煤层气发动机空燃比动态建模及前馈MAP校正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电控技术是提高煤层气发动机燃烧效率、降低排放和提高动力性的重要手段。在煤层气发动机控制系统分析和设计过程中,空燃比动态建模和前馈MAP校正方法是需要研究的重要内容,也是电控单元控制软件优化设计和控制策略开发的基础。
     本文研究主要内容如下:
     (1)为了描述煤层气发动机空燃比的动态特性,建立了多变量空燃比块联模型。利用稳态工况实验数据拟合的多项式,补偿模型中的静态非线性增益。借助3个准则函数选择动态模型的阶次,基于发动机动态工况实验数据,分别采用预滤波的频率权值修正(SM)法和输出误差(OE)法辨识空燃比动态模型的参数。模型验证结果表明,基于SM算法的块联模型能够相对较好地捕获发动机空燃比的瞬态偏移。
     (2)为了描述煤层气发动机强烈的非线性和补偿动态工况下的延迟,基于减法聚类算法(SCA)和在线聚类算法(OCA),分别建立了用于空燃比反馈控制的ANFIS模型和自适应模糊模型。利用同向激励和反向激励下的动态数据,对两种模型预测空燃比的能力进行了检验和交叉验证。结果表明,尽管两种模型都能够补偿发动机各种延迟、描述排气空燃比的瞬态偏移,但基于OCA算法自适应模型,由于采用参数递推算法和适当选择的规则半径,通过在线修正和调整模型参数,可以更好地实时预测空燃比的变化,具有更高的精度。
     (3)为了优化模糊空间划分和进一步改善建模精度,考虑聚类中心的关联性,将协同系数引入G-K聚类算法中,结合系统性能指标和3种聚类数判定准则(SC、S、XB),构建了基于G-K协同聚类算法的发动机空燃比模糊模型。模型验证结果表明,与G-K聚类算法的模糊模型相比,基于G-K协同聚类算法的模糊模型具有更好的鲁棒性,更适合作为空燃比动态模型。
     (4)为了尽可能消除稳态控制偏差和优化发动机控制MAP,借助于辨识的发动机稳态模型,研究了基于PI型、PID型和自适应PID型迭代学习控制律的稳态空燃比自学习校正算法;为了补偿动态非线性和延迟引起的瞬态空燃比偏移,借助于基于协同聚类算法的空燃比动态模型,研究了基于PID型和自适应PID型迭代学习律的动态空燃比校正方法。仿真结果表明,自适应PID学习控制算法具有最快的收敛速度和最小的学习误差,更适合煤层气发动机位置控制参数的在线学习和调整;基于自适应PID学习控制律的方法通过快速的误差反馈学习和实时跟踪,具有更好的收敛性能和瞬态空燃比控制能力。
The electronic control technique is an important way to heighten combustion efficiency, reduce exhaust gas and improve power performance for a coal-bed gas engine. During analysising and designing the control system, the study on dynamic air fuel ratio modeling method and feedforward MAP correcting method for a coal-bed gas engine are the key content, and it is also a basis for optimal design of control softwares and development of the control strategy in an electronic control unit.
     The main work as follows:
     (1) In order to describe the dynamic characteristic of air fuel ratio for the coal-bed gas engine, multivariable block-link model of the air fuel ratio was constructed. The polynomical fitted with the steady-state operation experiment data was used to compensate for static nonlinear gain of the model. By means of three kinds of criterione functions, the order of the dynamic model was chosen. Based on the dynamic operation experiment data, the parameters of the dynamic model were identified by the Steiglitz-McBride (SM) method and the output error method (OE). Model validation results show that a block-link model based on SM algorithm can capture transient excursion of air-fuel ratio more accurately.
     (2) In order to describe the strong non-linear characteristics and to compensate for the delay of the coal-bed gas engine during dynamic operation conditions, based on subtractive clustering algorithm (SCA) and online clustering algorithm (OCA), the ANFIS model and adaptive fuzzy model for air fuel ratio feedback control were constructed, respectively. Using dynamic operation experiment data with the same direction excitation and reverse direction excitation, the predicting capability of air fuel ratio was verified and cross-validated. Results show that although two models can compensate for the different engine delays and accurately describe transient excursion of exhaust air-fuel ratio, due to using recursive algorithms for parameters and appropriate choice for rule radius, and by means of online correction and adjustment, the adaptive model based on on-line clustering algorithm can better predict the real-time changes of air fuel ratio, and has higher accuracy.
     (3) In order to optimize fuzzy partition space and further improve the modeling precision, considering the relevance of cluster centers and introducing collaborative coefficients to G-K clustering algorithm, based on G-K collaborative clustering algorithm, the air fuel ratio fuzzy model was built with the combination of system performance index and three kinds of clustering evaluation criteria (SC、S、XB). The model validation results show that the fuzzy model based on G-K collaborative clustering algorithm has better robustness than that based on G-K clustering algorithm, and is more suitable as an air fuel ratio dynamic model.
     (4) In order to eliminate steady control diviation and optimize the engine control MAP as much as possible, by means of an identified steady-state model, the self-learning correction algorighms for steady-state air fuel ratio control were examined based on PI、PID and adaptive PID iterative lerning control law. To compensate for transient state excursion of air fuel ratio resulting from dynamic non-linearityand delays, with the help of an air fuel ratio dynamic model with G-K collaborative clustering algorithm, the dynamic correcting method for air fuel ratio were studied based on PID and adaptive PID iterative learning control law. Simulation results show that adaptive PID learning control algorithm has the fastest convergence rate and minimum learning error, and is much more suitable to online learning and adjusting position control parameters for the coal-bed gas engine. Through error feedback learning and real-time tracking, the method based on adaptive PID lerning congrol algorithm has better convergency and ability to control transient air fuel ratio.
引文
[1] Wegrzyn J E, Litzke W L. DOE/BNL Liquid NaturalGas Heavy Vehicle Program[R]. SAE Paper, No. 981919, 1998.
    [2]乔安平.一种新颖的瓦斯气内燃机空燃自动混合控制装置[J].天然气工业, 2002,22(3):99-102.
    [3] Isermann R, Schaffnit J, Sinsel S . Hardware-in-the-Loop Simulation for the Design and Testing of Engine Control Systems [J]. Control Engineering Practice, 1999, 7(1): 643-653.
    [4] Stobart R K, May A, Challen B J, et al .New Tools for Engine Control Systems Development [J]. Annual Reviews in Control, 1999, 23:109-116.
    [5] Toshihiro A, Takehiko K .Throttle-Control Algorithm for Improving Engine Response Based on Air-Intake Model and Throttle-Response Model[J]. IEEE Transactions on Industrial Electronics, 2006, 53(3): 915-921.
    [6] Muske K R .A Model-based SI Engine Air Fuel Ratio Controller [A] // Proceedings of the 2006 American Control Conference[C]. Minneapolis, Minnesota, USA, June 14-16, 2006:
    [7] Yazdanpanah M J, Kalhor A .Air/Fuel Ratio Control in SI Engines Using a Combined Neural Network & Estimator[A] // Proceedings of the 2003 IEEE Conference on Control Applications[C]. June 23-25, 2003, 1:347-352.
    [8] Scattolini R, Miotti A, Lorini G, et al .Modeling, Simulation and Control of an Automotive Gasoline Engine [A] // Proceedings of the 2006 IEEE International Conference on Control Applications[C]. Munich, Germany, October 4-6, 2006:2748-2753.
    [9] Donald, Dobner A. Mathematical Engine Model for Development of Dynamic Engine Control [R]. SAE Paper, No.800054, 1980.
    [10] Andre R, Jobst R, Robert L. A New Calibration System for ECU Development[R]. SAE Paper No.2003-01-0131, 2003.
    [11] Aquino C F. Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine[R]. SAE Paper, No.810494, 1981.
    [12] Hendricks E and Sorenson S C. Mean Value Modeling of Spark Ignition Engines[R]. SAE Paper, No.900616, 1990:1359-1373.
    [13] Stephen Y, Melinda S .Crank-angle Domain Modeling and Control for Idle Speed[R]. SAE Paper, No.970027, 1997.
    [14] Stephen Y and Melinda S, Comparative analysis for idle speed control: a crank-angle domain viewpoint[R]. Proceeding of the American controlConference, Albuquerque, New Mexico, June 1997:278-283.
    [15]李建秋,欧阳民高.汽车发动机各缸工作均匀性的反馈控制[J].清华大学学报(自然科学板).1999, 39(11): 65-68.
    [16] Gangopadhyay A, Meckl P .Multivariable PI Tuning and Application to Engine Idle Speed Control[C]. Proceedings of American Control Conference: 2678-2682, June 1999.
    [17] Salem A A, Breitinger J, Traver M. Electronic Throttle Simulation Using Nonlinear Hammerstein Model [J]. SAE Papers No. 2006-01-0112, 2006.
    [18] Perez E, Blasco X, Garcia N S. Diesel Engine Identification and Predictive Control Using Wiener and Hammerstein Models [J]. IEEE Procedding of the 2006 IEEE International Conference on Control Applications Munich, Germany, October 4-6, 2006.
    [19]马标.煤层气发动机空燃比控制中若干问题的研究[D].合肥,合肥工业大学,2007.
    [20] Dong J R.Research on the technique of nonlinear combination modeling and forecasting based on fuzzy inference system [J]. Control Theory and applications, 2001, 18(3): 369~374.
    [21] Khalid S A, Adel A G, Mohsin M J. Adaptive Air-Fuel Ratio Control of an SI Engine Using Fuzzy Logic Parameters Evaluation [J]. SAE Papers No, 2000-01-1246. 2000.
    [22] Liu G P, Kadirkamanathan V, Billings S A. On-line Identification of Nonlinear Systems using Volterra Polynomial Basis Function Neural Networks[J].Neural Networks, 1998,5(11): 1645-1657.
    [23] Mamdani E H, Assilian S. An Experiment in Linguistic Synthesis with A Fuzzy Logic Controller [J], Int, J Man-machine Studies, 1975, 7(1):1-13.
    [24] Takagi T, Sugeno M. Fuzzy Identification of Systems and its Application to Modeling and Control [J]. IEEE Transactions on Fuzzy Systems, 1985, 15(1):116-132.
    [25] Wang H W, Hen H, Huang K.A method of fuzzy modeling for nonlinear systems[C].Third World Congress on Intelligent Control and Automation, Hefei, 2000, 2163-2166.
    [26] Dong J R.Research on the technique of nonlinear combination modeling and forecasting based on fuzzy inference system [J]. Control Theory and applications, 2001, 18(3): 369-374.
    [27] Leski J M. TSK-fuzzy modeling based onε-insensitive learning. IEEE Transactions on fuzzy systems [J]. 2005. 13(2):181-193.
    [28] Zbynik S, Michael V, et al. Multilevel Predictive Models of IC Engine for Model Predictive Control Implementation[C]. SAE Paper, No. 2008-01-0209. 2008.
    [29] Khalid S A, Adel A G, Mohsin M J. Adaptive Air-Fuel Ratio Control of an SI Engine Using Fuzzy Logic Parameters Evaluation [C]. SAE Papers No, 2000-01-1246. 2000.
    [30] Hafiz S K. Adaptive Fuzzy Neural Networks with Global Clustering[C]. SAE Paper, No. 2004-01-0294, 2004.
    [31]蔡开龙,谢寿生,吴勇.基于T-S模糊模型的航空发动机模型辨识[J].推进技术, 2007, 28(2): 194-198.
    [32] Julius F, Anca R, Takahiro U. A Fuzzy Model for Estimating the Remaining Lifetime a Diesel Engine [J]. IEEE, Annual Conference of the North American Fuzzy information Processing Society. San Diego, CA, United States, June 24, 2007-June 27, 2007: 473-477.
    [33] Chilukuri V, Virkler M R. Validation of HCM Pedestrian Delay Model for interrupted facilities [J]. Journal of Transportation Engineering, 2005, 131(12): 939-945.
    [34]刘春,张来斌,王朝晖.车用发动机运行状态的模糊聚类与识别[J].内燃机学报,2004,22(5):470-473.
    [35]李顺林.基于T-S模糊模型的船舶柴油机动态模型辨识研究[D].上海,上海海事大学, 2005.
    [36] Copp D G, burnham K J and Lockett F P, Fuzzy Modeling Techniques Applied to an air/fuel Ratio Control Systems, the Institution of Electrical Engineers. IEEE, Savoy place, London WC2R OBL. UK (1998).
    [37] S W Wang, D L Yu, J B Gomm, et al. Adaptive neural network model based predictive control for air-fuel ratio of SI engines [J]. Engineering Application of Artificial Intelligence, 2006, 19(2): 189-200.
    [38] R Isermann, N Mueller. Nonlinear identification and adaptive control of combuxtion engines[J]. IFAC-Workshop on Adaptation and Learning in Control and Signal Processing, 29-31, August, Como, Italy, 2001.
    [39] Fekete N P, Nester U, Gruden I, et al . Model-Based Air-Fuel Ratio Contro of a Lean Multi-Cylinder Engine[R]. SAE Paper, No. 950846, 1995.
    [40] Cui Hong-wei, Liu Yi-fang, Zhai Yu-jian .A Study of Air-Fuel Ratio and EGR Control System for LPG Engines. Proceedings of the 4th World Congress on Intelligent Control and Automation: 1376-1379, Shanghai, China , June 10-14 2002.
    [41] Podnar D J, Kubesh J T, Colucci C P .Development and Application ofAdvanced Control Techniques to Heavy-duty Natural Gas Engines[C]. SAE Paper No.961984, 1996.
    [42] Nicolo C. Fast Algorithm for Individual Cylinder Air-Fuel Ratio Control[C]. SAE Paper, No. 2005-01-3759, 2005.
    [43] Isermann R, Mueller N. Nonlinear Identification and Adaptive Control of Combustion Engines[C]. IFAC-Workshop on Adaptation and Learning in Control and Signal Processing, Como, Italy, August 29-31, 2001.
    [44] Javaherian H, Liu De-Rong, Zhang Yi, et al .Adaptive Critic Learning Techniques for Automotive Engine Control[A] // Proceeding of the 2004 American Control Conference [C]. Boston, Massachusetts, June 30-July 2, 2004: 4066-4071.
    [45]于少娟,齐向东,吴聚华.迭代学习控制理论及应用[M].北京:机械工业出版社, 2005.
    [46] Tayebei A. Adaptive Iterative Learning Control for Robot Manipulators. Automatica, 2004, 40: 1195-1203.
    [47] Hendricks E,Chevalier A, Jensen M. Event Based Engine Control: Practical Problems and Solutions [R]. SEA Papers, No. 950008, 1995.
    [48] Powell J D, Fekete N P. Chang C F. Observer-Based Air Fuel Ratio Control [J]. IEEE Control Systems Magazine, 1998, 18(5):72-83.
    [49] Chevalier A, Vigild C W, Hendricks E. Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Control Applications [R]. SAE Papers, No. 2000-01-0260, 2000.
    [50] Salem A A, Breitinger J, Traver M. Electronic Throttle Simulation Using Nonlinear Hammerstein Model [J]. SAE Papers, No. 2006-01-0112, 2006.
    [51] Perez E, Blasco X, Garcia N S. Diesel Engine Identification and Predictive Control Using Wiener and Hammerstein Models [J]. IEEE Proceding of the 2006 IEEE International Conference on Control Applications Munich, Germany, October 4-6, 2006.
    [52]石军平.一种预混合点燃式气体燃料发动机的平均值建模[D].合肥.合肥工业大学.
    [53]王馨.煤层气发动机热模式MAF传感器动态建模及基于观测器的空燃比控制[D].合肥.合肥工业大学.
    [54]张莲.火化点火式点燃式气体燃料发动机控制模型及动态仿真研究[D].合肥:合肥工业大学.
    [55]王学翠.神经网络在煤层气发动机控制中的应用[D].合肥.合肥工业大学,2007.
    [56] Akifumi Y, Mamoru N and Makio I. A Note on Sample Size Determination for Akaike Information Criterion (AIC) Approach to Clinical Data Analysis [J].Communication in Statistics-Theory and Methods, 2005, 34(12):2331-2343.
    [57] Yen J, Wang L. Application of Statistical Information Criteria for Optimal Fuzzy Model Construction [J]. IEEE Transactions on Fuzzy Systems. 1998, 6(3):362-372.
    [58] Manzie C, Palaniswami M, Ralph D, et al .Model Predicative Control of a Fuel Injection System with a Radial Basis Function Network Observer [J]. Journal of Dynamic Systems Measurement and Control Transactions of the ASME, 2002, 124(4): 648-658.
    [59] Chang C F, Fekete N P, Powell J D, et al .Engine Air-Fuel Ratio Control Using an Event-Based Observer, [R]. SAE Paper, No. 930766, 1993.
    [60] Chevalier A, Vigild C W, Hendricks E .Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications, [R]. SAE Paper, No. 2000-01-0260, 2000.
    [61] Zhai Y J, Yu D L .Neural Network Model-based Automotive Engine Air/Fuel Ratio Control and Robustness Evaluation [J]. Engineering Applications of Artificial Intelligence, 2009, 22(2): 171-180.
    [62] Hendricks E, Chevalier A, Jensen M, et al .Modelling of the Intake Manifold Filling Dynamics [R]. No. 960037, 1996.
    [63] Sawut U, Takigawa B, Konagai G, et al .Modeling and Engine Speed Control of LPG Injection System, [R]. SAE Paper, No. 2008-01-1020, 2008.
    [64] Fekete N P, Nester U, Gruden I, et al .Model-Based Air-Fuel Ratio Control of a Lean Multi-Cylinder Engine [R]. SAE Paper, No. 950846, 1995.
    [65] Arsie I, Pianese C, Sorrentino M .Development and Real-Time Implementation of Recurrent Neural Networks for AFR Prediction and Control[R]. SAE Paper, No. 2008-01-0993, 2008.
    [66] Salahshoor K, Gharibshaiyan S. Online Multivariable Identification of a Nonlinear Distillation Column Using an Adaptive Takagi-Sugeno Fuzzy Model [J]. IEEE Transactions on Fuzzy Systems, 2005, 11(6): 783-795.
    [67] Yang Y, Ren J. Adaptive Fuzzy Robust Tracking Controller Design via Small Gain Approach and its Application [J]. IEEE Transactions on Fuzzy Systems, 2003, 11(6): 783-795.
    [68] Lee S H, Walters S D, et al . An Adaptive Neuro-fuzzy Modelling of Diesel Spay Penetration [R]. SAE Paper, No. 200524064, 2005.
    [69] Bortolet P, Boverie S. Fuzzy Modeling and Control of an Automotive Engine Air Inlet [R]. SAE Paper, No.980797, 1998.
    [70] Alexandros P, Richard S .Air-path Based on Fuzzy Parameters Estimation Real-time Adaptive Predictive Control of the Diesel Engine [R]. SAE Paper, No.2007-01-0971, 2007.
    [71]滕勤,马标,左承基,等.煤层气发动机稳态空燃比前馈控制脉谱生成[J].农业机械学报, 2008, 39(11): 13-17.
    [72]石军平,滕勤,王雪翠,等.基于线性神经网络的煤层气发动机空燃比动态建模[J].小型内燃机与摩托车, 2009, 38(6): 14-17
    [73] Takagi T, Sugeno M. Fuzzy Identification of Systems and its Application to Modeling and Control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1):116-132.
    [74] Pawlak Z. Rough Sets-theoretical Aspects of Reasoning about Data[M]. London: Kluwer Academic Publishers, Dordrecht, 1991.
    [75]苏健,高济.粗糙决策支持方法[J].计算机学报,2003,26(6):737-745.
    [76] Angelov P P, Filev D P. AN Approach to Online Identification of Takagi-Sugeno Fuzzy Models [J].IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 484-498.
    [77] Li L, Hou C Z. The Study of Application of FCMAC Neural Network in the Industrial process On-line Identification and Optimization[C]. Proceeding of the 9th International Conference on Neural Information Processing, Orchid Country Club, Singapore, 2002, 4(11):1734-1738.
    [78]张恩勤,施颂椒,翁正新.一类基于PID控制的新型模糊控制方法.上海交通大学学报,2000,34(5):630-634.
    [79] Zhai Y J, Yu D L. A Neural Network Model Based MPC of Engine AFR with Single-Dimensional Optimization[C]. Proceedings of the 4th International Symposium on Neural Networks, Nanjing, China, 2007.
    [80] Tan Y H, Saif M .Nonlinear Dynamic Modeling of Automotive Engines Using Neural Networks[C]. Proceedings of the IEEE International Conference on Control Applications, Hartford, US, 1997.
    [81] Shayler P J, Goodman M S, Ma T .Transient Air/Fuel Ratio Control of an S.I. Engine Using Neural Networks[R]. SAE Paper, No.960326, 1996.
    [82] Isermann R, M?ller N .Design of Computer Controlled Combustion Engines [J]. Mechatronics, 2003, 13(10): 1067-1089.
    [83] Copp D G, Burnham K J and Lockett F P, Fuzzy modeling techniques applied to an air/fuel ratio control systems, the institution of Electrical Engineers. IEEE, Savoy place, London WC2R OBL. UK (1998).
    [84] Takagi T, Sugeno M. Fuzzy identification of System and Its Application to Modeling and Control [J]. IEEE Transaction on Systems Man and Cybernet, 1985, 15(1):16-32.
    [85] Gaweda A E, Zurada J M, Setiono R. Input Selection in Data Driven FuzzyModeling [C] / /Proceedings of IEEE International Fuzzy Systems Conference. 2001: 1251-1254.
    [86] Cordón O and Herrera F. A Proposal for Improving the Accuracy of Linguistic Modeling [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(3): 335-344.
    [87] Sugeno M and Takahiro Y. A Fuzzy Logic Based Approach to Qualitative Modeling [J]. IEEE Transactions on Fuzzy Systems, 1993, N0.1 (1): 7-33.
    [88]贾立,俞金寿.神经模糊系统中模糊规则的优选[J].控制与决策,2002,17(3): 306-314.
    [89] Gomez-Skarmeta A F, Delgado M, Vila M A. About the Use of Fuzzy Clustering Techniques for Fuzzy Model Identification [J]. IEEE Fuzzy sets and system. 1999, 106(2): 179-188.
    [90] Abonyi J, Babuska R and Szeifert F. Modified Gath-Geva Fuzzy Clustering for Identification of T-S Fuzzy Models [J] IEEE Transactions on Systems. Man, Cybern. 2002, 32(5): 612-621.
    [91] Pedrycz W. Collaborative Fuzzy Clustering [J]. IEEE Pattern Recognition Letters. 2002, 23(14): 1675- 1686.
    [92] Pedrycz W, Rai P. Collaborative Clustering with the Use of Fuzzy C-Means and its Quantification [J]. IEEE Transactions on Fuzzy Sets and Systems, 2008, 159(18): 2399-2427.
    [93]刘福才.非线性系统的模糊模型辨识及其应用[M].国防工业出版社. 2006:102-110.
    [94] R Babuska,P J Vanderveen,U Kaymak. Improved Covariance Estimation for Gustafson-Kessel Clustering [J]. IEEE Proceedings of the IEEE International Conference on Volume, 12-17 May, 2002, 2(1): 1081-1085.
    [95]滕勤,杨瑜,左承基.煤层气发动机混合气充量系数模型的辨识[J].农业机械学报(S100-1298), 2007, 38(3): 47-51.
    [96]侯志祥,吴义虎,申群太.车用汽油机过渡工况空燃比的先进控制策略[J].内燃机学报,2003,21(5):369-373.
    [97] Xie X L, Beni G. A Validity Measure for Fuzzy Clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-846.
    [98] Bensaid A M, Hall L O, Bezdek J C, et al. Validity-Guided (Re) Clustering with Applications to Image Segmentation[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(2):112-123.
    [99]刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008
    [100]孙明轩,黄宝健.迭代学习控制[M].北京,国防工业出版社,1999.
    [101] Jian-Xin Xu, Zhihua Qu. Robust Iterative Learning Concrol for a Class of Nonlinear Systems [J]. Automatica,1998, 34(8): 983-988
    [102]滕勤.点燃式煤层气发动机系统建模及空燃比控制研究[D].合肥工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700