具, 2009, 1: 20~23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700