预应力锚拉桩三维土拱效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力锚索抗滑桩是20世纪80年代开始应用及发展起来的一种新型支挡结构,由于它具有安全、经济、节约用地等优点,在公路、铁路及房屋建筑工程中的高边坡、深基坑治理中己获得了广泛应用。工程实践表明,目前桩锚支护结构设计中土压力传递模式还不能较好地反映其真实受力状况,有待进一步完善。
     本文作者在工程实践及查阅国内外相关文献的基础上,借鉴桩承式路堤土压力传递方式,将其引入到锚拉桩设计中,提出了一种新的土压力计算模式——基于“三维土拱效应”的土压力传递模式,即桩板结构后的大部分土压力通过土体不均匀变形而形成的空间土拱直接传递到锚头,剩余部分的土压力才经桩板结构再传递到锚头。
     为了论证该理论的正确性,论文依托重庆市科技攻关项目——基于三维土拱效应的预应力锚拉桩关键技术研究与应用(CSTC,2010AC0109),采用理论分析、室内模型试验、数值分析及工程监测等技术方法,对锚拉桩支护结构三维土拱效应是否存在、影响土拱效应的因素、锚拉桩荷载传递机理及桩板所受土压力大小等方面进行了深入研究,取得了以下阶段性成果:
     ①通过理论分析,论证了三维土拱效应存在的可能性,提出了形成三维土拱效应的基本条件,推导得到了形成土拱效应的锚点间距控制方程。在此基础上,推导得到了基于三维土拱效应的桩板土压力计算公式,探讨了影响桩板所受土压力大小的相关因素,并将计算结果与常规设计方法进行了对比分析,阐述了本文计算结果的合理性。
     ②通过室内模型试验,验证了土拱效应的存在,发现了土拱效应在支挡结构中部较其上部及坡脚部位要显著的分布规律。根据实验结果,将三维土拱拆分为4个两端直接支撑在锚头上的三棱形土拱及1个四边支撑在4个三棱形土拱上的壳体土拱。测试数据表明,土压力沿填土深度呈非均匀分布,桩背土压力呈反“B”字型,锚索位置处桩身土压力较大;挡板背后土压力呈正“B”字型,挡板土压力分布规律与桩身相反,即距锚头距离越大,土压力也较大。
     ③通过数值分析,进一步验证了土拱效应的存在,得到了与室内试验相同的土拱分布规律。分析了锚头间距、土体物理力学特性对土拱效应的影响,结果表明,抗剪强度参数c、φ及弹性模量E、泊松比μ对土体的成拱能力有显著影响,c、φ及E增大土拱效应增强而μ增大则土拱效应减弱。
     ④通过对一边坡工程桩板结构所受土压力进行监测,结果表明,三维土拱效应是存在的,进一步验证了理论分析及模型试验、数值分析的正确性。
     ⑤基于“三维土拱效应”理论研究成果,开发了一套锚拉桩设计计算软件,以应用于工程设计。
Pre-stressed anchor piles began to be used and developed as a new type of retaining structures in the1980s. It has been applied widely in the high slope and deep pit governance of highway, railway and housing construction because of its safety, economy, land conservation, etc. Engineering practice showed that pressure transmission mode of pile-anchor retaining structures can not better reflect its real force state, need to be further improved.
     Based on the engineering practice and access to relevant literature, soil pressure transfer mode of pile-supported embankment was introduced to the pre-stressed anchor pile retaining structures, a new calculation model was proposed-based on "three-dimensional soil arching effect of soil pressure transfer model " in which most of its of the pile plate structure directly was transfered to the anchor head by soil arch effect formed on-uniform deformation of soil, the remaining portion of its was then passed to the anchor head by the pile and plate structure.
     In order to demonstrate the correctness of the theory, the paper relied on scientific and technological project of Chongqing-based on three-dimensional soil arching effect pre-stressed anchor piles key technology research and application (CSTC,2010AC0109), and used theoretical analysis, indoor model test, numerical analysis and project monitoring and other technical methods, and carried out in-depth studies about three-dimensional soil arching effect exists, the factors that affect the soil arching effect, load transfer mechanism and the pile plate suffered earth pressure, and made the following achievements:
     ①Through theoretical analysis, The paper demonstrated the existence possibilities of three-dimensional soil arching effect, put forward to its basic form conditions, derived the anchor spacing control equation of form soil arching effect. On this basis, deduced soil pressure formula exerted on pile and plate of basing on three-dimensional of soil arching effect, discussed the impact of factors related to the size of soil pressure. Finally, the paper described the rationality of the calculated results which was compared with the conventional design method.
     ②Through the indoor model test, verified the existence of soil arching effect, discovered a significant distribution that the soil arching effect in the middle of retaining structures more apparent than its upper and lower. According to the experimental results, the three-dimensional soil arching was split into4three prismatic soil arch which its both ends directly supported in anchor head and a1shell soil arch which its Quadrilateral supported in three prismatic soil arch.
     Test data showed that the earth pressure was non-uniform distribution along the depth of fill, Earth pressure exerted on pile is inversely "B" distribution, and it was larger the anchor head than other parts; On the contrary, Earth pressure exerted on baffle is positive "B" shape, and the greater the distance from the anchor head, the earth pressure as well.
     ③Through numerical analysis, the paper further verified the existence of soil arching effect, moreover, its distribution law was the same with Indoor test, finally, analyzed the anchor head spacing and soil physical and mechanical characteristics impact on soil arching effect, the results indicated that the shear strength parameters c、 φ, elastic modulus E, Poisson's ratio μ had a significant influence on soil arching effect, the soil arching effect was enhanced with c、φ and E increasing and u weakening.
     ④A slope engineering case monitoring results testified that three-dimensional soil arching effect was existed, and theoretical analysis and model test, numerical analvsis were corrected.
     ⑤Based on the " three-dimensional soil arching effect" theory and research results, developed a set of anchor pile design calculation software, to be applied to the engineering design.
引文
[1]程良奎.岩土锚固的现状及发展[J].土木工程学报,2001,34(3)7-12.
    [2]苏自约,林强有,丁国贵,王贤能.岩土锚固技术的发展与工程实践[M].北京:人民交通出版社,2008.
    [3]彭振斌.锚固工程设计计算与施工[M].北京:中国地质大学出版社,1997.
    [4]高大钊.岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001.
    [5]黄求顺,张四平,胡岱文.边坡工程[M].重庆:重庆大学出版社,2003.
    [6]王引生.大型厚层滑坡多锚点预应力锚索抗滑桩的研究[D].北京:铁道科学研究院,2007.
    [7]滑坡文集编委会.滑坡文集(第十一集)[M].北京:中国铁道出版社,1994.
    [8]铁道部第二勘察设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [9]重庆市设计院.GB50330-2002建筑边坡工程技术规范[S].北京:中国建筑工业出版社,2002.
    [10]重庆市地方标准编写组.DB50/5029-2004地质灾害防治工程设计规范[S].重庆:[s.n.],2004.
    [11]王立明,高广运,郭院成.考虑竖向土拱的桩锚与土钉的联合支护[J].岩土工程学报,2006,28(增刊):1481-1484.
    [12]厚美英,陆坤权.奇异的颗粒物质[J].新材料产业,2001,(20):26-28.
    [13]达维多夫.地下结构的计算和设计军事工程学院科学研究部译[M].北京:高等教育出版社,1953.
    [14]Terzaghi K. Theoretical soil mechanics[M]. New York:John Wiley&Son,1943.
    [15]Finn, W. D. L. Boundary value problems of soil mechanics[J]. Journal of the soil Mechanicsand Foundations Division, ASCE,1963,89:39-72.
    [16]Wang W L, Yen B C. Soil arching in slopes[J]. Journal of Geotechnieal Engineering, American Society of Civil Engineering,1974,100(GT1):61-78.
    [17]Handy R L. The Arch in Soil Arching[J]. Journal of Geotechnical Engineering, ASCE,1985,111(3):302-318.
    [18]Bosseher P J, Gray D H. Soil Arching in sandy slopes[J]. Journal of Geoteehnieal Engineering,1986,112(6):626-645.
    [19]Kellogg C G. Discussion-the arch in soil arching. Journal of Geotechnieal Engineering,1987,113(3):269-271.
    [20]Kingsley Harop-Williams. Arch in soil arching[J]. Journal of Geotechnical Engineering,1989, 115(3):415-419.
    [21]Chen C Y&Martin G R. Soil-structure interaction for landslide stabilizing piles [J]. Computers and Geotechnics,2002,29(5):363-386.
    [22]Liang R, Zeng S. Numerical study of Soil Arching Mechanism in Drilled Shafts for Solpe Stabilization. Soil and Foundation,2002,42(2):83-92.
    [23]Paik K H, Salgado R. Estimation of active earth pressure against rigid retaining walls considering arching effect[J]. Geotechnique,2003,53(7):643-645.
    [24]周应英.刚性挡土墙土压力研究[J].长沙交通学院学报,1988,4(1):48-55.
    [25]李海深.土工建筑中的土拱效应[J].湘潭矿业学院学报,1990,5(2)164-167.
    [26]杨雪强,何世秀,庄心善.土木工程中的成拱效应[J].湖北工学院学报,1994,9(1):1-7.
    [27]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报,1995,(2):15-19.
    [28]胡敏云.深基坑桩排式支护桩侧土压力及设计方法研究[D].西安:西南交通大学,1998.
    [29]叶晓明.柱板结构挡土墙板上的土压力计算方法[J].地下空间,1999,19(2):142-146.
    [30]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大桩间距分析[J].山地学报,2001,19(6):556-559.
    [31]叶晓明,孟凡涛,许年春.土层水平卸荷拱的形成条件[J].岩石力学与工程学报,2002,21(5):745-748.
    [32]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402.
    [33]周德培,肖世国,夏雄.边坡工程中抗滑桩合理间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [34]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174-178.
    [35]张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699-703.
    [36]韩爱民,肖军华,梅国雄.被动桩中土拱形成机理的平面有限元分析[J].南京工业大学学报,2005,27(3):89-92.
    [37]蒋波,应宏伟,谢康和.挡土墙后土体拱效应分析[J].浙江大学学报,2005,39(1):131-136.
    [38]李忠诚,杨敏.被动受荷桩成拱效应及三维数值分析[J].土木工程学报,2006,39(3):114-117.
    [39]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [40]周应华,周德培,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学,2006,27(3):455-457.
    [41]吕庆.边坡工程灾害防治技术研究[D].杭州:浙江大学博士学位论文,2006.
    [42]陈福全,侯永峰,刘毓氚.考虑桩土侧移的被动桩中土拱效应数值分析[J].岩土力学,2007,28(7):1333-1337.
    [43]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J].岩土工程学报,2007,29(10):1477-1482.
    [44]吕涛,齐美苗,彭良泉.抗滑桩的土拱效应及数值模拟[J].人民长江,2007,38(1):42-45.
    [45]叶代成.抗滑桩桩间土拱效应及合理桩间距的研究[J].土工基础,2008,2(4):75-79.
    [46]章瑞文,徐日庆.土拱效应原理求解挡土墙土压力方法的改进[J].2008,29(4):1057-1066.
    [47]郭院成,郭呈祥,叶永峰.基于水平土拱效应的排桩支护结构合理桩间距的研究[J].四川建筑科学研究,2008.34(8):136-139.
    [48]秦立科,王晓谋,李云璋.基于水平土拱效应的桩间挡土板土压力计算研究[J].工程地质学报,2009,17(2):274-279.
    [49]张永兴,董捷,文海家,谭捍华.考虑自重应力的悬臂式抗滑桩三维土拱效应及合理间距研究[J].中国公路学报,2009,22(2):18-25.
    [50]Stroyer P R N. Earth pressure on flexible walls. Institution of Civil Engineers,1935,(1):94-138.
    [51]Peek R B. Earth pressure measurements in open cuts, Chicago(Ⅲ) Subway. American Society of Civi Engineering Proeeedings,1942,68(6):900-928.
    [52]Rowe P W. Anchored sheet-pile walls[J]. Institution of Civil Engineers, London, Proceedings,1952,(1):27-70.
    [53]Rowe P W. A theoretical and experimental analysis of sheet-pile walls [J]. Institution of Civil Engineers, London, Proceedings,1955,(4):32-69.
    [54]Rowe P W. Sheet-pile walls eneastre at the anchorage[J]. Institution of Civil Engineers, London, Proceedings.1955,(4):70-87.
    [55]Rowe P W. Sheet-pile walls at failure. Institotion of Civil Engineers, London, proceedings.1956,(5):276-315.
    [56]Rowe P W. Sheet-pile walls subject to line resistance above the anchorage.[J]. Institution of Civil Engineers, London, Proceedings,1957,(7):879-896.
    [57]Bjemim L, Clausen C J F, Dunean J M. Earth pressure on flexible struetures-Astate of the art report. Proeeedings [J], Fifth European conference on Soil Meehanies and Foundation Engineering,1972,11:169-196.
    [58]Clough G W, Tsui Y. Performance of tied-back walls in clay[J]. Journal of the Geotechnical Engineering Division, Proeeedings of the Ameriean Soeiety of Civil Engineering,1974,100(12):1259-1273.
    [59]Ono K, Yamada M. Analysis of the arching action in granular mass[J]. Geoteelmique,1993,43(1):105-120.
    [60]Vaziri. H. H. Numerical study of parameters influencing the response of fiexible retaining walls[J]. Canadian GeotechniCal Journal,1996,33:290-308.
    [61]Vaziri. H. H. A simple numerical model for analysis of propped embedded retaining walls [J]. International Journal of Solids Structures,1996,33(16):2357-2376.
    [62]王浩芬,李久旺.有锚柔性墙的内力与变形分析[J].岩土工程学报,1987,9(6):57-72.
    [63]谭跃虎,钱七虎.作用于支护结构的土压力测试与分析[J].建筑技术,1998(增刊):250-252.
    [64]刘晓立,严驰,吕宝拄,陈宝珠.柔性挡土墙在砂性填土中的土压力试验研究[J].岩土工程学报,1999,21(4):505-508.
    [65]徐日庆.基坑工程中非极限状态下的土压力计算问题[J].岩土工程界,2000(1):.
    [66]代军,胡岱文,吴曙光.桩锚支挡结构体系挡板土压力试验研究[J].重庆建筑大学学报,2001,23(4):48-54.
    [67]陈页开.挡土墙上土压力的实验研究与数值分析[D].浙江大学博士学位论文,2001.
    [68]张金民,曾进群.桩锚挡墙支护体系挡板土压力的试验研究[J].地下空间,2002,22(1):58-60.
    [69]陆培毅,严驰,顾晓鲁.砂土基于室内模型试验土压力分布形式的研究[J].土木工程学报,2003,36(10):84-88.
    [70]屠毓敏,金志玉.基于土拱效应的土钉支护结构稳定性分析[J].岩土工程学报,2005,27(7):792-795.
    [71]曾玉莹,郑小战.考虑位移效应的支护结构土压力计算[J].水运工程,2006,(12):85-88.
    [72]刘晓平,何海胜.柔性挡土结构的非线性有限元分析[J].长沙交通学院学报,1992,8(2):92-98.
    [73]甘建国,李志勇,邓宗伟.预应力锚索桩板墙受力现场测试与计算研究[J].公路工程,2007,32(5):105-109.
    [74]付立军,罗刚.拱效应和土压力重分布在桩(墙)锚支护结构概念设计中的应用[J].湖南理工学院学报,2008,21(2):78-80.
    [75]朱剑锋,徐日庆.考虑时效和土拱效应桩-锚基坑土压力计算方法[J].浙江大学学报,2009,43(4):766-770.
    [76]Hewlett W J, Randolph M F. Analysis of piled embankments [J]. Ground Engineering, 1988,21(3):12-18.
    [77]Russell D, Pierpoint N. An assessment of design methods for piled embankments [J]. Ground Engineering,1997,30(11):39-44.
    [78]Jones C J F P, Lawson C R, Ayres D J. Geotextile reinforced piled embankments [C]. Hoedt Den (ed). Proc4th Int Conf on Geotextiles:Geomembranes and Related Products,1990, Rotterdam:Balkema:155-160.
    [79]Han J, Akins K. Use of geogrid-reinforced and pile-supported earth structures [C]. Proceedings of International Deep Foundation Congress, ASCE,2002, Orlando:668-679.
    [80]American Association of State Highway and Transportation Officials (AASHTO). Innovative technology for accelerated construction bridge and embankment foundations [R]. AASHTO Preliminary Summary Report,2002:1-11.
    [81]Deutsche Gesellschaft fur Geotechnike. E V entwurf derempfeblung, bewehrte erdkorper auf punkf-order linienfomigen traggliendern[S]. Berlin:Ernst and Sohn,2004.
    [82]陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析[J].中国公路学报,2004,17(4):1-6.
    [83]陈福全,李阿池,吕艳平.桩承式路堤中土拱效应的改进Hewlett算法[J].岩石力学与工程学报,2007,26(6):1278-1283.
    [84]芮瑞,夏元友.桩承式路堤荷载传递计算方法研究[J].武汉理工大学学,2009,31(13):73-77.
    [85]祝启坤,覃雯,盛建豪.非预应力格构锚固机制与优化设计研究[J].岩土力学,2010,31(7):2173-2178.
    [86]刘小丽.新型桩锚结构设计计算理论研究[D].成都:西南交通大学,2003.
    [87]中国建筑科学研究院.JGJ120-99建筑基坑支护技术规程[S].北京:中国建筑工业出版社,1999.
    [88]董捷.悬臂桩三维土拱效应及嵌固段地基反力研究[D].重庆:重庆大学,2009.
    [89]何勇志.预应力锚索抗滑桩计算理论及试验研究[D].湖南:湖南大学,2009.
    [90]Low B K, Tang S K, Choa V. Arching in piled embankments [J]. Journal of Geotechnical Engineering, ASCE.1993,120(11):1917-1938.
    [91]Chen Yun-min, Cao Wei-ping, Chen Ren-peng. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments [J]. Geotextiles and Geomembranes,2008,26:164-174.
    [92]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.
    [93]饶枭宇.预应力岩锚内锚固段锚固性能及荷载传递机理分析[D].重庆大学博士学位论文,2007.
    [94]赖永标,胡仁喜,黄书珍ANSYS11.0土木工程有限元分析典型范例[M].北京:电子出版社,2007.[95]《工程地质手册(第四版)》编委会.《工程地质手册(第四版)》[M].北京:中国建筑工业出版社,2007.
    [96]马迪芳,宋泾舸,王芳.Jave程序设计实用教程[M].北京:清华大学出版社,2005.
    [97](美)BruceEckel著,陈昊鹏译.Jave编程思想[M].北京:机械工业出版社,2007.[98]理正软件公司.理正岩土岩质边坡稳定性分析软件使用说明及编制原理[M].北京,2011.
    [99]张永兴.边坡工程学[M].北京:中国建筑工业出版社,2008.
    [100]重庆市勘测院.重庆市轨道交通三号线一期工程四公里~南坪区间岩土工程详细勘察报告(CK4+401.000~CK4+754.911).2007.
    [101]林同炎国际重庆分公司.南坪转盘及周边路网改造工程下穿车行地道及人行地下通道设计施工图.2007.
    [102]重庆市建筑科学研究院.重庆市南坪中心交通枢纽工程(一标)支护结构后侧向土压力监测报告.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700