纳米复合电铸制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电铸制造技术是利用电沉积原理制造零件的一种精密加工方法,由于具有加工时不受机械力、无工具损耗、成形精度高等特点,因而受到了越来越多的关注。采用电铸制造技术已经加工出航空、航天、微机电系统、兵器等领域许多关键零部件。
     纳米复合电铸是将纳米粒子放入电铸液中,使纳米粒子与金属共沉积获得纳米复合沉积层的一种制造方法。由于纳米粒子-金属复合电铸层具有许多优点,因而成为近年来电铸制造技术的研究热点,纳米复合电铸技术已在微机电系统、放电加工用工具电极及高性能模具等方面获得成功应用。
     本文在分析和总结电结晶理论和复合电沉积机理的基础上,探讨了电铸工艺参数对纳米颗粒复合量的影响,并获得了纳米颗粒复合量高,且分布较为均匀的纳米复合电铸层,研究了电铸工艺参数对纳米复合电铸层的显微硬度和耐磨性等性能的影响规律。本文具体研究内容包括以下几个方面:
     1.提出了在纳米复合电铸过程中施加超声振动辅助纳米复合电铸制造技术,抑制了纳米复合电铸沉积层中出现大的纳米粒子团聚体问题,进行了相关的试验研究。试验结果表明,电铸过程中施加超声振动可以有效抑制沉积层中出现纳米粒子大团聚体问题。
     2.系统研究了复合电铸工艺参数对Ni-CeO_2纳米复合沉积层中嵌入的CeO_2纳米粒子质量百分比、表面形貌、择优取向的影响。通过大量工艺试验,发现电流密度和溶液中纳米粒子加入量对复合沉积层的影响最大。选择合适的电流密度和溶液中纳米粒子添加量,可以获得纳米粒子高嵌入量的Ni-CeO_2复合沉积层。
     3.研究了复合电铸工艺参数对Ni-CeO_2纳米复合沉积层显微硬度、耐磨损性能、耐腐蚀性能及高温氧化性能的影响,发现沉积层中嵌入的纳米粒子越多,其显微硬度越高。同时发现如果纳米粒子在沉积层中的嵌入量太多,会导致复合沉积层内应力过大,沉积层表面出现裂纹,这会导致其耐磨损性能、耐腐蚀性能及高温氧化性能的急剧下降。
     4.研究了电流密度和溶液中纳米粒子加入量对CoNi-BaFe_(12)O_(19)复合沉积层纳米粒子嵌入量、Co及Ni含量的影响,发现BaFe_(12)O_(19)纳米粒子的嵌入可以抑制Co、Ni的异常共沉积现象。
     5.提出了施加外部磁场辅助CoNi-BaFe_(12)O_(19)复合电铸制造技术,建立了此过程的动力学模型,理论上证明了施加外部磁场对提高强磁性纳米粒子-金属复合沉积层强磁性纳米粒子嵌入量的可行性。研究了该条件下电流密度和溶液中纳米粒子加入量对复合电沉积的影响,试验验证了此技术方案的有效性。
     6.研究有无辅助外加磁场条件下CoNi-BaFe_(12)O_(19)复合沉积层的最大磁能级、剩磁及矫顽力的情况,研究表明,通过优化复合电铸工艺参数,可以获得最大磁能级为3.09 KJ/m~3的CoNi-BaFe_(12)O_(19)复合沉积层。如果施加外部辅助磁场,可以使CoNi-BaFe_(12)O_(19)复合沉积层的最大磁能级数值有较大幅度的攀升,达到4.14 KJ/m~3。
Electroforming is a nontraditional machining technology, in which a metallic part is produced by the electrodeposition of metal onto a cathode mandrel in the electrolytic bath. Many attention has been paid to it because of its’high fidelity of shape reproduction, cutting force-free, and no tool wear. Electroforming is now employed in many areas, such as aviation, aerospace, weapon, microelectromechanical system and so on.
     The nano composite electroforming is a kind of technique in which nano particles are suspended in the electrolyte and embedded in the growing metal layer. The well dispersed nano particles in a metal matrix do not only enhance the mechanical properties including wear and corrosion resistance, but also open up potential applications of the composite materials in microdevices. Recently, a considerable amount of research effort has been spent on electroforming of nanostructured composite, and many parts, such as micro-, mold, and electrode used in electrodischarge machining, have been prepared by using nano composite electroforming.
     Both the metal electrocrystallization theory and the codeposition mechanisms were reviewed in this dissertation. The influence of current density, nano particles concentration in the suspension, stir rate, and temperature of the bath on the nano particles inclusion into the deposit was studied, and the nano particles-metal composite layers were obtained with high weight percent of nano particles and uniform dispersion of nano particles. The morphology, component, and microstructure of nano composite electroforming layers were examined. In addition, the micro hardness, wear resistance, corrosion resistance, oxidation resistance, and magnetic properties of the nano composite layers were also evaluated.
     The following work has been finished in this dissertation:
     1. The nano composite electroforming technology with the aid of ultrasonic vibration was present to inhibit the agglomeration of nano particles in the nano composite layers. The experiments about the technology have been carried out, and its’feasibility was confirmed.
     2. The effect of electroforming parameters on the weight percent of CeO_2 nano particles, morphology, and the preferred orientation of the Ni-CeO_2 composite layers was investigated, and the experiments’results indicated that both the current density and the CeO_2 particles concentration in the suspension play a major role in the Ni-CeO_2 composite electroforming. The Ni-CeO_2 composite layer with high weight percent of CeO_2 inclusion into the layer might be acquired by using the optimized parameters.
     3. The influence of electroforming parameters on the micro hardness, wear resistance, corrosion resistance, and oxidation resistance of the Ni-CeO_2 nano composite layers were also examined. The experiments’results showed that the micro hardness of layer increased with the increment of weight percent of CeO_2 inclusion into the layer, and the wear resistance, corrosion resistance, and oxidation resistance of the composite layer were also enlarged while the weight percent of CeO_2 inclusion into the layer rose from 0 to 4.02%. However, the micro cracks occurred at the 4.98% weight percent of CeO_2 inclusion into the layer, which led to poor wear resistance, corrosion resistance, and oxidation resistance.
     4. The influence of both BaFe_(12)O_(19) nano particles concentration and current density on the CoNi-BaFe_(12)O_(19) composite deposit compositions have been investigated, respectively. The introduction of BaFe_(12)O_(19) nano particles into the composite layers could prohibit the anomalous codeposition of Co-Ni alloy.
     5. The magnetic field was introduced to electroform the magnetic particles- ferromagnetic matrix composites. The effect of both BaFe_(12)O_(19) nano particles concentration and current density on the CoNi-BaFe_(12)O_(19) composite deposit compositions has been evaluated, and the experiments’result demonstrated that the high BaFe_(12)O_(19) nano particles percent could be acquired by using a magnetic field.
     6. The maximum magnetic energy density, coercivity, and remanence of the CoNi-BaFe_(12)O_(19) composite layers were investigated produced by nano composite electroforming with and without a magnetic field. With proper choice of electroforming parameters, the CoNi-BaFe_(12)O_(19) composite layer with the maximum magnetic energy density 3.09 KJ/m3 could be fabricated without a magnetic field, and one with the maximum magnetic energy density 4.14 KJ/m3 might be prepared in the presence of a magnetic field.
引文
[1]刘晋春,赵家齐,赵万生.特种加工.北京:机械工业出版社,2005
    [2] J.A. MacGeough, M.C. Leu,K.P. Rajurkar,et al. Electroforming process and application to micro/macro manufacturing. CIRP Annals-Manufacturing Technology,2001,50 (2): 499- 514
    [3]К.М.Вансовская,Г.А.Волянюк著.工业电铸(林能春,邓传玉译).北京:兵器工业出版社,1991
    [4]Г.А.Садаков著.电铸技术(陈钧武,江永安译).北京:兵器工业出版社,1992
    [5]苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社,2002
    [6] S.M. Silaimani,S. John. Review on recent advances in electroforming during the last decade. Bulletin of electrochemistry,2001,17 (12):553-560
    [7]封万起,韩秀文等.来复反射器注塑模具电铸工艺的研究.电镀与精饰,2000,22 (5):5-9
    [8] G. A. Malone,D. M. Winkelman. High performance alloy electroforming. NASA- N89-16041, 1989
    [9] K. Tajiri,N. Kamihata,K. Kajima.航空宇宙産業がり-ドする表面技術─電鑄,ケミカルミーリング,洗淨─.表面技術,1998,49 (2):9-14
    [10]余承业等.特种加工新技术.北京:国防工业出版社,1995
    [11] P.R. Thangavelu,P. Veeramani,K. N. Srinivasan,et al. Copper electroforming of cryogenic upper stage main engine. Bulletin of Electrochemistry,2000,16(11):493-496
    [12] S. John,P. Veeramani,K.N. Srinivasan. Electroforming process for the fabrication of cryogenic rocket engine thrust chamber. 18th International Cryogenic Engineering Conference (ICEC 18), Mumbai,India,February 21-25,2000:675-678
    [13] I. Kim,P.F. Mentone. Electroformed nickel stamper for light guide panel in LCD back light unit. Electrochimica Acta,2006,52(4):1805-1809
    [14] K. Tajiri,T. Nakamura,Z. Kabeya,et al. Development of an electroformed copper lining for accelerator components. Electrochimica Acta,2001,47:143-148
    [15]李亭举,邹受殷.毫米波导器件电铸技术.航天工艺,1998,(4):18-19
    [16] http://www.drc.com/metrigraphics/electroformingapplications.htm
    [17]朱荻.一种精密制造技术——电铸:机械科技的未来.机械工业出版社,1994
    [18] M. Datta,D. Landolt,Fundamental aspects and applications of electrochemical microfabrication.Electrochimic Acta,2000,45:2535-2558
    [19]田中群,孙建军.微系统与电化学.电化学,2000,6(1):1-9
    [20]雷卫宁.金属镍纳米晶精密电铸的试验研究[博士学位论文].南京:南京航空航天大学,2002
    [21]陈万金,孙颖.全息模压模板电铸工艺研究,材料保护,2001,34(12):46-47
    [22]朱增伟.磨擦辅助精密电铸技术的研究及应用[博士学位论文]南京:南京航空航天大学, 2007
    [23]刘国球,胡平信.液体火箭发动机技术的回顾与展望.推进技术,1998,19(4):2-6
    [24] J.M. Kazaroff,A.J. Pavli,G.A. Malone. New method of making advanced tube-bundle rocket thrust chambers. NASA TM-103617,1990
    [25] http://cs.space.eads.net/
    [26] (美)陆军装备部编著,王维和,李惠昌译.终点弹道学原理,国防工业出版社,1988年6月
    [27]孙起.电铸药型罩研究与分析综述.兵工学报,2000,21(z1):86-88
    [28]胡士廉,田文怀等.电铸药型罩的电子背散射衍射分析.兵器材料科学与工程,2002,23(4):51-54
    [29]孙起.国外破甲药型罩材料技术发展分析.国外兵器动态,2000,6
    [30]孙起.电铸药性罩破甲侵彻性能分析.国外兵器动态,1998,3
    [31] A. Lichtenberger,M. Schapf,A. Bohmann. Influence of structural and metallurgical state of a liner on the performance of a shaped charge,6th. International Symposium on Ballistics, Orlando,1981.
    [32]孙起.南非电铸药型罩的研究.国外兵器动态,1999,6
    [33]张文峰.镍基纳米复合电铸层制备工艺及其性能的基础研究[博士学位论文].南京:南京航空航天大学,2004
    [34] N.S. Qu,D. Zhu,K.C. Chan,et al. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density. Surface and Coatings Technology,2003,168(1):123-128
    [35]王帮峰,黄因慧,余承业.选择性射流电铸技术初探.机械科学与技术,2002,21(2): 263-265
    [36]徐庆仁.激光强化电镀.航空制造工程,1989,(4):24-27
    [37] D. Zhu,Z.W. Zhu,N.S. Qu. Abrasive polishing assisted nickel electroforming process. CIRP Annals-Manufacturing Technology,2006,55 (1):193-196.
    [38]覃奇贤,封万起,赵志强.新型电铸镍电解液的研制.电镀与精饰, 2002,24(5):13-16
    [39]马胜利,井晓天.含硫添加剂含量对电铸镍沉积层组织和性能的影响.理化检验-物理分册,1997,33(9):27-29
    [40] J. K. Dennis,T. E. Such. Nickel and chromium plating,London:Butterworth & Co Ltd,1986
    [41] N.S. Qu,K.C. Chan,D. Zhu. Surface roughening in pulse current and pulse reverse current electroforming of nickel,Surface & Coatings Technology,1997,91(3):220-224
    [42] S. John,V. Ananth,T. Vasudevan. Improving the deposit distribution during electroforming of complicated shapes. Bulletin of Electrochemistry,1999,15 (5-6):202-204
    [43] M.C. Chou,H. Yang,S.H. Yeh. Microcomposite electroforming for LIGA technology. Microsystem Technologies,2001,7 (1):36-39
    [44] H. Yang,S.W. Kang. Improvement of thickness uniformity in nickel electroforming for the LIGA process. International Journal of Machine Tool & Manufacture,2000,40:1065-1072
    [45] D. Zhu,K. Wang,J.M. Yang. Design of electrode profile in electrochemical manufacturing process. CIRP Annals-Manufacturing Technology,2003,52(1):169-172
    [46] A.M. El-Sherik,U. Erb. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. Journal of Materials Science,1995,30:5743-5749
    [47] H. Natter,M. Schmelzer,R. Hempelmann. Nanocrystalline nickel and nickel- copper alloys: synthesis,characterization,and thermal stability. Journal of Materials Research, 1998,13 (5):1186-1197
    [48] K. L. Morgan,Z. Ahmed,F. Ebrahimi. The effect of deposition parameters on tensile properties of pulse-plated nanocrystalline nickel. Materials Research Society Symposium– Proceedings, 2001,634:B3.11.1-B3.11.6
    [49] I. Bakonyi,E. Toth-Kadar,L. Pogany,et al. Preparation and characterization of D. C.-plated nanocrystalline nickel electrodeposits. Surface and Coatings Technology,1996,78(1): 124-136
    [50]熊毅.纳米晶块体镍的喷射高速电沉积及其微观结构研究[硕士学位论文].秦皇岛:燕山大学,2001
    [51] D. Zhu, W. N. Lei,N. S. Qu,et al. Nanocrystalline electroforming process. CIRP Annals-Manufacturing Technology,2002,51 (1):173-176
    [52] M. Donten,H. Cesiulis,Z. Stojek. Electrodeposition and properties of Ni-W,Fe-W and Fe-Ni-W amorphous alloys A comparative study. Electrochimica Acta,2000,45(20): 3389-3396
    [53] M. Klimenkov,A. S. M. A. Haseeb,K. Bade,Structural investigations on nanocrystalline Ni-W alloy films by transmission electron microscopy,Thin Solid Films,2009,517(4): 6593-6598
    [54] F. L. G. Silva,D. C. B. do Lago,E. D'Elia, et al. Electrodeposition of Cu-Zn alloy coatings from citrate baths containing benzotriazole and cysteine as additives,Journal of Applied Electrochemistry,2010,40(11):2013-2022
    [55] M.S. Kabseogkim. High aspect ratio microstructures and their applications to MEMS[D]. Dallas:The University of Texas,2004.
    [56] J. Huby. LIGA technologies and applications. MRS Bulletin,2001,26(4):337-340.
    [57] R.K. Kupka,F. Bouamrane,C. Cremers,et al. Microfabrication: LIGA-X and applications. Applied Surface Science,2000,164:97-110.
    [58]李永海,丁桂甫,毛海平,等.LIGA/准LIGA技术微电铸工艺研究进展.电子工艺技术,2005,26(1):1-6
    [59] I. Nick , G. Janet. Thermoconvection- enhanced Deposition of Copper. Journal of the Electrochemical Society,1995,142(12):4103-4107
    [60] T.H Tsai , R.C. Yang. New electroforming technology pressure aid for LIGA process.Microsystem Technologies,2003,10(5):351-356
    [61] R.H. Nilson,S.K. Griffiths. Enhanced transport by acoustic streaming in deep trench-like cavities.Journal of the Electrochemical Society,2002,149(4):286-296
    [62] Z.W. Zhu, D. Zhu,N.S. Qu. Electrodeposition of bright nickel coating under perturbation of hard particles. Materials and Design,2007,28(6):1776-1779.
    [63] A. Zouaoui, M. Carrier. Electrodeposition of copper into functionalized polypyrrole films. Journal of Electroanalytical Chemistry,1999,474(12):113-122.
    [64] R.H. Nilson,S.K. Griffiths. Natural convection in trenches of high aspect ratio. Journal of the Electrochemical Society,2003,150(6):401-412
    [65] C.M. Xia. Simulation of electrodeposition in ultra-deep micro cavities [D]. Pittsburgh: Carnegie Mellon University, 2001
    [66] W. H. Wang, S. D. Leith, D. T. Schwartz. Convective diffusive mass transfer inside complex micro-molds during electrodeposition. Journal of Microelectromechanical Systems,2002,11(2):118-124
    [67]马志坤,赵新明,杜锋.复合镀层的现状与发展.电刷镀技术,2001,(2):1-3
    [68]郭鹤桐,张三元.复合镀层.天津:天津大学出版社,1991
    [69] A.A. Voevodin, D.V. Shtansky,E.A. Levashov,et al. Nanostructured thin films andnanodispersion strengthened coatings, Netherland: Kluwer Academic Publishers,2004
    [70] D.M. Guo,M. Zhang,Z.J. Jin,et al. Particles strengthening of the surface of copper electrode for electrical discharge machining. International Journal of Materials and Product Technology,2008,31(1):81-87
    [71]明平美,朱荻,朱健,等.铜-石墨复合电极材料制备及抗电蚀性能分析.中国机械工程,2005,16(11):1021-1025
    [72]胡美些,王宁,李鹏飞,等.氧化铈在电铸吸塑铜模具中的应用研究.特种铸造及有色合金,2006,26(12):811-813
    [73] X.Y. Wei , P.D. Prewett , K. Jiang. Electrochemical Co-deposition of Nickel-Alumina Nanocomposite for Microsystem Applications. Proceedings of the 7th IEEE International Conference on Nanotechnology,August2– 5,2007,Hong Kong
    [74] T. Wang , K. WKelly. Particulate strengthened Ni–Al2O3 microcomposite HARMs for harsh-environmental micromechanical applications , Journal of Micromechanics and Microengineering,2005,15:81-90
    [75] S.Y. Hung. Optimization on hardness and internal stress of micro-electroformed NiCo/nano-Al2O3 composites with the constraint of low surface roughness. Journal of Micromechanics and Microengineering,2009,19:1-9
    [76] F. Shi,D. Guifu,W. Yuchao,et al. Fabrication of arched MEMS electric contactor with Cu-based carbon nanofibre composite film. Micro and Nano Letters,2007,2(3):58-62
    [77] S. Guan,B.J. Nelson.Magnetic composite electroplating for depositing Micromagnets.Journal of Microelectromechanical Sstems,2006,15(2):330-337
    [78] E. Gómez,S. Pané,X. Alcobe,et al. Influence of a cationic surfactant in the properties of cobalt-nickel eletrodeposits.Electrochimica Acta,2006,51:5703-5709
    [79] E. Gómez,S. Pané,E. Vallés.Magnetic composites CoNi-barium ferrite prepared by electrodeposition.Electrochemistry Communications,2005,7:1225-1231
    [80] S. Panéa,E. Gómez,E. Vallés.Influence of a magnetic field during the CoNi electrodeposition in the presence of magnetic nanoparticles.Journal of Electroanalytical Chemistry,2008,615(2):117-123.
    [81] S. Panéa,E. Gómez,E. Vallés.Enhanced magnetism in electrodeposited-based CoNi composites containing high percentage of micron hard-magnetic particles.Electrochemistry Communications,2007,9:1755-1760.
    [82] S. Pané,E. Gómez,J. García-Amorós,et al. First stages of barium ferrite microparticlesentrapment in the electrodeposition of CoNi films.Journal of Electroanalytical Chemistry,2007,604:41-47.
    [83] S. Pané,E. Gómez,J. Garcia-Amorós,et al. Modulation of the magnetic properties of CoNi coatings by electrodeposition in the presence of a redox cationic surfactant.Applied Surface Science,2006,253:2964-2968
    [84] S. Guan,B. J. Nelson.Magnetic composite electrodeposition of micro-array magnets for MEMS actuators.17th IEEE international Conference on Micro Electro Mechanical Systems,2004,657-660
    [85] S. Guan,B. J. Nelson,K. Vollmers.Electrochemical codeposition of magnetic particle- ferromagnetic matrix composites for magnetic MEMS actuator applications.Journal of the Electrochemical Society,2004,151(9):545-549
    [86]马亮,马洁,刘辉.复合电沉积CoNiP-BaFe12O19磁性薄膜.物理化学学报,2007,23(4):590-594.
    [87] A. Roldan,E. Gómez,S. Pané,et al. Electrodeposition of copper–magnetite magnetic composite films. Journal of Applied Electrochemistry,2007,37:575-582
    [88] S.K. Kim,H.J. Yoo. Formation of bilayer Ni–SiC composite coatings by electrodeposition. Surface and Coatings Technology,1998,108–109(1):564–569
    [89] W.A. Donakowski,J.R. Morgan. Zinc/graphite--a protential substitute for anti-galling gadmium. Plating and Surface Finishing,1983,70(11):48-52
    [90] G.N.K. Ramesh. Characteristics of Ni-BN electrocomposites. Plating and Surface Finishing, 1995,82(7):70-75
    [91]王广远.微胶囊技术在复合电镀中的应用.电镀与精饰,1991,12(6):11-14
    [92]郑天亮,朱立群,张玮.含液体胶囊复合镀镍、铜层的耐腐蚀性能研究.航空学报,2006,27(1):147-151
    [93] B. Miiller,H. Ferkel. Al2O3-nanoparticle distribution in plated nickel composite films. Nanostructure Materials,1998,10(8):1285-1288
    [94] W.H. Lee,S.C. Tang,K.C. Chung. Effects of direct current and pulse-plating on the co-deposition of nickel and nanometer diamond powder. Surface and Coatings Technology, 1999,120–121:607–611
    [95] L.Z. Dua,B.S. Xu,S.Y. Dong,et al. Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication. Wear,2004,257:1058-1063
    [96] H.Z. Liu,L. Liu,H.J. Zhao,et al. Preparation and characterization of electroformed Cu/nano Al2O3 composite. Materials Science and Technology,2007,23(6):665-670
    [97] V. Mangam,S. Bhattacharya, K. Das,et al. Friction and wear behavior of Cu–CeO2 nanocomposite coatings synthesized by pulsed electrodeposition. Surface and Coatings Technology,2010, 205:801-805
    [98] R.K. Saha,T.I. Khan. Effect of applied current on the electrodeposited Ni-Al2O3 composite coatings,Surface and Coatings Technology,210, 205:890-895
    [99]蒋斌,徐滨士,董世运,等.纳米复合镀层的研究现状.材料保护,2002,35(6):l-3
    [100] X. H. Chen,J. T. Xia,J. C. Peng,et al. Carbon nanotube metal-matrix composites prepared by electroless plating.Composites Science and Technology,2000,60:301-306
    [101] C. Larson. Electrodeposited gold composites. Composite, 1976,7(1):9-11
    [102]黄炳醒,刘诗春.弥散强化银及其应用研究.贵金属,1995,16(2):33-42
    [103] D.M. Guo,M. Zhang,Z.J. Jin,et al. Particles strengthening of the surface of copper electrode for electrical discharge machining. International Journal of Materials and Product Technology,2008,31(1):81-87
    [104] J.C. hung,W.C. Wu,B.H. Yan,et al. Fabrication of micro-tool in micro-EDM combined with co-deposited Ni-SiC composites for micro-hole machining, Journal of Micromechanics and Microengineering,2007,17(4):763-774
    [105] P. Cojocaru,A. Vicenzo,P.L. Cavallotti. Electrodeposition of Au/nanosized diamond composite coatings. Journal of Solid State Electrochemistry,2005,9(12):850-858
    [106] M. Fujishige,W. Wongwiriyapan,F. Wang,et al. Gold-carbon nanotube composite plating film deposited using non-cyanide Bath. Japanese Journal of Applied Physics,2009,48(7):217-219
    [107]刘彦军. Au/nano-SiC复合镀层的制备及性能测试[硕士学位论文].天津:天津大学,2006
    [108]吴元康,余昆,熊晓辉.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究.电镀与涂饰,2002,21(3):6-10
    [109] L. Benea,P.L. Bonora, A. Borello,et al. Effect of SiC size dimensions on the corrosion wear resistance of the electrodeposited composite coating. Materials and Corrosion,2002,53(1):23-29
    [110] B. Szcygiel,M. Kolodziej. Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochimica Acta,2005,50(20):4188-4195
    [111]龙有前,肖鑫,钟萍,等. Zn-Al合金镀层耐蚀性研究.腐蚀科学与防护技术,2006,18(3):217-219
    [112] Y. Zhou,X. Peng,F. Wang. Size effect of Al particles on the oxidation of electrodeposited Ni-Al composite coatings. Oxidation of Metals,2005,64(3-4):169-183
    [113]谭澄宇,梁英. Ni/SiO2复合电镀层高温氧化性能研究.表面技术,2000,29(6):16-19
    [114]朱立群,李卫平,钟群鹏. ZrO2微粉在Ni-W-B非晶态复合镀层中的作用研究.机械工程材料,1998,22(4):9-11
    [115]李君,王殿龙,胡信国. Ni-PSZ复合镀层750℃氧化行为的研究.腐蚀科学与防护技术,1996,8(2):130-133
    [116] X. Peng,T. Li,W. Wu. Effect of La2O3 Particles on the Oxidation of Electrodeposited Nickel Films. Oxidation of Metals,1999,51(3-4):219-315
    [117]张文峰,朱荻.含纳米ZrO2颗粒复合电铸层高温氧化行为研究.材料热处理学报,2006,27(5):114-117
    [118]朱立群,李卫平.电沉积Ni-W非晶态合金复合镀层研究.功能材料,1999,30(1):85-87
    [119] Y.J. Xue, H.B. Liu, M.M. Lan,et al. Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2 nanocomposite coating,Surface and Coatings Technology, 2010,204:3539-3545
    [120] L. Benea,P. L. Bonora,A. Borello,et al. Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating.Wear,2002,249:995-1003
    [121]郑筱梅,李自林,童洁,等.镍基纳米氧化铝化学复合镀研究.表面技术,2003,32(5):23-25
    [122]王健雄,陈小华,彭景翠,等.碳纳米管镍基复合镀层材料耐腐蚀性能的初步研究.腐蚀与防护,2002,23(1):6-9
    [123] P. Baghery, M. Farzam,A.B. Mousavi,et al. Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear,Surface and Coatings Technology,2010,204:3804-3810
    [124]周绍民.金属电沉积-原理与研究方法.上海:上海科学技术出版社,1987
    [125]王秦生.超硬材料电镀制品.北京:中国标准出版社,2001
    [126]李荻.电化学原理.北京:北京航空航天出版社,1999
    [127]查全性.电极过程动力学导论.北京:科学出版社,2002
    [128]何立芳.电沉积纳米复合镀层的工艺及性能研究[D].昆明:昆明理工大学,2006
    [129] J. Franser. Mechanism of composite electroplating. Metal finishing,1993,43(6):97-102
    [130] N.Guglielmi. Kinetics of the deposition of inert particles from electrolytic baths. Journal of the Electrochemical Society,1972,119(8):1009-1012
    [131] J.P. Celis,J.R. Roos, C. Buelens. A mathematical model for the electrolytic codepositionof particles with a metallic matrix. Journal of the Electrochemical Society,1987,134(6):1402-1408
    [132] Valdes J L. Electrodeposition of Colloidal Particles. Journal of electrochemical society,1987,134(4):C223-C225
    [133] S.H. Yeh,C.C. Wan. A Study of SiC/Ni composite plating in the watts bath. Plating and Surface Finishing,1997,84(3) :54-57
    [134] J. Fransaer,J.P. Celis,J.R. Roos. Analysis of the electrolytic codeposition of non-Brwnina particles with a metals. Journal of the Electrochemical Society,1992,139(2):413-425
    [135] B.J. Hwang,C.S. Hwang. Mechanism of codeposition of silicon carbide with electrolytic cobalt. Journal of the Electrochemical Society,1993,140(4):C979-C984
    [136] I. shao,P.M. Vereecken,R.C. Cammarata,et al. Kinetics of particle codeposition of nanocomposites. Journal of the Electrochemical Society,2002,149(11):C610-C614
    [137] R.P. Socha,K. Laajalehto,P. Nowak. Influence of the surface properties of silicon carbide on the process of SiC particles codeposition with nickel. Colloids and Surfaces A,2002,208:267-275
    [138] X.C. Li,Z.W. Li. Nano-sized Si3N4 reinforced NiFe nanocomposites by electroplating. Materials Science and Engineering A,2003,358:107-113
    [139] A. Lozano-Morales,E.J. Podlaha. The effect of Al2O3 Nanopowder on Cu electrodeposition. Journal of the Electrochemical Society,2004,151(7):C478-C483
    [140]辜敏,杨防祖,黄令,等.高择优取向铜镀层的电化学形成及其表面形貌.物理化学学报,2002,18(11):973-978
    [141]王为,郭鹤桐,高建平,等.复合镀层中微粒与基质金属间的相互作用.天津大学学报,1997,30(6):801-805
    [142] M.C. Chou , M.D. Ger, S.T. Ke , et al. The Ni–P–SiC composite produced by electro-codeposition. Materials Chemistry and Physics,2005,92:146-151
    [143] D. Golodnitsky, N.V. Gudin,G.A.Volyanuk. Study of nickel-cobalt alloy electrodeposition from a sulfamate electrolyte with different anion additives. Journal of the Electrochemical Society,2000,147 (11):4156-4163
    [144] E. Gómez,S. Pané,X. Alcobe,et al..Influence of a cationic surfactant in the properties of cobalt-nickel eletrodeposits.Electrochimica Acta,2006,51:5703-5709
    [145]武钢,李宁,周德瑞,等. Al2O3纳米粒子对Co-Ni合金异常共沉积电化学行为的影响.物理化学学报,2004,20(10):1226-1232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700