船舶分段制造车间的模块空间调度模型及算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶工业是为航运业、海洋开发及国防建设提供技术装备的综合性产业,对关联产业有较强的带动作用。近20年来,我国船舶工业获得了高速发展,综合实力稳步提升,已挤入世界造船业第一梯队,但仍处于由大到强的转变过程中。在关键造船指标上,如年人均造船吨位、人均年产值和造船周期与日韩等有巨大的差距。尤其随着我国经济的发展和市场需求的增加,传统的低劳动力成本优势逐渐消失,船舶制造业直面日韩造船业严峻的压力。改进现有的造船模式,缩短造船周期,建立以“中间产品为导向”的现代造船模式,是关系我国船舶制造业生死存亡与发展壮大的重要问题,是提高船舶制造企业参与国际市场竞争能力的战略举措。
     模块化造船应用模块化设计与制造的思想,改进传统船舶设计和制造流程,能够显著缩短造船周期,大大降低单船分摊的场地、设备和工装等费用,加快资金周转,提高市场竞争力。在这种模式下,船体进行模块划分、分阶段分区域加工和船坞大合拢,生产计划及其动态控制显得尤为关键。只有制订准确的生产计划、有效配置物料、设施和人工等资源,并对全生产过程进行动态控制,才能发挥模块化造船的优势。
     本文针对船舶制造关键路径上最耗时且占用船厂最宝贵资源的船舶分段制造车间的生产调度问题,以缩短模块制造最大完工时间为目标,在工序约束、空间约束和资源约束下寻求合理的模块空间布局和加工次序,建立模块空间调度模型并设计模块空间调度算法。本文主要解决如下几个问题:
     (1)分析模块和工作台特征、船舶制造全过程资源配置和设施使用状况,以及影响船舶制造周期的典型约束,建立模块、工作台和典型约束的数学描述,为构建模块空间调度数学模型建立数学基础;
     (2)在分析船舶模块的二维平面布局问题基础上,引入时间维度提出模块排序和空间布局的三维描述,构建以最小化最大完工时间为目标的船舶模块空间调度数学模型;
     (3)针对模块空间调度的NP-hard特性,按照flow-shop和job-shop两种生产类型提出分批和不分批调度算法。并且根据模块的形状特性、工艺特性和资源约束特性,设计一系列启发式模块空间调度策略,并基于这些策略开发启发式模块空间调度算法;
     (4)针对船舶模块空间调度问题复杂多样,如需要满足准时交货、最小化最大完工时间、最小化最大延误,以及提高设备设施使用效率等目标,本文还结合评价船舶制造企业竞争力的关键指标,以最小化最大完工时间和准时交货为目标,提出一种满足多目标的模块空间调度方法;
     (5)基于启发式模块空间调度算法构建了船舶模块空间调度系统,并应用船厂实际模块数据进行仿真验证。将文中提出的启发式算法与栅格算法、遗传算法、Cplex求解法和人工调度方法进行对比。结果表明,综合完工时间、空间利用率、系统计算时间及解决大规模模块调度问题等几个指标,提出的启发式模块空间调度算法有明显的优势。
     船舶是大型产品,属于订单式制造类型。船舶模块空间调度方法可拓展至其它大型单件装备制造企业,如火箭制造和飞机制造等,为有效提高这类装备制造企业的生产车间调度水平和效率提供参考。
Shipbuilding is an integrated industry that provides huge and heavy furnishments for shipping, ocean developing and national defence, which has great promotion to the industries related. In recent 20 years, shipbuilding industry of China has gained high-speed progress, and China has become one of the greatest countries in shipbuilding turnout in the world. But there is a huge gap between China and other powerful countries such as Japan and Korea in some key shipbuilding indexes, such as yearly DWT per worker, yearly turnover per worker and shipbuilding period. With the great economic development and the increase of market demands, However, China is still weak in shipbuilding competition especially in the traditional advantage of low human power cost. Chinese shipbuilding companies encounter cruel pressure from Japan and Korea. It is a very important for Chinese shipbuilding companies to improve existing construction mode, shorten shipbuilding period and implement modern shipbuilding mode guided by semifinished products. It is also a strategic measure for the companies to improve the competition in participating in international shipbuilding market.
     Modular shipbuilding is an advanced mode based on modular design and modular fabrication. Under this mode, ship design and fabrication procedure can be improved, shipbuilding period can be thus condensed obviously, the expenses of fields, equipments and fabrication per ship can be reduced greatly. Hence, capital turnover can be expedited and market competition can be improved. Through modular shipbuilding mode, hull is decomposed into many modules, modules are fabricated based on process stage and area, and hull erection in dock. In the mode, production plan and dynamic control on it is very important. To exert the advantage of modular shipbuilding, production plan must be drawn exactly, resources such as material, facilities and human must be distributed effectively, and whole production process shall be controlled dynamically.
     Module fabrication in assembly shop, which is on critical production path, consumes most periods and occupies large quantity of expensive facilities. This dissertation takes it as the research focus to seek optimal modular layouts and processing sequence under the constraints of technology, space and resources. A modular spatial scheduling model is established and scheduling system minimizing makespan is developed in the dissertation. Several key issues are addressed in the dissertation as follows:
     (1) The characteristics of module and workspace, resources distribution in the whole process, facilities utilization, and typical constraints on shipbuilding are analyzed in a mathematical method. A computer recognition method for module, workspace and typical constraints is established. This lays the mathematical foundation for developing modular spatial scheduling model.
     (2) On the basisi of analysis on the problem of two-dimensional projection of shipbuilding module, and by adding a dimension of time, the modular spatial scheduling problem is put forward in a three-dimensional view. A mathematical model of modular spatial scheduling in shipbuilding is established with the objective of minimizing makespan.
     (3) Considering the NP-hard features of modular spatial scheduling, algorithms for batch and non-batch are given according to the production styles of flow-shop and job-shop. Based on the shape features, technology features and resources constraints, several heuristic modular spatial scheduling strategies are designed. Moreover, a heuristic modular spatial scheduling algorithm is developed using the above strategies.
     (4) Condidering that modular spatial scheduling is complex and diverse, such that many objectives should be satisfied such as on-time delivery, minimizing makespan, minimizing maximal tardy and improving facilities utilization ratio and so on, a multi-objective modular spatial scheduling algorithm is proposed with the objective of minimizing makespan and on-time delivery.
     (5) Modular spatial scheduling system in shipbuilding is established and exemplified with real data from a shipyard. The proposed algorithm is compared with grid algorithm, genetic algorithm, Cplex and manual methods. The result shows that the algorithm has comprehensive advantages in makespan, space utilization, computation time and solving large quantity modular scheduling issue.
     Ships are very large products and manufactured under make-to-order mode. The modular spatial scheduling algorithm developed in this dissertation can be extended to other similar heavy equipment manufacturing industries such as rockets and airplanes. The scheduling algorithms proposed in this dissettation can be made as references for improving production scheduling and manufacturing efficiency of such manufacturing industries.
引文
[1]政府报告.船舶工业调整和振兴规划.国务院. 2009, 9.
    [2]高晓春.造船行业09下半年展望与投资[R/OL].中信建投——行业深度研究报告, 2009,6,19. http://research.csc.com.cn.
    [3]造船业三大指标[DB/OL].中国船舶在线, 2009, 10, 20. http://www.shipol.com.cn /ztlm/ cbxyyxfxysczs/tjsj/121172.htm.
    [4]张明青.世界造船业发展现状.船舶物资与市场. 2006, 6: 16-18.
    [5]研究报告.关于上海造船工业国际竞争力问题的研究.上海市造船工程学会. 2000, 3.
    [6]世界造船业五年发展变化天翻地覆[R/OL].集装箱信息. http://www.portcontainer.com/ b_information/trade/t20060521_9431.asp.
    [7]世界船厂分布图[R/OL].国际船舶网. http://www.eworldship.com/ship/wordship.asp.
    [8]陈强.中心制造船模式的研究与与应用[D].哈尔滨.哈尔滨工程大学博士论文. 2001.
    [9]王承文.现代造船模式研究[D].哈尔滨.哈尔滨工程大学博士论文. 2006,5.
    [10] Storch R. L. and Sukapanpotharam S.. Development of repeatable interim products utilizing the common generic block concept. Journal of ship production. 2002, 18(4): 195-202.
    [11]何学发,李维博.模块造船技术及其发展综述.造船技术. 1998, 215:10-19.
    [12]陈强.上海外高桥造船基地与生产中心造船新模式建设.上海造船. 2001, (2):42-47.
    [13]陈强.生产中心造船新模式的研究与应用.船舶工业技术经济信息. 2001, (189): 26-33.
    [14] Lilley D., Degraw K. and Wallen R.. Development and implementation of computer simulation models for the manufacturing of outfitting components. Journal of ship production. 2001, 17(1): 16-26.
    [15] Huang C. C. and Kusiak A.. Modularity in design of products and systems. IEEE Transactions on systems, man and cybernetics PARTA: System and humans. 1998, 28(1): 66-77.
    [16] Kumar A. A. and Kazuhiro A.. Evaluation and management of the cost and risk of weld deformations in modular ship construction. Journal of Ship Production. 2005, 21(1): 8-13.
    [17]陈强.论中国造船企业的核心竞争力.中国造船. 2004, (1): 1-7.
    [18] Bellman R., Esogbue A. O., Nabeshima I.. Mathematical aspects of scheduling and applications. New York: Pergamon Press.1982.
    [19] Garey M. R., Johnson D. S.. Computers and intractability: A guide to the theory of NP-completeness, San Francisco. CA: W. H. Freeman,1979.
    [20] Johnson S. M.. Optimal two and three stage production schedules with setup times included. Naval Research Logistics Quarterly. 1954,1:61-68.
    [21] Peter Brucker. Scheduling algorithm (3rd Edition), Springer-Verlag. New York Inc.. 2001
    [22] Prinedo M.. Scheduling: Theory, algorithms, and systems (2nd edition). Englewood Cliffs. NJ: Prentice Hall. 2002.
    [23]周支立,李怀祖等著.先进制造系统中物料运送的作业排序[M].陕西:西安交通大学出版社. 2003.
    [24]高守玮.一类Flowshop生产调度问题及其优化方法之分析与研究[D].上海交通大学博士论文. 2007,11.
    [25] Graham R. L., Lawler E. L., Lenstra J. K. et al.. Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics. 1979, 5:287-326.
    [26]张学权.基于改进蚁群算法的车间调度问题的研究.东南大学.硕士论文. 2008,3,1.
    [27] Stephen C. G. A review of production scheduling. Production Scheduling [J]. 1981,29(4): 646-675.
    [28]甘应爱,田丰.运筹学. [M].北京:清华大学出版社. 1990.
    [29] Wagner D B, Dynamic Programming [J]. The Mathematical Journal. 1995, 5(4): 42-51.
    [30] Bellman R. On the Theory of Dynamic Progrmming [C]. Proceedings of the National Academy of Sciences. 1952: 716-719.
    [31] Blazewicz J et al.. Scheduling Computer and Manufacturing Process. 2nd Printing. Springer. 2001.
    [32] Held M, Karp R M. A Dynamic Programming Approach to Sequencing Problems [J]. Journal of the Society for Industrial and Applied Mathematics. 1962, 10(1): 196-210.
    [33] Reza H S, Saghafian S. Flow-shop Scheduling Problems with Makespan Criterion: A Review [J]. International Journal of Production Research. 2005, 43(14): 2895-2929.
    [34] Doig A, Land A H. An Automatic Method for Solving Discrete Programming Problems [J]. Econometrica. 1960, 28: 497-520.
    [35] Dakin R J. A Tree-search Algorithm for Mixed Integer Programming Problems [J]. The Computer Journal. 1965, 8(3): 250.
    [36]陈庆华,谢政.整数规划[M].长沙:国防科技大学出版社. 1992.
    [37] Lageweg B J, Lenstra J K, Kan A. A General Bounding Scheme for the Permutation Flow-shop Problem [J]. Operations Research. 1978, 26(1): 53-67.
    [38] Carlier J, Rebai I. Two Branch and Bound Algorithms for the Permutation Flow-shop Problem [J].European Journal of Operational Research. 1996, 90: 238-251.
    [39] Haouari M, Ladhari T. A Branch and Bound Based Local Search Method for the Flow-shop Problem [J]. Journal of the Operational Research Society. 2003, 54(10): 1076-1084.
    [40] Ladhari T, Haouari M. A Computational Study of the Permutation Flow-shop Problem Based on a Tight Lower Bound [J]. Computers and Operations Research. 2005, 32(7): 1831-1847.
    [41] Fisher M L. The Lagrangian Relaxation Method for Solving Integer Programming Problems [J]. Management Science. 1981, 27(1): 1-18.
    [42] Fisher M L. An Applications Oriented Guide to Lagrangian Relaxation [J]. Interfaces. 1985, 15(2): 10-21.
    [43] Liu G, Luh P B, Resch R. Scheduling Permutation Flow-shops Using the Lagrangian Relaxation Technique [J]. Annals of Operations Research. 1997, 70: 171-189.
    [44] Panwalkr S. and Iskander W.. A Survey of Scheduling. Operations Research. 1997, 25(1): 45-61.
    [45] Taillard E. Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem. European Journal of Operation Research. 1990, 47(1): 64-74.
    [46]真虹.集装箱码头生产过程动态图形仿真优化的研究.中国图象图形学报. 1996, 6: 502-506.
    [47] Languna M., J. W. Barnes and F. Glover. Intelligent Scheduling with Tabu Search: an Application to Jobs with Linear Delay Penalties and Sequence-dependent Setup Costs and Times. Journal of Applied Intelligence. 1983,3: 159-172.
    [48]尹新,杨自厚.用Tabu Search方法解带有等待时间惩罚的提前/拖期调度问题.系统工程理论方法应用.1995, 4(1):30-35.
    [49] Kirkpatrick S, Gelatt J C D, Vecchi M P. Optimization by Simulated Annealing [J]. Science. 1983, 220(4598): 671-680.
    [50] Laarhoven P J M, Aarts E H L. Simulated Annealing: Theory and Applications [M]. Kluwer Academic Publishers Norwell, MA, USA, 1987.
    [51] Koulamas C, Antony S R, Jaen R. A Survey of Simulated A Survey of Simulated Annealing Applications to Operations Research Problems [J]. Omega (Oxford). 1994, 22(1): 41-56.
    [52] Osman I H, Potts C N. Simulated Annealing for Permutation Flow-shop Scheduling [J]. Omega (Oxford). 1989, 17(6): 551-557.
    [53] Ogbu F A, Smith D K. The Application of the Simulated Annealing Algorithm to the Solution of the m/m/Cmax Flow-shop Problem [J]. Computers and Operations Research. 1990, 17(3): 243-253.
    [54] Ogbu F, Smith D. Simulated Annealing for the Permutation Flow-shop Problem. Omega [J]. The International Journal of Management Science. 1990, 19(1): 64-67.
    [55] Ishibuchi H, Misaki S, Tanaka H. Modified Simulated Annealing Algorithms for the Flow-shop Sequencing Problem [J]. European Journal of Operational Research. 1995, 81: 388-398.
    [56] Zegordi S H, Itoh K, Enkawa T. Minimizing Makespan for FLOW-Shop Scheduling by Combining Simulated Annealing with Sequencing Knowledge [J]. European Journal of Operational Research. 1995, 85(3): 515-531.
    [57] Wodecki M, Bozejko W. Solving the Flow-shop Problem by Parallel Simulated Annealing [C]. Lecture Notes in Computer Science. 2001: 236-247.
    [58] Glover F. W.. Further Paths for Integer Programming and Links to Artificial Intelligence [J]. Computers and Operations Research. 1986, 13: 533-549.
    [59] Hansen P. The Steepest Ascent Mildest Descent Heuristic for Combinatorial Programming [C]. Congress on Numerical Methods in Combinatorial Optimization. Capri, Italy. 1986: 70-145.
    [60] Glover F. W.. Tabu Search-Part I [J]. ORSA Journal on Computing. 1989, 1(3): 190-206.
    [61] Glover F. W.. Tabu Search: Part II [J]. ORSA Journal on Computing. 1990, 2(1): 4-32.
    [62] Glover F. W. and Taillard E. A User’s Guide to Tabu Search [J]. Annals of Operations Research. 1993, 41(1): 1-28.
    [63] Glover F. W. and Laguna M. Tabu Search [M]. Springer, 1997.
    [64] Widmer M. and Hertz A.. A New Heuristic Method for the Flow Shop Sequencing Problem [J]. European Journal of Operational Research. 1989, 41(2): 186-193.
    [65] Reeves C. R.. Improving the Efficiency of Tabu Search for Machine Scheduling Problems [J]. Journal of Operational Research Society. 1993, 44(4): 375-382.
    [66] Ben-Daya M. and Al-Fawzan M.. A Tabu Search Approach for the Flow Shop Scheduling Problem [J]. European Journal of Operation Research. 1998, 109(1): 88-95.
    [67] Nowicki E. and Smutnicki C.. A Fast Tabu Search Algorithm for the Permutation Flow-shop Problem [J]. European Journal of Operation Research. 1996, 91: 160-175.
    [68] Grabowski J. and Wodecki M.. A very Fast Tabu Search Algorithm for the Permutation Flow-shop Problem with Makespan Criterion [J]. Computers and Operations Research. 2004, 31(11): 1891-1909.
    [69] Colorni A., Dorigo M. and Maniezzo V.. Distributed Optimization by Ant Colonies [C]. Proceedings of the First European Conference on Artificial Life. 1991: 134-142.
    [70] Gambardella L. M. and Dorigo M.. Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem [C]. Proceedings of ML-95, Twelfth International Conference on Machine Learning. 1995: 252-260.
    [71] Dorigo M., Maniezzo V. and Colorni A.. Ant System: Optimization by a Colony of Cooperating Agents [J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on. 1996, 26(1): 29-41.
    [72] Dorigo M. and Gambardella L. M.. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J]. Evolutionary Computation, IEEE Transactions on. 1997, 1(1): 53-66.
    [73] Pasteels J. M., Deneubourg J. L. and Goss S.. Self-organization Mechanisms in Ant Societies. I: Trail Recruitment to Newly Discovered Food Sources [J]. Experientia Supplementum. 1987, (54): 155-175.
    [74] Gambardella L. M., Taillard E. D. and Dorigo M.. Ant Colonies for the Quadratic Assignment Problem [J]. The Journal of the Operational Research Society. 1999, 50(2): 167-176.
    [75] Solimanpur M., Vrat P. and Shankar R.. Ant Colony Optimization Algorithm to the Inter-Cell Layout Problem in Cellular Manufacturing [J]. European Journal of Operational Research. 2004, 157(3): 592-606.
    [76] Bullneimer B., Hartl R. F. and Strauss C. An Improved Ant System Algorithm for Thevehicle Routing Problem [J]. Annals of Operations Research. 1999, 89: 319-328.
    [77] Costa D. and Hertz A.. Ants Can Colour Graphs [J]. Journal of the Operation Research Society. 1997, 48(3): 295-305.
    [78] Kuntz P. and Snyers D.. Emergent Colonization and Graph Partitioning [C]. Proceedings of the Third International Conference on Simulation of Adaptive Behavior: from Animals to Animats. 1994: 494-500.
    [79] Kuntz P., Layzell P. and Snyers D.. A Colony of Ant-Like Agents for Partitioning in Vlsi Technology [J]. Fourth Conference on Artificial Life. 1997: 417-424.
    [80] Ying K. C. and Liao C. J.. An Ant Colony System for Permutation Flow-shop Sequence [J]. Computers and Operations Research. 2004, 31(5):791-801.
    [81] Merkle D. and Middendorf M.. Ant Algorithm with a New Pheromone Evaluation Rules for Total Tardiness Problems [C]. Proceedings of EvoWorkshops. 2000: 287-296.
    [82] Kennedy J. and Eberhart R.. Particle Swarm Optimization [C]. Proceedings of the 1995 IEEE International Conference on Neutral Networks. 1995: 1942-1948.
    [83] Tasgetiren M. F. et. al. Particle Swarm Optimization Algorithm for Permutation Flow-shop Sequencing Problem [C]. Fourth International Workshop on Ant Algorithms and Swarm Intelligence. ANTS2004: 382-389.
    [84] Rameshkumar K., Suresh R. K. and Mohanasundaram K. M.. Discrete Particle Swarm Optimization (DPSO) Algorithm for Permutation Flow-shop Scheduling to Minimize Makespan [C].Lecture Notes in Computer Science. 2005: 572-581.
    [85] Tasgetiren M. F., Liang Y. C. and Gencyilmaz G. A Particle Swarm Optimization Algorithm for makespan and total flowtime minimization in the permutation flowshop sequenceing problem. [J]. European Journal of Operational Research. 2007, 177(3): 1930-1947.
    [86] Lian Z., Gu X. and Jiao B.. A Similar Particle Swarm Optimization Algorithm for Permutation Flow-shop Scheduling to Minimize Makespan [J]. Applied Mathematics and Computation. 2006, 175(1): 773-785.
    [87] Liu B., Wang L. and Jin Y. H.. An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling [J]. Systems, Man and Cybernetics, Part B. IEEE Transactions on. 2007, 37(1): 18-27.
    [88] Liao C. J. Tseng C. T. and Luam P.. A Discrete Version of Particle Swarm Optimization for Flow-shop Scheduling Problems [J]. Computers and Operations Research. 2007, 34(10): 3099-3111.
    [89] Baker K. R. and Su Z. S.. Sequencing with due-dates and early start times to minimize maximum tardiness. Naval Research Logistics. 1974, 21: 171-176.
    [90] Baker K. R.. Sequencing Rules and due-date assignments in a job shop. Management Science. 1984, 30: 1093-1104.
    [91] Baker K. R., Scudder G. D.. Sequencing with earliness and tardiness penalties: a review. Operations Research.1990, 38: 22-36.
    [92] Lee C. Y., Uzsoy R., and Martin-Vega L. A.. Efficient algorithms for scheduling semiconductor burn-in operations. Operations Research. 1992, 40: 764-775.
    [93] Daniel A. F., Medeiros D. J. and Traband M. T. Shop scheduling using tabu search and simulation. Proceedings of the 2002 Winter Simulation Conference. 1013-1017.
    [94] Reeves C.. Heuristics for scheduling a single machine subject to unequal release times. European Journal of Operational Research.1995, 80: 397-403.
    [95] Hodgson T. J., CormieD. r, and Weintraub A. J. et al.. Satisfying due-dates in large job shops. Management Science. 1998, 44: 1442-1446.
    [96] Sotskov Y. N., Tautenhahn and Werner F.. On the application of insertion techniques for job shop problems with setup times. Operations Research. 1999, 33: 209-245.
    [97] Su Y. X., Zheng, C. H. and Duan, B. Y.. An optimal layout methodology for cold forming rectangular parts using genetic algorithms. Robotics and Computer Integrated Manufacturing. 2001, 17: 429-433.
    [98] Yoo W. S. and Martin-Vega L. A.. Scheduling single-machine problems for on-time delivery. Computers & Industrial Engineering. 2001, 39: 371-392.
    [99] Arroyo J. E. and Armentano V. A.. Genetic local search for multi-objective flow shop scheduling problems. European Journal of Operational Research.2005, 167: 717-738.
    [100] Huang B., Sun Y. and Sun Y. M. Scheduling of flexible manufacturing systems based on Petri nets and hybrid heuristic search. International Journal of Production Research. 2008, 46(16): 4553-4565.
    [101] Lar M. and Robert U.. Decomposition heuristics for minimizing earliness-tardiness on parallel burn-in ovens with a common due date. Computers & Operations Research, 2007, 34: 3380-3396.
    [102] Nagar A., Haddock J. and Heragu S.. Multiple and Bi-criteria Scheduling: A Literature Survey. European Journal of Operational Research. 1995, 81: 88-104.
    [103] Pan J. C. H. and Wu C. C.. Single machine group scheduling to minimize mean flow time subject to due date constraints. Production Planning & Control. 1998, 9: 366-370.
    [104] Chern C. C. and Hsieh J. S.. A heuristic algorithm for master planning that satisfies multiple objectives. Computers and Operations research. 2007, 34: 3491-3513.
    [105] Loukil T, Teghem J. and Fortemps, P.. A multi-objective production scheduling case study solved by simulated annealing. European Journal of Operational Research. 2007, 179: 709-722.
    [106] Yagmahan B. and Yenisey M. M.. Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering. 2008, 54: 411-420.
    [107] Guilherme E. V. and Paulo C. R.. A new multi-objective optimization method for master production scheduling problems using simulated annealing. International Journal of Production Research. 2004, 42(21): 4609-4622.
    [108] Kolisch R.. Integrated scheduling, assembly are- and part-assignment for large-scale, make-to-order assemblies. International Journal of Production Economics. 2000, 64:127-141.
    [109] Lee K J, Lee J K. A spatial scheduling system and its application to shipbuilding [J]. Expert System with Applications, 1996, 10(3):311-324.
    [110] Hopper E. and Turton B. C. H. An empirical investigation of meta-heuristic and heuristic algorithm for a 2D packing problem. European Journal of Operations Research. 2001, 128: 34-57.
    [111] [101] Andrea L., Silvano M. and Michele M.. Two-dimensional packing problems: a survey. European Journal of Operations Research. 2002, 141: 241-252.
    [112] Garey M. R. and Johnson D. S. Computer and Interactability: A Guide to the Theory of NP-Completeness. 1979. W. H. Freeman and Company. San Francisco.
    [113] Imahori S., Yagiura M. and Ibaraki T.. Improved local search algorithms for the rectangle packing problem with general spatial costs. European Journal of Operational Research. 2005, 167: 48-67.
    [114] Kathryn A. D. Efficient automated pallet loading. European Journal of Operations Research. 1990, 44: 232-238.
    [115] Alan A. F. Selection of stockplate characteristics and cutting style for two-dimensional cutting stock situations. European Journal of Operations Research. 1990, 44: 239-246.
    [116] Adsen O. B. G. An application of traveling-salesman routines to solve pattern allocation problems in glass industry. Journal of Optical Research Society. 1988, 39: 249-256.
    [117] Berkey J. O. and Wang P. Y. Two dimensional finite bin-packing algorithms. Journal of Operational Research. 1987, 38(5): 423-429.
    [118] Coffman E. G. and Shor. P. W. Average-case analysis of cutting and packing in two dimensions. European Journal of Operation Research. 1990, 44: 134-144.
    [119] Liu H., Zeng G. Z. and Lin Z. K. A system of optimizing nesting with analogical learning mechanism. Computers Ind. Engng. 1997, 32(4): 713-725.
    [120] Israni S. and Sanders J. Two dimensional cutting stock problem research: a review and a rectangular layout algorithm. Journal of Manufacturing Systems. 1982, 1: 169-181.
    [121] Liu D. Q. and Teng H. F.. An improved BL- algorithm for genetic algorithm of the orthogonal packing of rectangles. European Journal of Operation Research. 1999, 112: 413-420.
    [122] Albano A. and Orisini R. A heuristic solution of the rectangular cutting-stock problem. Computing Journal. 1979, 23: 338-343.
    [123] Adamowicz M. and Albano A. Nesting two-dimensional shapes in rectangular modules. CAD. 1976, 8: 27-33.
    [124] Dagli C. H. and Tatoglu M. Y. An approach to two dimensional cutting stock problems. International Journal of Production Research. 1987, 25: 175-190.
    [125] Beasley J. E. Bounds for two-dimensional cutting. Journal of the Operational Research Society. 1985, 36: 71-74.
    [126] Gilmore P. C. and Gomory R. E. Multistage cutting stock problems of two and more dimensions. Operations Research. 1965, 13: 94-120.
    [127] Dagli C. Cutting stock problem: combined use of heuristics and optimization methods. In proceedings IXth International Conference on Production Research. 1987, 843-849.
    [128] Grinde R. B. and Daniels K. Solving an apparel trim placement problem using a maximum cover problem approach. IIE Transactions. 1999, 31(8): 763-769.
    [129] Heistermann J. and Lengauer T. The nesting problem in the leather manufacturing industry. Annals of Operations Research. 1995, 57: 147-173.
    [130] Dagli C. H. and Poshyanonda P. New approaches to nesting rectangular patterns. Journal of Intelligent Manufacturing. 1997, 8: 177-190.
    [131] Hopper E. and Turton B. A genetic algorithm for a 2D industrial packing problem. Computers & Industrial Engineering. 1999, 37: 375-378.
    [132] Stefan J. On genetic algorithms for the packing of polygons. European Journal of Operations Research. 1996, 88: 165-181.
    [133] Leung T. W., Yung C. H. and Marvin D. T. Application of genetic search and simulated annealing to the two-dimensional non-guillotine cutting stock problem. Computers & Industrial Engineering. 2001, 40: 201-204.
    [134] Loris F. An application of simulated annealing to the cutting stock problem. European Journal of Operation Research. 1999, 114: 542-556.
    [135] Bennell J. and Downsland K. A tabu thresholding implementation for the irregular stock cutting problem. International Journal of Production Research. 1999, 37(18): 4259-4275.
    [136] Spears W. M. and Dejong K. A. Using neural networks and genetic algorithms as heuristics for NP- complete problems. In Proceedings of International Joint Conference on Neural Networks. 1990, 1: 118-123.
    [137] Wu Y. L., Huang W. Q. and Lau S. C. et al. An effective quasi-human based heuristic for solving the rectangle packing problem. European Journal of Operational Research. 2002, 141: 341-358.
    [138] Udy J. L. et al. Computation of interferences between three-dimensional objects and the optimal packing problem. Advance in Engineering Software. 1988, 10(1): 8-14.
    [139] Morabito R. and Arenales M. An AND/OR-graph approach to the container loading problem. International Transactions of Operational Research. 1994, 1(1): 59-73.
    [140] Loris F. A global Optimization algorithm for the three-dimensional packing problem. European Journal of Operational Research. 2000, 126: 340-354.
    [141] Bischoff E. E., Janetz F. and Ratcliff M. S. W. Loading pallets with non-identical items. European Journal of Operational Research. 1995, 84, 681-692.
    [142] Bischoff E. E. and Marriott M. D. A comparative evaluation of heuristics for container loading. European Journal of Operational Research. 1990, 44, 267-276.
    [143] Pisinger D. Heuristics for the container loading problem. European Journal of Operational Research. 2002, 141: 382-392.
    [144] Andreas B. and Hermann G. A hybrid genetic algorithm for the container loading problem. European Journal of Operational Research. 2001, 131: 143-161.
    [145] Gehring H. and Bortfeldt A. A genetic algorithm for solving the container loading problem. International Transactions in Operational Research. 1997, 4(5/6): 401-418.
    [146] Haressler R. W. and Talbot F. B. Load planning for shipments of low density products. European Journal of Operational Research. 1990, 44: 289-299.
    [147] Gehring H. A computer-based heuristic for packing pooled shipment containers. European Journal of Operations Research. 1990, 44: 277-288.
    [148] Su Y. X., Zheng C. H. and Duan B. Y.. An optimal layout methodology for cold forming rectangular parts using genetic algorithms. Robotics and Computer Integrated Manufacturing. 2001, 17: 429-433.
    [149] Vassilios E. T. and James L. G.. The optimal packing of arbitrarily-shaped polygons using simulated annealing and polynomial-time cooling schedules. Computers Methods in Applied Mechanics and Engineering. 1995, 125: 53-70.
    [150]陶宁蓉,蒋祖华,刘建峰.带时间窗约束的船体分段空间调度问题.计算机集成制造系统. 2010, 12:2674-2679.
    [151] Park K. et al. Development of bay schedules for shipbuilding. IE Interfaces. 1995, 8(2): 95-102
    [152] Park K., Lee K. and Park S. et al. Modeling and solving the spatial block scheduling problem in a shipbuilding company. Computer ind. Engng, 1996, 30(3): 357-364.
    [153] Lee J. K., Lee K. J., Park H. K.. Developing scheduling systems for Daewoo shipbuilding: DAS project. European Journal of Operational Research, 1997, 97: 380-395.
    [154] Park C., Chung K. H. and Park J. C. et al. A spatial scheduling application at the block paint shop in shipbuilding: the HYPOS project. Production Planning & Control, 2002, 13(4): 342-354.
    [155] Li B., Zhao Z. Y. and Li G.. A dynamic scheduling method for spatial layout planning. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou: IEEE,2005.18-21.
    [156]王蕾,张志英.基于规则的船体曲面分段空间调度方法.上海交通大学学报. 2009, 11:1709-1714.
    [157]张志英,马姗静.基于综合分解策略的船体分段空间调度方法.机械工程学报. 2010, 22:189-194.
    [158]张志英,徐晨,毛祖杰等.基于规则的船舶分段动态空间调度方法.上海交通大学学报. 2010, 8:1019-1025.
    [159] Zheng J. L., Jiang Z. B. and Chen F. et al. Minimizing makespan at module assembly shop in shipbuilding. Proc IEEE Int Conf Serv Oper Logist, Informatics, IEEE/SOLI. Piscataway United States:Institute of Electrical and Electronics Engineers Computer Society, 2008.1794-1799.
    [160] Li B., Zhao Y. Z. and Li J. D.. A hybrid algorithm for nesting problems. Proceedings of the Second International Conference on Machine Learning and Cybernetics. Xi’an: IEEE, 2003: 1424-1429.
    [161] Zheng J. L., Chen F. and Jiang Z. B. et al. A spatialtemporal scheduling algorithm minimizing makespan. Journal of Shanghai Jiao Tong University,2009, 4(43): 663-668.
    [162] Cho K. K., Oh J. S. and Ryu K. R.. An Integrated Planning and Scheduling System for Block Assembly in Shipbuilding. Annals of the CIRR, 1998, 47: 419-422.
    [163] Lee Y. and Chen C. Y.. An optimization heuristic for the berth scheduling problem. European Journal of Operational Research. 2009, 196:500-508.
    [164] Jacob J. P. and Johann H. Adjacent-resource scheduling Why spatial resources are so hard to incorporate. Electronic Notes in Discrete Mathematics. 2006, 25: 113-116.
    [165] Kolisch R. and Hess K. Efficient methods for scheduling make-to-order assemblies under resource, assembly area and part availability constraints. International Journal of Production Research. 2000, 38(1): 207-228.
    [166] Sung C. S. and Choung Y. I.. Minimizing makespan on a single burn-in oven in semiconductor manufacturing. European Journal of Operational Research. 2000, 120: 559-574.
    [167] Ryu C., Shin J. G. and Kwon O. H. et al. Development of integrated and interactive spatial planning system of assembly blocks in shipbuilding. International Journal of Computer Integrated Manufacturing. 2008, 21(8): 911-922.
    [168] Lee D., Kang Y. W. and Kim H. J.. Block assembly planning for shipbuilding considering preference shop and load balance. 12th International Conference on Computer Applications in Shipbuilding(ICCAS 2005). 23-26 August 2005, Busan, South Korea, 55-68.
    [169] Jeffrey D., Michael J. and George G. et al. Scheduling parallel assembly workstations to minimize a shared pool of labor. IIE transactions. 2008, 40: 749-758.
    [170] Ghryssolouris G., Papakostas N. and Mourtzis D. A decision-making approach for nesting scheduling: a textile case. International Journal of Production Research. 2000, 38(17): 4555-4564.
    [171] Li B, Zhao Y Z, Li G. A dynamic scheduling method for spatial layout planning. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou: IEEE, 2005: 3612-3617.
    [172] Ranjan V. and Duck Y. Y.. Dynamic spatial block arrangement scheduling in shipbuilding industry using genetic algorithm. 2005 3rd IEEE International Conference on Industrial Informatics. Indin: IEEE, 2005: 444-449.
    [173] Venkataramanaiah S. Scheduling in cellular manufacturing systems: an heuristic approach. International Journal of Production Research. 2008, 46(2): 429-449.
    [174] Joo M. H., Choi H. R. and Ryu K. R. et al. A curve block assembly schedule in shipbuilding using constraint relaxation method. Proceeding of the fall 98 Conference of the KESS. Korean: Korean Expert System Society, 1998: 285-292.
    [175] Koh S. G., Park J. C. and Choi Y. S. et al. Development of a block assembly scheduling system for shipbuilding company. IE interfaces, 1999, 12(4): 586-594.
    [176] Kyoung J L. Sufficient search space for spatial expert systems. Expert Systems with Applications, 2000, 19: 1-8.
    [177] Park C, Song J, Kim J, Kim I (1999) Delivery date decision support system for the large scale make-to-order manufacturing companies: a Korean electric motor company case. Production Planning and Control 10:585-597.
    [178] Cho K. K., Oh J. S. and Ryu K. R.. An Integrated Planning and Scheduling System for Block Assembly in Shipbuilding. Annals of the CIRR, 1998, 47: 419-422.
    [179] Egeblad J., Nielsen B. K. and Odgaard A.. Fast neighborhood search for two and three- dimensional nesting problems. European Journal of Operational Research. 2007, 183: 1249-1266.
    [180] Cho K. K., Sun J. G. and Oh. J. S.. An automated welding operation planning system for block assembly in shipbuilding. International Journal of Production Economics. 1999, 60-61:203-209.
    [181] Roh M. I. and Lee K. Y.. Generation of production material information for a building block and simulation of block erection for process planning and scheduling in shipbuilding. International Journal of Production Research. 2007, 45(20):4653-4683.
    [182] Raj P. and Srivastava R. K.. Solving spatial scheduling problem: an analytical approach. Proceedings of the 37th
    [183] Yoonho S., Dongmok S. and Taioun K.. Block assembly planning in shipbuilding using case-based reasoning. Experts Systems with Applications. 2007, 32: 245-253. International Conference on Computers and Industrial Engineering. 2007, 20-23.
    [184] Shin J. G.., Kwon O. H. and Ryu C.. Heuristic and metaheuristic spatial planning of assembly blocks with process schedules in an assembly shop using differential evolution. Production Planning & Control. 2008, 19(6): 605-615.
    [185] Park C. et al.. Assembly block storage location assignment at a shipyard. Production Planning & Control. 2007, 18(3):180-189.
    [186] Baptiste P. et al.. Integration of production and shipping planning: a co-operative approach. Production Planning & Control. 2008, 19(7):645-654.
    [187] Koh S. and Jang J. J.. GA-based spatial scheduling algorithm for mega-block assembly yard in shipbuilding algorithm for mega-block assembly yard in shipbuilding company. Proceedings of the 9th
    [188]张志英,陈洁.空间调度问题的非线性规划分析求解方法.计算机集成制造系统. 2010, 16(6):1273-1279. Asia Pacific Industrial Engineering & Management Systems Conference. Hanover, USA:2008:3-5.
    [189] Liu Z., Chua D. K. H. and Yeoh K. W.. Aggregate production planning for shipbuilding with variation-inventory trade-offs. International Journal of Production Research. First published on:24 January 2011(iFirst).
    [190]中国造船业存在四大软肋[N/OL].上海市经济和信息化委员会. http://www.sheitc.gov.cn/sheitc/jsp/jjzx/jjzx_content.jsp?id=6476&num=23-2-2.
    [191]中船重工“转模”结出硕果[R/OL].中船重工. 2006, 11, 21:http://www.csic.com.cn/csic_tpxw/ 16107.htm.
    [192]王醒策,张汝波,顾国昌.基于势场栅格法的机器人全局路径规划.哈尔滨工程大学学报. 2003, 24(2):170-174.
    [193] Paulus JJ, Hurink J. Adjacent-Resource Scheduling. Electronic Notes in DISCRETE MATHEMATICS 2006; 25; 113-116.
    [194]王小平,曹立明.遗传算法——理论、应用与软件实现.西安交通大学出版社. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700