黄河废弃水下三角洲地基土对平台插拔桩的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1976年黄河改走清水沟流路后,黄河废弃的钓口流路水下三角洲遭到强烈蚀退,岸滩冲刷很快,水深加大,海岸线大幅度后退,原有沉积地貌单元遭到破坏和夷平。海底滑坡、沉陷、断裂、冲蚀沟槽、差异冲刷、粉土液化等海底不稳定因素均有发生,这些海底不稳定因素对油田开发带来了巨大挑战。海洋石油钻井平台在施工过程中,发生过桩腿刺穿、滑移甚至平台倾覆,造成了灾难性海洋工程事故。
     本论文依托多年积累的井场路由调查资料,研究了黄河废弃水下三角洲地基土的强度特征及分布规律。研究区近十年来整体处于冲刷状态,4-10m等深线之间的水下岸坡区平均冲刷大于2m。研究区浅部地基土主要为近期三角洲相的粉土和淤泥、淤泥质粉质粘土和早期的河湖沼泽相的粉质粘土、粉细砂及粉土。海底表层沉积物主要类型有粉土和淤泥、淤泥质粉质粘土。表层粉土,具有较高的力学强度,厚层粉土可以作为插桩式钻井平台的持力层;淤泥、淤泥质粉质粘土属于软弱土,不能满足插桩式钻井平台的要求。河湖相沉积的粉细砂、粉土,厚度一般大于10m,是插桩式钻井平台在该区理想的持力层。
     根据地基土破坏的一般形式和特征,分析了桩靴式钻井平台插拔桩过程中地基土的破坏形式和特征。插拔桩过程是动态贯入过程,桩端及桩靴周围地基土体受到强烈扰动,地基土破坏主要以冲剪破坏为主,土中并不出现明显的连续滑动面,该过程与土体静力学状态下土体整体破坏存在较大区别。在分析了插桩过程中土体的破坏形式基础上,根据极限平衡理论,假定破坏面的方法,推导出了均匀和双层地基土中基于被动土压力的插桩阻力计算公式。
     极限承载力的分析计算建立在土体整体剪切破坏模式上,给出了土体极限状态下的承载力。本文推导出的均匀土中和双层地基土中的插桩计算公式,建立在土体冲剪破坏模式上,给出了土体冲剪破坏下的插桩阻力。二者与实际插桩阻力存在一定的差距,分别给出了插桩阻力的上限和下限。插桩阻力分析计算过程中采用假设破坏面更接近于插桩过程土体的破坏模式,实例计算结果也表明该方法计算的插桩阻力较以前的极限承载力更接近于实际插桩阻力,丰富了桩靴式钻井平台插桩深度预测方法。
     根据插拔桩后井场的调查资料,分析了地基土经历插拔桩过程后的变化特征,探讨了桩坑内土体的强度恢复机理。地基土经历插拔桩过程后,在海底形成一定大小和深度的桩坑,在水动力作用下,桩坑逐渐被夷平。在浅地层声学记录上表现为地层反射面的中断,尚未夷平的桩坑在声纳图像上表现为近视圆形的凹坑。分析结果表明地基土经历插拔桩过程后工程性质发生了较大变化:粉土经历插拔桩过程后,桩穴内的含水量一般小于桩穴外的含水量;桩底下粉土的含水量比周边粉土的含水量小。桩穴内的粉土的压缩模量一般大于桩穴外地基土的压缩模量;软粘土的压缩模量一般小于桩坑周边地基土的压缩模量。研究认为,粉土是研究区桩靴式钻井平台的主要的持力层,具有良好的排水条件,经历插拔桩后的桩坑内的粉土强度一般大于或接近周围土的强度。软粘土由于排水条件很弱,插桩过程中受到扰动破坏,强度降低。受到扰动的地基土强度恢复过程复杂,影响因素主要有再沉积作用、自身的压缩固结、沙土液化和人工预压。需要重复插桩的井场,地基土变化由于经历了插拔桩的过程较原始地层复杂,为了提高地基土的强度,可以采取预压的方式提高地基土的承载力。
     近年来,随着海洋石油的开发活动加剧,研究区内平台插拔桩作业频繁,地基土受到扰动和破坏,从而使得本来就复杂的井场地层情况变得更为复杂。虽然在海洋水动力作用下,地基土强度会恢复,但由于其强度与周边土体强度存在差别,后续平台插拔桩施工作业过程中存在较大的安全隐患。进一步研究受到扰动破坏土体的工程性质变化及其对平台插桩的影响,有助于减少工程事故的发生。
Since rerouting to Qingshuigou flow path in1976, the Yellow River abandonedDiaokou flow path underwater delta is under strong erosion with fast scouring speed,enormous water depth and large stepping back of coastline, which leads to thedestruction and deplanation of original sedimentary geomorphic units. The occurrenceof unstable seabed factors such as submarine slide, sinking,fracture, erosion groove,difference scour and silt liquefaction brings huge challenge for oil field development.The happenings of impaled pile leg, slipping and even overturned platform during theconstruction of offshore drilling platform cause marine engineering catastrophicaccidents.
     The character distribution law of the abandoned underwater delta foundationsoil strength of Yellow River is analyzed in this dissertation based on wellsite androuting survey data of years. The study area has been under erosion in the past tenyears, whose average erosion depth is greater than2m in subaqueous coastal slopewhere the contour is between4m and10m. The shallow foundation soil in study areais mainly composed of silt, mud and muddy-silty clay in recent delta facies and siltycaly, silt and silty-fine sand which belong to early Lacustrine bog facies. Sea floorsediments include silt, mud and muddy silty clay. Surface silt with high mechanicalstrength can be used as the bearing stratum of pile type drilling platform. Soft soil likemud and muddy siltyclay are disqualified. Silt and silty-fine sand belonging toLacustrine bog facies whose thickness is greater than10m is an ideal bearing stratumof pile type drilling platform in this area.
     The destruction forms and characteristics of foundation soil in the insertion andextraction of shoe type drilling platform are analyzed based on the general destructionforms and features of foundation soil. Insertion and extraction is a dynamicpenetration process in which the soil on the top and close to pile shoe is violentlydisturbed. The main destruction form is punching shear failure without continuousslipping surface. The process differs largely from the structural failure under staticstate. In accordance with the soil destruction form and limit equilibrium theory, insertpile resistance computational formula in uniform and two-layer foundation soil onpassive earth pressure is deducted through the hypothesis of failure surface.
     The analysis and calculation of ultimate bearing capacity deduces the bearingcapacity under limit state based on soil general shear failure mode. The insert pileresistance computational formula deducted in this essay calculates the capacity undersoil clash-cut mode according to soil clash-cut model. There is a certain gap betweenthem and the actual insert pile resistance, which calculates the upper limit and lowerlimit of insert pile resistance. The hypothesis of failure surface put forward in this essay is much closer to the actual insert pile failure and calculation examples alsoprove that the insert pile resistance computational result through formula deducted inthis essay is much closer to the actual value compared with the ultimate bearingcapacity, which enriches the prediction methods of insertion depth of shoe typedrilling platform.
     Based on the survey data of wellsite after insertion and extraction, variablecharacteristics of foundation soil and recovery mechanism of soil strength areanalyzed and explored in this essay. Shoe pits with a certain size and depth are formedon seabed after insertion and pullout process and reduce to deplanation underhydrodynamic action, which is displayed as the interruption of reflection surfaces onshallow acoustic records. Shoe pits which are not yet leveled are represented asapproximate circular pits on sonar image. Analysis results prove that engineeringproperties of foundation soil have changed greatly after insertion and extraction: watercontent inside pile hole is smaller than that outside; silt water content at the bottom ofpile is smaller than that around; silt compression modulus inside pile hole is biggerthan that outside; compression modulus of soft clay inside the pile hole is smaller thanthat outside. Investigation results imply that silt is the major bearing stratum of shoetype platform in study area with well-drained condition, whose strength in the pilehole is closed or greater than that around. Due to poor drainage condition, soft claystrength decreases after disturbance and destruction. The recovery of soil strength is acomplex process, whose influencing factors mainly include redeposition, compressionconsolidation, sand liquefaction and artificial preloading. In the wellsite which needsrepeated pile insertion, soil is more complex than the original. Preloading can improvesoil strength and bearing capacity.
     With the active development of offshore oil in recent years, the insertion andextraction of platform is conducted more frequently leading to foundation soildisturbance and destruction, which makes wellsite stratum situation even morecomplicated. The strength of foundation soil will be recovered under marinehydrodynamic action, while differences still exist with the strength of surroundingfoundation soil, which causes high security risks to the later platform insertion andextraction. Further investigation and exploration of engineering properties change ofdisturbance and destruction soil and its influence on platform insertion can contributeto the reduction of engineering accidents.
引文
[1] YING Ming, LI Jiufa, CHEN Shenliang, DAI Zhij. Dynamics Characteristics andTopographic Profile Shaping Process of Feiyan Shoal at the Yellow River Dela. MarineScience Bulletin,2008,10(2):74-88
    [2] American Petroleum Institute. Recommended Practice for Planning, Designing andConstructing Fixed Offshore Platforms—Working Stress Design
    [3] Pettingill H S, Weimer P. World2wide deepwater exploration and production:past,presentand future [A]. Houston, Texas:21st Annual Research Conference,2001-12.
    [4] Shailendra N Endley, Vladimir Rapoport. Prediction of jack-up rig footing pentration.Offshore Technology Conference,1981.
    [5] Vincent P Saglioni,Gary S Chow, Shailendra N Endley, Fugro Gulf.Jack-up rig foundationstability in stratified soil profiles. Offshore Technology Conference,1982.
    [6] Young, A G, and Focht J A. Subsurface Hazards affect mobile jack-up rig operations,Mcclelland Engieers Inc, Houston,1981,3(2):4-9.
    [7] Muhammad Shazzad Hossain, Faculty of engineering and computing department of CivilEngineering, Investigation of soil failure mechanisms during spud foundationinstallation,2004.4.
    [8] Dilip.R.M,Luis.F.G.V,John.L.T. Installation and pullout of suction cassons: Finite elementsimulation. Proceedings of the international conference on offshore mechanics and arcticengineering OMAE.2003.3:875~881.
    [9] C.F.Leung, K.L.Teh,Y.K.Chow, Study on jack-up spud-through, Soft SoilEngineering-Chan&Law,2007,291-298.
    [10] M J Cassidy, G T Houlsby etc. Determining appropriate stiffness levels for spudcanfoundations using jack-up case records[A].Proceedings of OMAE2002.
    [11] S Micic,K Y LO and J Q Shang. A new technology for increasing the load-carryingcapacities of offshore foundations in soft clayss[A]. Proceedings of OMAE2003.
    [12] DierA,CarrollB,Abolfathi5. Guidelines for jackup-rigs with Particular reference tofoundation integrity.MSLEngineeringLimited,2004..
    [13] M.S.Hossain, M.F.Randolph, Centre for Offshore Foundation Systems University ofWestern Australia, Investigating Potential for punch-though for spud foundations on layeredclays, Proceddings of the seventeenth international Offshore and Polar EngineeringConference, ISOPE, Lisbon, Portugal, July1-6,2007,1510-1517.
    [14] M.S.Hossain, M.F.Randolph, Punch-through of spud foundations in two-layer clay,Frontiers in offshore Geotechnics:ISFOG2005,535-540.
    [15] M.J. Cassidy, M.F. Randolpha, B.W. Byrne. A plasticity model describing caissonbehaviour in clay. Applied Ocean Research,28(2006)345–358.
    [16] Yinghui Tian, Mark J. Cassidy. Pipe-Soil Interaction Model Incorporating Large LateralDisplacements in Calcareous Sand. JOURNAL OF GEOTECHNICAL ANDGEOENVIRONMENTAL ENGINEERING,2011,279-287.
    [17] SNAME_TR5-5_Rev3. Recommended Practice for Site Specific Assessment of MobileJack-Up Units. May2007:61-70.
    [18] DNV-RP-E303. Geotechnical Design and Installation of Suction Anchorsin Clay. October2005:7-15.
    [19] El-Mabsout,M E.1991.A finite element model for the analysis of pile driving. PHD Thesis.University of Texas, Austin, Tex.
    [20] Mabsout,M E and Tassoulas J L.1994. A finite element model for the simulation of piledriving. Int.J.Num.Meth.Rngrg,37(2),257-278
    [21] A O P. Casbarian Barnett&Casbarian “Footing type, soil affect leg penetration”[J].Offshore,1982.
    [22] Steven C Helfrich, Alan G Young. Temporary seafloor support of jacket structures[A].Offshore Technology Conference[C],3750,1980.
    [23] Alan G Young,et al. Foundation Performance of Offshore jack-up drilling rigs. Journal ofGeotechnical Engineering,1984,110(7).
    [24] Fugro Engineer’s B V. Computation Methods for jack-up rig footings on UniformSoils.1992.
    [25] McCleffand Fngineers,inc.Geotechnical Consultants, Jack-up rig foundation analysis BohaiArea.Houston,Texas,July1983,pp.6-8.
    [26] L.Kellezi and H.Stromann, FEM analysis of jack-up spud penetration for multi-layeredcritical soil conditions, GEO-Danish Geotechnical Institute,Lyngby,Denmark,411-420.
    [27] Tateishi H,Watanabe Y. Leg penetration monitor system to avoid the punch-throughaccidents of jack-up rigs[A]. Offshore Technology Conference5223[C],1986.
    [28] Yongchen Xu, Jianzheng Wu, Longhai Zhu, Nan Wang. Study on the unstable geologicalfactors of oil gas submarine pipeline in shallow sea shelf area. Proceedings of InternationalConference on Pipelines and Trenchless Technology2009, ICPTT2009: Advances andExperiences with Pipelines and Trenchless Technology for Water, Sewer, Gas, and OilApplications,2009,281-295
    [29] Wang Nan; Wu Jianzheng; Xu Yongchen1Huang Zhongping Zhu Longhai. Research onsoil failure modes and spudcan penetration depths in a single layer. Proceedings of theInternational Offshore and Polar Engineering Conference ISOPE-2012.700-704
    [30] LI Guangxue,YUE Shuhong,ZHAO Dongbo,SUN Yingtao. Rapid deposition and dynam icprocesses in the m odern yellow river mouth. Marine Geology&QuaternaryGeology,2004,24(3):29-35
    [31] Guangxue Li, Helong Wei, Yeshen Han, Yiji Chen. Sedimentation in the Yellow River delta,part I: flow and suspended sediment structure in the upper distributary and the estuary.Marine Geology,1998,149:93–111
    [32] Guangxue Li, Helong Wei, Shuhong Yue, Yiji Cheng, Yeshen Hanc. Sedimentation in theYellow River delta, part II: suspended sediment dispersal and deposition on the subaqueousdelta. Marine Geology,1998,149:113–131
    [33] Guangxue Li, Kelin Zhuang, Helong Wei.Sedimentation in the Yellow River delta. Part III.Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology,2000,168:129–144.
    [34] Li Anlong,LI Guangxue,Cao Lihu,etc. The coastal erosion and evolution of theYellowRiver Delta abandoned lobe. Journal of Geographical Sciences,2004,14(4):465—472
    [35]成国栋,薛春汀.黄河三角洲沉积地质学.地质出版社,1997
    [36]李元芳,黄云麟,李拴科.近代黄河三角洲海岸潮滩地貌及其沉积的初步分析.海洋学报(中文版),1991,13(5):662-671
    [37]耿秀山,徐孝诗,傅命佐.黄河三角洲体系与地貌特征.海岸工程,1992,11(2):66-78
    [38]李广雪,薛春汀.黄河水下三角洲沉积厚度、沉积速率及砂体形态.海洋地质与第四纪地质,1993,13(4):35—44
    [39]姜在兴,王留奇,林承焰,等.黄河三角洲细粒物质搬运和沉积动力学研究.石油大学学报.1993,17(6):6-11
    [40]陈小英.陆海相互作用下现代黄河三角洲沉积和冲淤环境研究:[博士学位论文].上海:华东师范大学,2008
    [41]李栓科.近代黄河三角洲的沉积特征.地理研究,1989,8(43):45-55
    [42]冯秀丽,林霖,庄振业.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系.海岸工程,1999,18(4):1-7
    [43]徐永臣.黄河三角洲沉积体系工程性质控制因素的研究:[硕士学位论文].青岛:中国海洋大学,2004
    [44]张卫明,梁瑞才,牟晓东等.埕岛油田海域海底沉积特征与工程地质特性.海洋科学进展,2005,23(3):305-312
    [45]张衍涛,常方强,孟祥梅,等.黄河口埕岛海域表层沉积物土性的区域变化及其机理分析.海洋科学进展,2009,27(3):351-356
    [46]乔淑卿,石学法.黄河三角洲沉积特征和演化研究现状及展望.海洋科学进展,2010,28(3):408-416
    [47]李陆平,孔祥德,廖启煜.风暴浪对埕岛油田海域海底冲刷的影响.海岸工程,1996,2:1-8
    [48]刘效国,朱孝强.埕岛海域水深地形特征及冲淤规律探讨.黄渤海海洋,2000,18(1):34-39
    [49]庄克琳,李广雪.埕岛海域海底冲淤的初步数值研究.海洋地质与第四纪地质,2000,20(1):97-100
    [50]刘勇,李广雪,邓声贵,等.黄河废弃三角洲海底冲淤演变规律研究.海洋地质与第四纪地质,2002,22(3):28-34
    [51]褚忠信.现代黄河三角洲冲淤演变规律与遥感应用研究:[硕士学位论文].青岛:中国海洋大学,2003
    [52]褚忠信,马向辉,张建启,等.一般高潮线与2m等深线反映黄河三角洲冲淤变化的对比.海洋科学,2005,25(4):23-27
    [53]鹿洪友,李广雪.黄河三角洲埕岛地区近年海底冲淤规律及水深预测.长安大学学报(地球科学版),2003,25(1):57-61
    [54]尹延鸿,周永青,丁东.现代黄河三角洲海岸演化研究.海洋通报,2004,23(2):32-40
    [55]李安龙,李广雪,曹立华,等.黄河三角洲废弃叶瓣海岸侵蚀与岸线演化.地理学报,2004,59(5):731-737
    [56]黄海军,樊辉.1976年黄河改道以来三角洲近岸区变化遥感监测.海洋与湖沼,2004,35(4):306-313
    [57]孙永福,段焱,吴桑云.黄河三角洲北部岸滩的侵蚀演变.海洋地质动态,20064,22(8):7-11
    [58]张晓龙,李培英.现代黄河三角洲的海岸侵蚀及其环境影响.海洋环境科学,2008,27(5):475-479
    [59]李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质2000,20(2):21-26
    [60]冯秀丽,戚洪帅,王腾,等.黄河三角洲埕岛海域地貌演化及其地质灾害分析.岩土力学,2004,25:17-20
    [61]李安龙,杨荣民,曹立华,等.黄河水下三角洲海底斜坡波致稳定性分析.中国海洋大学学报,2004,34(2):273-280
    [62]许国辉,贾永刚,郑建国,等.黄河水下三角洲塌陷凹坑构造形成的水槽试验研究.海洋地质与第四纪地质,2004,24(3):37-40
    [63]周良勇,刘健,刘锡清,等.现代黄河三角洲滨浅海区的灾害地质.海洋地质与第四纪地质,2004,24(39):19-26
    [64]贾同彬,许国辉.黄河水下三角洲土体失稳研究现状与展望.海岸工程,2005,24(3):36-42
    [65]李海东,杨作升,王厚杰,等.现代黄河水下三角洲地质灾害现象的空间分布.海洋地质与第四纪地质,2006,26(4):37-43
    [66]许国辉,尹晓慧,王秀海,等.浅表土体强度对黄河水下三角洲微地貌形成的控制作用.中国海洋大学学报,2007,37(4):657-662
    [67]许国辉,卫聪聪,孙永福,等.黄河水下三角洲浅表局部扰动地层工程特性与成因.海洋地质与第四纪地质,2008,28(6):19-25
    [68]冯秀丽,沈渭铨,杨荣民.现代黄河水下三角洲砂土液化模式.青岛海洋大学学报,1995,25(2),221-228
    [69]杨少丽,沈渭铨,杨作升.波浪作用下海底粉土液化的机理分析.岩土工程学报,1995,17(4),28-37
    [70]沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度.水利学报,1996,4(1):27-33
    [71]王建华,陈诚,张庆河.波浪作用下海洋浅层软土弱化与场地稳定性.水利学报,1998,6:13-17
    [72]史文君.波浪导致黄河口水下斜坡硬壳破坏过程研究:[硕士学位论文].青岛:中国海洋大学,2004
    [73]段兆臣.饱和细粒土微振液化机理探讨与沉降变形预测及处置研究:[硕士学位论文].青岛:中国海洋大学,2005
    [74]贾永刚,杨秀娟,安英杰,等.透水与隔水夹层对粉质土液化影响试验研究.工程地质学报,2006,14(01):52-59
    [75]张民生.波浪作用下黄河三角洲海床稳定性研究:[硕士学位论文].青岛:中国海洋大学,2006
    [76]许国辉.波浪导致粉质土缓坡海底滑动的研究一以黄河水下三角洲为例:[博士学位论文].青岛:中国海洋大学,2006
    [77]李晓东.波浪导致黄河口粉质海床土液化研究:[硕士学位论文].青岛:中国海洋大学,2008
    [78]尹晓慧.波浪导致黄河水下三角洲粉砂流形成及发展研究:[硕士学位论文].青岛:中国海洋大学,2009
    [79]常方强,贾永刚,张建,等.黄河水下三角洲硬壳层特征及其液化过程研究.工程地质学报,2009,17(3):349-356
    [80]师长兴,尤联元,李炳元,等,黄河三角洲沉积物的自然固结压实过程及其影响.地理科学,2003,23(2):175-181
    [81]别君,黄海军,樊辉,等.现代黄河三角洲地面沉降及其原因分析.海洋地质与第四纪地质,2006,26(4):29-35
    [82]秦伟颖,庄新国,黄海军.现代黄河三角洲地区地面沉降的机理分析.海洋科学,2008,32(8):38-43
    [83]杜廷芹.现代黄河三角洲地区地面沉降特征研究:[博士学位论文].青岛:中国科学院研究生院,2009
    [84]邢延.自升式钻井船桩脚插入深度计算.岩土工程学报,1991,13(5):36-45
    [85]李春群,孙春昌.自升式平台地基承载力、抗倾稳性及桩腿插深分析.上海交通大学学报,1996,30(3):79-85
    [86]段忠毅,要明伦,王家祥,等.带桩靴自升式桩基钻井平台插桩深度的计算方法.中国海上油气(工程),1998,10(4):20-24
    [87]吴秋云,周扬锐,冯秀丽,等.自升式钻井船基础刺穿分析方法在渤海石油开发区的应用.海岸工程,1999,18(4):16-21
    [88]郑喜耀.自升式钻井平台插桩深度计算及几个问题的探讨.中国海上油气(工程),2000,12(2):18-21
    [89]袁凡凡,闫澍旺,孙万禾.关于成层土地基极限承载力的计算方法.水利学报,2001,3:41-45
    [90]龚闽,谭家华.自升式平台在层状地基上承载能力及穿透可能性分析.中国海洋平台,2004,19(2):20-23
    [91]张异彪,杨文达.层状地层中自升式钻井平台桩脚稳定性分析.海洋石油,2005,25(4):91-95
    [92]龚闽,谭家华.自升自航式船桩靴人泥初步分析.海洋工程,2005,23(2):87-91
    [93]刘剑涛,吴文峰,蒋宝凡.自升式钻井船插桩深度预测.中国造船,2008,48:317-322
    [94]丁红岩.海上自升式钻井平台插/拔桩机理及新型桩靴静/动承载力研究:[博士学位论文].天津:天津大学,2004
    [95]付丽娜.自升式钻井船桩靴承载能力研究:[博士学位论文].天津:天津大学,2008
    [96]王建军,李红涛.自升式海洋平台地基稳定性分析.中国修船,2010,23(3):54-56
    [97]王楠.黄河废弃水下三角洲土体破坏机制及桩靴承载力研究:[博士学位论文].青岛:中国海洋大学,2013
    [98]宋清峰.黄河水下三角洲插拔桩对底土的扰动与恢复研究:[硕士学位论文].青岛:中国海洋大学,2007
    [99]宋清峰,吴建政,亓发庆,等.插拔桩对黄河水下三角洲浅层土的扰动及恢复研究.海岸工程,2007,26(2):11-18
    [100]杨作升,王涛.埕岛油田勘探开发海洋环境.青岛,青岛海洋大学出版社,1993.
    [101]陈宏,李春祥.自升式钻井平台的发展综述.中国海洋平台,2007,22(6):1-6
    [102]陈希哲.土力学地基基础(第4版).北京,清华大学出版社,2004.
    [103]中华人民共和国国家发展和改革委员会. SY/T6707-2008.中华人民共和国石油与天然气行业标准-海洋井场调查规范.北京:石油工业出版社,2008-06-16
    [104]钱家欢,殷宗泽.土工原理与计算(第二版).北京,中国水利水电出版社,1996.
    [105]中华人民共和国建设部、中华人民共和国国家质量监督检验检疫总局. GB50007-2011.中华人民共和国国家标准-建筑地基基础设计规范.北京:中国标准出版社,2011-07-26
    [106]龚良平.埕岛海域自然地质环境对海上构筑物的响应分析研究:[硕士学位论文].青岛:中国海洋大学,2009
    [107]翟科.埕岛海区海底不稳定性差异对工程设施的影响:[硕士学位论文].青岛:中国海洋大学,2010
    [108]王西岗.埕岛油田浅层地质灾害及危险性区划分析与探讨.中国石油和化工标准与质量,2012,5:188-189
    [109]吴建政.山东全新世滨海软土与工程地质灾害的研究.海洋地质与第四纪地质,1995,15(3):44-54
    [110]班丽,刘展.1996年黄河尾闾改道以来水下三角洲的演变.水文,2008,28(4):82-86
    [111]王俊超,贾永刚,史文君.差异水动力导致黄河口粉质土微结构分形特征变化实例研究.海洋科学进展,2004,22(2):177-183
    [112]刘升发,庄振业,吕海青.埕岛及现代黄河三角洲海域晚第四纪地层与环境演变.海洋湖沼通报,2006,4:32-37
    [113]王玉广,于永海,付云宾,等.废弃的黄河三角洲的地形特征及演化.海洋湖沼通报,2008,2:10-16
    [114]高涛,李广雪,史经昊.废弃黄河三角洲侵蚀机理的试验研究.海洋地质动态,2009,25(3):11-17
    [115]常方强,孟祥梅,刘景昆,等.黄河口埕岛海域土性特征的统计分析.海洋地质与第四纪地质,2008,28(6):35-40
    [116]张进,刘怀山,童思友.黄河口现代海洋沉积高分辨率地震地层学研究.海洋地质动态,2004,20(5):1-5
    [117]杨秀娟,贾永刚,吕杰.黄河三角洲沉积物工程地质特性分析.人民黄河,2010,32(12):201-204
    [118]李俊杰,李广雪,文世鹏,等.黄河三角洲埕岛海域浅地层结构与灾害地质.海洋地质动态,2007,23(12):8-13
    [119]李为华,李九发,戴志军,等.黄河三角洲飞雁滩表层沉积物对水动力的响应.海洋地质与第四纪地质,2006,26(1):17-21
    [120]李九发,李为华,应铭,等.黄河三角洲飞雁滩沉积物颗粒度分布和粒度参数特征及水动力解释.海洋通报,2006,25(3):38-44
    [121]陈沈良,张国安,陈小英,等.黄河三角洲飞雁滩海岸的侵蚀及机理.海洋地质与第四纪地质,2005,25(3):9-14
    [122]刘茜,郑西来,刘红军,等.黄河三角洲粉土液化的试验研究.世界地震工程,2007,23(23):161-166
    [123]李广雪,李君,刘勇,等.黄河三角洲软弱层变形和刺穿作用.海洋地质与第四纪地质2008,28(5):29-36
    [124]冯秀丽,王园君,黄明全,等.黄河三角洲桩西至黄河海港海域冲淤演化特征研究.海洋科学,2008,32(9):12-17
    [125]布如源,黄承义,李国刚,等.黄河水下三角洲北部区域海底地形冲淤变化研究.海岸工程,2010,29(4):24-32
    [126]张士华,邓声贵.黄河水下三角洲沉积物输运及海底冲淤研究.海洋科学进展,2004,22(4):184-192
    [127]刘建立,仲德林.黄河水下三角洲前沿深度基准面及潮位变化分析研究.海岸工程,2005,24(3):14-18
    [128]时连强,李九发,应铭,等.现代黄河三角洲潮滩原状沉积物冲刷试验.海洋工程,2006,24(1):46-54
    [129]高伟.现代黄河三角洲钓口叶瓣地层层序研究:[博士学位论文].青岛:中国海洋大学,2011
    [130]杨作升,王涛.埕岛油田勘探开发海洋环境.青岛:青岛海洋大学出版社.1993
    [131]李安龙,杨荣民等.近代黄河水下三角洲底坡土体的差异侵蚀及土工特性.青岛海洋大学学报,2001,31(3):435-440
    [132]王楠,吴建政,亓发庆,等.黄河水下三角洲表层粉土的冲切破坏与残留楔体研究.中国海洋大学学报,2009,39(6):1283-1288
    [133]任于灿.现代黄河水下三角洲的地貌特征及演化.海洋地质与第四纪地质,1992,12(4):59-68
    [134]丁东,任于灿,李绍全,等.黄河三角洲及邻区的风暴潮沉积.海洋地质与第四纪地质,1995,16(5):25-33
    [135]成国栋,任于灿,李绍全,等.现代黄河三角洲河道演化及垂向序列.海洋地质与第四纪地质,1986,6(2):1-15
    [136]常瑞芳,崔青,欧素英.黄河水下三角洲海底冲蚀沟发育的动力机制探讨.海洋学报,1999,21(3):90-97
    [137]常瑞芳,陈樟榕,陈卫民,等.老黄河口水下三角洲前缘底坡不稳定地形的近期演变及控制因素.青岛海洋大学学报,2000,30(1):159-164
    [138]张浦阳.海上自升式钻井平台插/拔桩机理及新型桩靴静/动承载力研究:[硕士学位论文].天津:天津大学,2008
    [139]王楠.渤海湾西部海洋工程环境与桩基适宜性研究:[硕士学位论文].青岛:中国海洋大学,2005
    [140]鹿群.成层地基中静压桩挤土效应及防治措施:[博士学位论文].杭州:浙江大学,2006
    [141]樊向阳.静压桩施工沉桩阻力及沉桩挤土效应研究:[博士学位论文].上海:同济大学,2007
    [142]赵少飞.复合加载条件下海洋地基承载力特性数值分析方法研究.[博士学位论文].大连:大连理工大学,2005
    [143]张其一.复合加载模式下地基极限承载力与安定性的理论研究及其数值分析.[博士学位论文].大连:大连理工大学,2008
    [144]中华人民共和国建设部、中华人民共和国国家质量监督检验检疫总局. GB50021-2001.中华人民共和国国家标准-岩土工程勘察规范.北京:中国建筑工业出版社,2002-01-10
    [145]国家质量技术监任局. GB17503一1998.中华人民共和国国家标准-海上平台场址工程地质勘察规范.北京:中国标准出版社,1998-10-12
    [146]国家发展和改革委员会. SY/T10030-2004.中华人民共和国石油与天然气行业标准-海上固定平台规划、设计和建造的推荐作法工作应力设计法.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700