RS和GIS技术在输电线路优选中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部拥有丰富的水电资源,但却因为复杂的地质条件影响了水电资源的外送,如何合理规划输电线路成为电力系统工程首要课题。本文以汶川地震灾区项目“绵阳—广元500kV线路π接进南坝线路工程”为研究对象,针对震后研究区工程地质条件和环境地质条件的巨大变化,利用遥感技术快速提取出地形地貌、地层岩性、地质构造、土地利用和不良地质条件等特征信息,辅以拟选区气候水文和社会经济条件,构建输电线路适宜性评价指标体系,通过GIS强大的空间分析功能,根据专家经验,采用模糊加权的形式对研究区线路适宜性进行评估,根据评估结果拟定了东、中、西共3条线路的初选方案。通过对3条方案的工程地质条件的比较,最终认为西线为最优方案,最后对西线线路走廊带进行了工程地质条件的分区并分别予以适宜性评价。文章主要取得了以下成果:
     (1)利用遥感手段获取数据
     鉴于研究区范围较大,且因地震对环境地质条件尤其是地貌条件造成的巨大变化,原有的图纸资料部分已经失去了价值。虽然可通过实地调研获取研究区信息,且具有可靠性,但往往需要大量的资金投入,并且需要较长的周期不具备时效性,进而延缓工程的进程。本文通过建立解译标志,对线路适宜性评估中所需信息进行了遥感获取,针对解译存在的疑点采取有目的的实地调研,在保证精确性的前提下提高了数据获取的效率。
     (2)初步建立了基于GIS的线路适宜性评估体系
     本文涉及的线路适宜性评估体系包括评估指标体系和评估方法模型两个部分。评估指标体系综合考虑了工程地质、环境地质、气侯水文、地质构造以及当地社会经济等诸多因素,包括8项指标数据,以此对研究区工程建设适宜性进行全面表达;鉴于研究区工作程度较低,数据资料不全,难以进行全定量的评估,因此本次咨询专家经验,以GIS为平台采用模糊加权的方式进行评估,评估结果表明该方法具有较强的操作性,可以成为线路选址评估工程的一项重要技术手段。
     (3)线路优选及分区评价
     在初步拟定的3条方案中,根据评价体系的二次评分,认为西线最具适宜性,因此线路优选是在西线方案的基础上进行的,对西线走廊带区域地形地貌、地质构造、地层岩性、土地利用和不良地质现象进行分析,确定线路最佳走向,并通过建立三维场景确定塔点的位置。根据不良地质现象和工程地质条件,确定大康-甘溪、甘溪-平通、平通-田坝、田坝-南坝4个分区,并分别予以不良地质现象适宜性条件评价和工程地质适宜性条件评价。
There are rich hydropower resources in western China, but it is very difficult to be taken out because of the complicated geological conditions. How to design the transmission line legitimately becomes the primary subject of power system engineering. In this article, taking the Wenchuan earthquake reconstruction project which is called“500kV Mianyang-Guangyuan lineπconnected into Nanba line project”as the research object, according to the great changes of engineering geological conditions and environmental geological conditions in research area after the earthquake, using remote sensing technology quickly extracting the information of topography, lithology, geological structure, land using and bad geological conditions and other characteristics, supplemented by the meteorological hydrology and socio-economic conditions of the selected area, constructing the suitability evaluation system of power transmission line. According to experts’experiences, the form of fuzzy weighted semi-quantitatively is applied to evaluate the suitability of the research area through the powerful spatial analysis function of GIS. According to the assessment, three primary programs are prepared. They are east line, central line and west line. After the comparison of the engineering geological conditions of 3 lines, the west line comes to be the best solution. In the end, the west line is divided by the conditions of engineering geologic and evaluating suitability for each area. The article mainly achieved the following results:
     (1) Getting data by remote sensing.
     In view of the large research area, and the great changes of the environmental geology, especially landscape conditions on the ground of earthquake, the part of the original drawings have lost value. Although the information could be obtained through field research, which is reliability, usually it requires substantial investment and long time, which would delay the process of reconstruction. This article constructs to get the information for the assessment of the suitability of the line by remote sensing through the interpret signs. According to the suspicious interpret signs, taking the field research on purpose, the efficiency are improved under the premise of ensuring the accuracy of the data.
     (2) Establish the line suitability assessment system based on GIS preliminarily.
     In this article, the line suitability assessment system includes 2 parts: evaluation index system and evaluation method model. The evaluation index system is generally considered engineering geology, environmental geology, meteorological hydrology, geological structures and local socio-economic factors, including 8 indicator data. According to which gives a comprehensive introduction on the suitability of the construction program in the research area. Because of the low work lever of the research area and incomplete data, it is very difficult to evaluate quantitative comprehensively. Therefore, according to experts’experiences, the form of fuzzy weighted semi-quantitatively is utilized to evaluate with GIS platform. The result shows that the method is strongly operational; it could be considered as an important technical support in line location evaluation project.
     (3) Line selection and evaluation division.
     In the 3 initial line options, according to the secondary score of the evaluation system, the west line is the best in suitability so that the selection of the lines is based on the west line project. Through analyzing the topography, geological structure, lithology, land using and bad geological conditions, the best line alignment is finalized. The location of the tower point is determined with the establishment of three-dimensional scene. According to the engineering geological conditions, 4 districts which are Dakang-Ganxi, Ganxi-Pingtong, Pingtong-Tianba and Tianba-Nanba, are divided. The evaluation of bad geological phenomenon suitability and engineering geological suitability for each area are given.
引文
[1]刘足健,付德安.电力线路设计的相关问题分析[J].广东科技,2008(187):125-126.
    [2]梅安新,彭望,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [3]许军强,邢立新,潘军.遥感技术在高压输电线中的应用[J].遥感技术与应用,2006,21(2):168-172.
    [4]杨泰平,唐川,段永坤,等.RS和GIS在高压输电线选线中的应用[J].地理空间信息,2010(2):115-117.
    [5]罗相涛.3S技术新发展及其在输电线路选线工程中的应用[J].科技咨询导报,2007,7:34-37.
    [6]高翔,尹凡.GIS技术在500kV架空输电线路信息化管理中的应用[J].华东电力,2006,34(8):57-59.
    [7]王喆,GIS在输电线路中应用的普及[J].科技资讯,2010,8:123.
    [8]牛根良.GIS管道线路优化设计平台[J].科技传播,2010(6上):83-84.
    [9] James Patch.GIS in Electricity Supply Industry an Overview[M].TheInstitution of Electrical Engineer.1993,
    [10] Lee J, Strucky D. On applying viewshed analysis for determining least-cost paths on Digital Elevation Models[J].International Journal of Geographical Information Science,1998,12(8):51-62.
    [11] Douglas D H. Least cost path in GIS using an accumulated cost surface and slope lines[J].Cartographica,1994,31(3):37-51.
    [12]国内外输电线路设计标准对比.国网北京电力建设研究院,2008.4.8.
    [13]杜全维,王全心.基于卫星遥感技术的电力选线系统设计与实现[J].科技咨讯,2009,28:22-23.
    [14]孙建国,程耀东,闫浩文.基于GIS的道路选线方法与趋势[J].测绘与空间地理信息,2004,27(6):53-61.
    [15]董孟.北川县地质灾害风险评估及应用研究[D].绵阳,西南科技大学,2008:9-15.
    [16] http://image.baidu.com/i?ct=503316480&z=&tn=baiduimagedetail&word=%E3%EB%B4%A88%BC%B6%B5%D8%D5%F0%C1%D2%B6%C8%CD%BC&in=5083&cl=2&lm=-1&pn=1&rn=1&di=411618375&ln=1988&fr=&fmq=&ic=0&s=0&se=1&sme=0&tab=&width=&height=&face=0&is=&istype=2#pn1&-1:2010年11月13日引自百度图片.
    [17]衣华鹏,刘贤赵,张鹏宴.烟台市土地利用变化及其驱动力分析[J].山东农业大学学报,2005,36(3):407-410.
    [18]侯波.卫星遥感影像三维可视化处理[J].中国体视学与图像分析,2001,6(1):29-32.
    [19]曹屹东.汶川震区典型暴雨泥石流形成特征与条件的实验研究——以北川县西山坡沟为例[D].成都理工大学,2009:12-14.
    [20]林峰,林韩,廖福旺,等.统计分析输电线路雷害与微地形关系的新方法[J].高电压技术,2009,35(6):1362-1369.
    [21]张荣慧,刘顺喜,周连芳,等.ALOS卫星图像分析与预处理实证研究[J].国土资源遥感,2008,3(77):84-90.
    [22]严福章,吴利华,苗胜昆.二滩—自贡输电线凉山州段地质灾害分析与对策[J].能源技术经济,2010,22(1);31-50.
    [23]顾明亮.海滩涂地区输电线路铁塔及基础设计方法研究[D].南京:南京理工大学,2010:33-35.
    [24]傅春衡.高压输电线路铁塔结构设计几点分析[J].电力建设,2003(1):28-36.
    [25]马磊.基于GIS的输电地理信息系统[J].新疆电力技术,2010(104):33-35.
    [26]李芬.基于GIS的公路智能选线若干问题研究[D].长安:长安大学,2008:1-17.
    [27]潘赟,丛威青,潘懋.基于GIS的辽宁省岫岩县泥石流灾害危险性区划研究[J].北京大学学报(自然科学版),2009(4):33-38.
    [28]陈志伟.基于GIS的配送线路优化的研究与设计[D].浙江:浙江大学,2009:9-13.
    [29]高传东,崔鹏,韦方强等.基于GIS的山区道路灾害多发区段线路方案优选[J].铁路航测,2003(4):19-22.
    [30]张梅,谈俊忠.基于GIS的主干光缆路由敷设条件评价研究[J].中国新通信,2010:47-49.
    [31] Bai Hai-feng, Li Hong-nan. Fatigue reliability study on power transmission tower, Proceedings of the CSEE,2008(6):25-31.
    [32]耿思佳,黄松乔.基于GIS技术的传输线路巡检管理研究与实现[J].电信快报,2009(12):27-29.
    [33] Rick Germ,Gert Van Maren,Edward Verbree,Fred-erik W.Jansen.A multi-view VR interface for 3D GIS[J].Computers &Graphics,1999(23):497~506.
    [34]李晓骏,邱家驹.基于三维GIS技术的输电线路地理信息系统的设计与实现[J].电力系统及其自动化学报,2003,15(1):5-9.
    [35]丰强,王洪授,高作毅,等.基于卫星遥感数据的输电线路地理信息系统应用研究[J].华东电力技术,2010:1-5.
    [36] Heuing-Suk Hwang. Design of supply-chain logistics system considering service level[J]. Computers& Industrial Engineering,2002,2(42):83-297.
    [37]高劲松,关泽群.基于遥感和GIS的选址策略研究与实现[J].武汉大学学报·信息科学版,2005,30(9):778-781.
    [38]朱晓青,刘刚,杨国辉.送电线路管理地理信息系统的设计与应用[J].测绘科学技术学报.2007,24(6):451-457.
    [39] BECONYTE G. Semantic modeling and cartographic transcription[C].The Selected Problems of Theoretical Cartography. International Cartographic Association,2002:5-13.
    [40] DUMBL IAUSKIENE M,KAVAL IAUSKAS P.Methodogy for evaluation of the communicative quality of the thematic maps[C].Cartography and Cartosemiotics The Selected Problems of Theoretical Cartography. International Cartographic Association,2003:12-24.
    [41]陈庆涛,杨武年,易显志,等.卫星遥感TM图像在川东地区地貌解译研究中的应用[J].成都理工学院学报,2007,27(3):318-323.
    [42] Rick Germ,Gert Van Maren, Edward Verbree, Frederik W.Jansen. A multi-view VR interface for 3D GIS[J].Computers & Graphics,1999(23):497~506.
    [43]刘卫国,杨伯虎,李良林,等.西宁供电公司送电工区送电线路地理信息系统的建设及应用[J].2008(27):55-61.
    [44]《绵阳市江油市土地利用总体规划(2006—2020年)》(江油市国土局,2010)
    [45]《绵阳市平武县土地利用总体规划(2006—2020年)》(平武县国土局,2010)
    [46]《绵阳市北川羌族自治县土地利用总体规划(2006—2020年)》(北川羌族自治县国土局,2010)
    [47]《±500kV直流架空输电线路设计技术规定》(2008-3-1实施)
    [48]《110kV~750kV架空输电线路设计技术规定》(2008-3-1实施)
    [49]《水电水利工程地质测绘规程》(2004-6-1实施)
    [50]《公路工程地质遥感勘察规范》(2005-6-1实施)
    [51]《滑坡崩塌泥石流灾害详细调查规范(1:50000)(征求意见稿)》(中国地质调查局,2005)
    [52]《区域地质调查中遥感技术规定(1:50000)》(1996-3-1实施)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700