滑坡体与非线性浅水波的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡体产生的海啸或涌浪造成惨重人员伤亡和经济损失的灾害在世界各地时有报道。为了适应防灾减灾的需要,各国学者综合采用灾后实地调查、物理模型实验、解析求解和数值模拟的研究方法,对滑坡体兴波问题开展了大量研究工作,以往研究表明滑坡体的高度、体积、密度、滑动距离、滑动面倾角、水深等对波峰高度有显著影响,相关研究成果也已经应用于灾害风险评估和早期预警之中。然而,在已经建立的许多波峰高度估计公式中,还没有一个公式能涵盖所有关键物理参数。这是因为目前的数学模型中多直接设定滑坡体运动过程,忽略了滑坡体和水波之间的相互作用复杂。这类模型虽经人为调整参数可应用于灾害后报,但对潜在滑坡体造成灾害的预测能力不足。
     本论文建立了滑坡体和水波相互作用的耦合数学模型。假设滑坡体兴波区域内水波横向能量扩散可忽略,在立面二维的简化下应用非线性浅水方程描述水波过程;假设滑坡体底部流体法向流速为零,应用简化的N-S方程描述底部流动;在滑坡体的运动方程中考虑了惯性力、水波波动压力、底部流体对滑坡体的阻力和浮托力、以及滑坡体和滑动面间的库仑摩擦力等。与线性浅水波理论解、物理模型实验结果和灾后调查资料对比表明,本论文的模型能很好的预测滑坡体运动和水波波峰高度,并能捕捉到向岸传播波峰、近岸水位降落等实际灾害过程。
     本论文首先通过设定滑坡体运动过程的方式研究了滑坡体兴波作用,数值结果表明,Fr数、水波非线性、滑坡体形状的非对称性对波峰高度有显著影响:当滑坡体高度和体积保持不变,波峰高度随滑坡体前端坡度的增大而增大;当Fr>1,波峰高度随滑坡体运动速度的减小而增大,并且水波非线性会进一步放大波峰高度。水波线性假设,及以往对滑坡体形状非对称性的忽视,都导致波峰高度的低估,不利于防灾减灾。
     随后,本论文通过理论分析和数值计算研究了水波对滑坡体运动的反作用,研究表明,水波对滑坡体上表面作用有直接的切向阻力,并通过法向压力和对滑坡体底部流动的驱动改变着滑坡体和滑动面间的库仑摩擦力。
     最后,对水波和滑坡体相互作用的数值模拟结果表明,库仑摩擦系数、滑坡体的入水速度等对相互作用有显著影响。耦合计算结果进一步表明,以往研究中忽视的Fr数和滑坡体形状的非对称性同样是影响波峰高度的关键因素。
Landslide generated tsunami has caused human life losses and devastating damagearound the world. Researchers have studied this problem through hazard investigation,experiment modeling, analytical solution, and numerical simulation. It was found thatthe height of wave crest depends strongly on the height, volume, density, traveldistance of landslide, slope angle, and water depth, etc. A lot of correspondingestimation equations are developed using different sets of parameters mentioned above,and research achievement is applied to risk assessment and early warning system. Buttill now, none of these estimation equations include all the major parameters. Moreover,due to the complex interaction between landslide and waves generated, the motion oflandslide is always prescribed a priori in numerical simulations. Hence, thesenumerical models are limited to wave hindcasting by artificially fitting parameters, andmay not be used to predict real event.
     A mathematical model is derived to describe the dynamic interaction betweenlandslide and water waves. Wave energy propagation in the transverse direction isreasonably neglected in the landslide disturbance zone. Hence, under vertical2dimensional assumptions, nonlinear shallow water wave equations are implemented togovern wave generation process; under the assumptions that fluid velocity in thenormal direction is zero, N-S equations are simplified to govern the flow underneathlandslide; inertial force, water wave pressures along the surface of landslide, togetherwith lubrication resistance, floating force, coulomb friction force acting on the bottomare included in the force balance equation of landslide. Validation with analyticalsolution of linear shallow water waves and experimental results indicate that the modelpresented here can predict landslide motion and wave crest height. The model can alsocapture wave crest propagating onshore and recession of water surface along thecoastline which are recorded in hazard investigation documents.
     Wave generation by landslide disturbance is studied first by prescribing differentlandslide motion. The significant effect of Froude number, nonlinearity of waves, andasymmetry of landslide shape on wave crest height is discussed. For landslide withsame height and volume, the steeper landslide front, the larger wave crest height. If Fr>1, Wave crest height increases when velocity of landslide is reduced. Further more,if Fr>1, wave nonlinearity will amplify wave crest. So wave crest may beunderestimated, when linear wave assumption is used or asymmetry of landslide isignored.
     Then, based on theoretical analysis and numerical simulation, the effect of waterwaves on landslide motion is studied. Dynamic water wave pressures along the surfacecause resistance to landslide motion. And waves also affect both flow underneathlandslide, and normal effective force between landslide and the slope, so will changethe coulomb friction force.
     In the end, dynamic coupling simulations of landslide motion and water wavesshows that, coulomb friction coefficient, entry velocity of landslide into water alsoplay a key role in the dynamic interaction between landslide and water waves. Casescomparison verifies again, that, Froude number and asymmetry of landslide areessential to wave crest height prediction, which researchers failed to notice in the past.
引文
[1]汪洋.水库库岸滑坡速度及其涌浪灾害研究:[博士学位论文].中国地质大学,2005
    [2]殷坤龙,杜娟,汪洋.清江水布垭库区大堰塘滑坡涌浪分析.岩土力学,2008,(12):3266~3270
    [3]金德镰,王耕夫.柘溪水库塘岩光滑坡:中国岩石力学与工程学会地面岩石工程专业委员会成立暨中国典型滑坡实例学术讨论会.中国湖北宜昌:1986,301~307
    [4]徐青.水利水电工程滑坡稳定性研究及灾害评价:[博士学位论文].河海大学,2005
    [5]胡涛骏,叶银灿.滑坡海啸的预测模型及其应用.海洋学研究,2006,(3):21~31
    [6] Tappin D R, Watts P, Mcmurtry G M, et al. The sissano, Papua New Guinea tsunami of July1998—offshore evidence on the source mechanism. Marine Geology,2001,175(1):1~23
    [7] Miller D J. Giant waves in Lituya bay, Alaska. Geological Survey Professional Paper,1960,354
    [8]钟立勋.意大利瓦依昂水库滑坡事件的启示.中国地质灾害与防治学报,1994,(2):77~84
    [9] Blikra L H. The aknes rockslide; Monitoring, threshold values and early-warning:Landslides and Engineered Slopes. From the Past to the Future Proceedings of the10thInternational Symposium on Landslides and Engineered Slopes.2008:30,1089~1094
    [10]薛果夫,吕贵芳,任江.新滩滑坡研究:北京:科学出版社
    [11]刘世凯.长江西陵峡新滩滑坡涌浪高度衰减因素初探.水利水电技术,1987,(9):11~14
    [12] Evans S G. The1946mount colonel foster rock avalanche and associated displacement wave,Vancouver Island, British Columbia. Canadian Geotechnical Journal,1989,26(3):447~452
    [13] Plafker G, Eyzaguirre V R, Voight B. Rock avalanche and wave at chungar, peru.Rockslides and Avalanches: vol.2. Developments in Engineering Geology,1979,14
    [14] Jorstad F A. Waves generated by landslides in Norwegian fjords and lakes. NorwegianGeotechnical Institute Publ,1968
    [15]吴佳壕,陈亮,杨人凡.楞古栋滑坡的涌浪分析.硅谷,2011,(19):114~194
    [16]代云霞,汪洋,殷坤龙,等.三峡库区巫山县某崩塌体涌浪调查及计算分析.武汉理工大学学报,2010,(19):71~74
    [17]陈隆谦.历史滑坡及造成的毁灭性涌浪.人民长江,1984,(2):88
    [18]杨洁.历史上一些较大规模的滑坡涌浪的比较.西北水电技术:13
    [19]陈学德.水库滑坡涌浪研究的综合评述.水电科研与实践,1984:78~96
    [20] Wright S G, Rathje E M. Triggering mechanisms of slope instability and their relationship toearthquakes and tsunamis. PURE AND APPLIED GEOPHYSICS,2003,160(10-11):1865~1877
    [21] Hamilton T S, Wigen S O. The foreslope hills of the Fraser river delta, implications fortsunamis in Georgia strait. The International J. of the Tsunami Soc,1987,5:15~33
    [22] Murty T S. Tsunami wave height dependence on landslide volume. Pure and appliedgeophysics,2003,160(10):2147~2153
    [23] Kulikov E A, Rabinovich A B, Fine I V, et al. Landslide tsunami generation on the pacificcoast of north america and effect of tides. OKEANOLOGIYA,1998,38(3):361~367
    [24] Mcmurtry G M, Watts P, Fryer G J, et al. Giant landslides, mega-tsunamis, and paleo-sealevel in the Hawaiian Islands. Marine Geology,2004,203(3–4):219~233
    [25] Mcadoo B G, Watts P. Tsunami hazard from submarine landslides on the Oregon continentalslope. Marine Geology,2004,203(3–4):235~245
    [26] Waythomas C F, Watts P, Shi F, et al. Pacific basin tsunami hazards associated with massflows in the aleutian arc of Alaska. Quaternary Science Reviews,2009,28(11–12):1006~1019
    [27] Jansen E, Befring S, Bugge T, et al. Large submarine slides on the Norwegian continentalmargin: sediments, transport and timing. Marine Geology,1987,78(1):77~107
    [28] Bugge T, Belderson R H, Kenyon N H. The storegga slide. Philosophical Transactions of theRoyal Society of London. Series A, Mathematical and Physical Sciences,1988:357~388
    [29] Dawson A G, Long D, Smith D E. The storegga slides: evidence from eastern Scotland for apossible tsunami. Marine Geology,1988,82(3-4):271~276
    [30] Schwab W C, Lee H J, Twichell D C. Submarine landslides: selected studies in the usexclusive economic zone. US geological survey bulletin,1993
    [31] Fryer G J, Watts P, Pratson L F, et al. The tsunami of1april1946: a landslide in the upperforearc. Prediction of Underwater Landslide Hazards, Balkema Press, Rotterdam,2001
    [32] Fryer G J, Watts P. Motion of the ugamak slide, probable source of the tsunami of1April1946: Proceedings of the International Tsunami Symposium2001.683~694
    [33] Okal E A. T waves from the1998Papua New Guinea earthquake and its aftershocks: timingthe tsunamigenic slump. PURE AND APPLIED GEOPHYSICS,2003,160(10-11):1843~1863
    [34] Imamura F, Hashi K. Re-examination of the source mechanism of the1998papua newguinea earthquake and tsunami. Pure and Applied Geophysics,2003,160(10):2071~2086
    [35] Kawata Y, Benson B C, Borrero I C, et al. Tsunami in Papua New Guinea was as intense asfirst thought. Eos, Transcations, American Geophysiacal Union,1999,80(9):101,104~105
    [36] Tappin D R, Matsumoto T. Offshore surveys identify sediment slump as likely cause ofdevastating Papua New Guinea tsunami1998. Eos, Transcations, American GeophysiacalUnion,1999,80(30):329
    [37] Fritz H M. Lituya bay case rockslide impact and wave run-up. Science of Tsunami Hazards,2001,19(1):3~22
    [38] Finn W. Landslide-generated tsunamis: geotechnical considerations. PURE AND APPLIEDGEOPHYSICS,2003,160(10-11):1879~1894
    [39] Bryant E. Tsunami: the underrated hazardSpringer Verlag,2008.
    [40] Sue L P. Modelling of tsunami generated by submarine landslides: a thesis submitted inpartial fulfilment of the requirements for the degree of doctor of philosophy in civilengineering in the University of Canterbury,2007
    [41] Shannon W L, Hilts D E. Earthquake-caused sub-marine landslide at Seward, Alaska. In thegreat Alaska earthquake of1964: Engineering. NAS Pub.1606(National Academy ofSciences). Washington:1973
    [42] Papadopoulos G A, Kortekaas S. Characteristics of landslide generated tsunamis fromobservational data. ADVANCES IN NATURAL AND TECHNOLOGICAL HAZARDSRESEARCH,2003,19:367~374
    [43] Rzadkiewicz S A, Mariotti C, Heinrich P. Numerical simulation of submarine landslides andtheir hydraulic effects. JOURNAL OF WATERWAY PORT COASTAL AND OCEANENGINEERING-ASCE,1997,123(4):149~157
    [44] Watts P, Grilli S T, Tappin D R, et al. Tsunami generation by submarine mass failure. Ii:predictive equations and case studies. JOURNAL OF WATERWAY PORT COASTALAND OCEAN ENGINEERING-ASCE,2005,131(6):298~310
    [45] Rabinovich A B, Thomson R E, Kulikov E A, et al. The landslide-generated tsunami ofNovember3,1994in Skagway harbor, alaska: a case study. GEOPHYSICAL RESEARCHLETTERS,1999,26(19):3009~3012
    [46] Kulikov E A, Rabinovich A B, Thomson R E, et al. The landslide tsunami of November3,1994, skagway harbor, alaska. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,1996,101(C3):6609~6615
    [47] Raichlen F, Petroff C, Watts P. The generation of waves by a landslide: skagway, alaska-acase study: COASTAL ENGINEERING CONFERENCE.1996:2,1293~1306
    [48] Bardet J P, Synolakis C E, Davies H L, et al. Landslide tsunamis: recent findings andresearch directions. PURE AND APPLIED GEOPHYSICS,2003,160(10-11):1793~1809
    [49] Tinti S, Bortolucci E. Energy of water waves induced by submarine landslides. PURE ANDAPPLIED GEOPHYSICS,2000,157(3):281~318
    [50] Hampton M A, Lee H J, Locat J. Submarine landslides. REVIEWS OF GEOPHYSICS,1996,34(1):33~59
    [51] Ioualalen M, Migeon S, Sardoux O. Landslide tsunami vulnerability in the ligurian sea: casestudy of the1979october16nice international airport submarine landslide and of identifiedgeological mass failures. GEOPHYSICAL JOURNAL INTERNATIONAL,2010,181(2):724~740
    [52] De Lange W P, Moon V G. Estimating earthquake and landslide tsunami hazard for the newzealand coast. Bulletin of the New Zealand Society for Earthquake Engineering,2004,37(2):62~69
    [53] Blikra L H, Longva O, Harbitz C, et al. Quantification of rock-avalanche and tsunami hazardin storfjorden, western Norway. Landslides and Avalanches: ICFL,2005:57~64
    [54] Karlsrud K, Edgers L. Some aspects of submarine slope stability. Marine slides and othermass movements,1982:61~81
    [55] Kirwan A D. Time-dependent hydrodynamic models of turbidity currents analyzed with datafrom the grand banks and orleansville events. J. Sediment. Petrol,1986,56(3):379~386
    [56] Piper D, Shor A N, Farre J A, et al. Sediment slides and turbidity current on the laurentianfan: sidescan sonar investigations near the epicenter of the1929grand banks earthquake.Geology,1985,13:538~541
    [57] Jiang L, Leblond P H. The coupling of a submarine slide and the surface-waves which itgenerates. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,1992,97(C8):12731~12744
    [58] Murty T S. Submarine slide-generated water waves in kitimat inlet, british columbia. Journalof Geophysical Research,1979,84(C12):7777~7779
    [59] Lynett P J, Borrero J C, Liu P L F, et al. Field survey and numerical simulations: a review ofthe1998papua new guinea tsunami. Pure and Applied Geophysics,2003,160(10):2119~2146
    [60] Tinti S, Manucci A, Pagnoni G, et al. The30December2002landslide-induced tsunamis inStromboli: sequence of the events reconstructed from the eyewitness accounts. NaturalHazards and Earth System Sciences,2005,(5):763~775
    [61] Hammack J L. A note on tsunamis: their generation and propagation in an ocean of uniformdepthCambridge Univ Press,1973.
    [62] Wiegel R L. Laboratory studies of gravity waves generated by the movement of a submergedbody. American Geophysical Union--Transactions,1955,36(5):759~774
    [63] Fleming J, Walters R, Sue L, et al. Experimental design for solid block and granularsubmarine landslides: a unified approach. Tsunamis,2005:259~277
    [64] Heinrich P. Nonlinear water waves generated by submarine and aerial landslides. Journal ofWaterway, Port, Coastal and Ocean Engineering,1992,118:249
    [65] Walder J S, Watts P, Sorensen O E, et al. Tsunamis generated by subaerial mass flows.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2003,108(2236B5)
    [66] Panizzo A, De Girolamo P, Petaccia A. Forecasting impulse waves generated by subaeriallandslides. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2005,110(C12025C12)
    [67] Grilli S T, Watts P. Tsunami generation by submarine mass failure. I: modelingexperimental validation, and sensitivity analyses. JOURNAL OF WATERWAY PORTCOASTAL AND OCEAN ENGINEERING-ASCE,2005,131(6):283~297
    [68] Di Risio M, Bellotti G, Panizzo A, et al. Three-dimensional experiments on landslidegenerated waves at a sloping coast. Coastal Engineering,2009,56(5–6):659~671
    [69] Sue L P, Nokes R I, Walters R A. Experimental modelling of tsunami generated byunderwater landslides. Science of Tsunami Hazards,2006,24(4):267~287
    [70] Enet F, Grilli S T, Watts P. Laboratory experiments for tsunamis generated by underwaterlandslides: comparison with numerical modeling: PROCEEDINGS OF THE THIRTEENTH(2003) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE,VOL3. CUPERTINO: INTERNATIONAL SOCIETY OFFSHORE&POLARENGINEERS,2003372~379
    [71] Cox D, Yeh H. A physical model study of tsunami inundation with coastal infrastructure.Proceedings of the2007earthquake engineering symposium for young researchers,2007
    [72] Shigihara Y, Goto D, Imamura F, et al. Hydraulic and numerical study on the generation of asubaqueous landslide-induced tsunami along the coast. Natural Hazards,2006,39(2):159~177
    [73] Mazzanti P, De Blasio F V. The dynamics of coastal landslides: insights from laboratoryexperiments and theoretical analyses. BULLETIN OF ENGINEERING GEOLOGY ANDTHE ENVIRONMENT,2011,70(3):411~422
    [74]王育林,陈凤云,齐华林,等.危岩体崩滑对航道影响及滑坡涌浪特性研究.中国地质灾害与防治学报,1994,(3):95~100
    [75]陶孝铨.李家峡水库正常运行期的滑坡涌浪试验研究.西北水电,1994,(1):42~45
    [76] Pelinovsky E, Poplavsky A. Simplified model of tsunami generation by submarine landslides.Physics and Chemistry of the Earth,1996,21(1-2):13~17
    [77] Liu P L F, Lynett P, Synolakis C E. Analytical solutions for forced long waves on a slopingbeach. Journal of Fluid Mechanics,2003,478(1):101~109
    [78] Sammarco P, Renzi E. Landslide tsunamis propagating along a plane beach. JOURNAL OFFLUID MECHANICS,2008,598:107~119
    [79] Renzi E, Sammarco P. Landslide tsunamis propagating around a conical island. JOURNALOF FLUID MECHANICS,2010,650:251~285
    [80] Watts P. Water waves generated by underwater landslides.1997
    [81] Lynett P, Liu P. A numerical study of submarine-landslide-generated waves and run-up.PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIESA-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES,2002,458(2028):2885~2910
    [82] Watts P, Grilli S T, Kirby J T, et al. Landslide tsunami case studies using a boussinesqmodel and a fully nonlinear tsunami generation model. Natural Hazards and Earth SystemSciences,2003,3:391~402
    [83] Liu P, Wu T R, Raichlen F, et al. Runup and rundown generated by three-dimensionalsliding masses. JOURNAL OF FLUID MECHANICS,2005,536:107~144
    [84]姜治兵,金峰,盛君.滑坡涌浪的数值模拟.长江科学院院报,2005,(5):1~3
    [85]汪定扬,刘世凯.长江新滩滑坡(1985年6月)涌浪调查研究.人民长江,1986,(10):24~27
    [86]杜小弢,吴卫,龚凯,等.二维滑坡涌浪的SPH方法数值模拟.水动力学研究与进展(A辑),2006,(5):579~586
    [87] Watts P, Imamura F, Bengston A, et al. Benchmark cases for tsunamis generated byunderwater landslides. OCEAN WAVE MEASUREMENT AND ANALYSIS,2001:1505~1514
    [88] Poisson B, Pedreros R. Numerical modelling of historical landslide-generated tsunamis inthe french Lesser Antilles. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES,2010,10(6):1281~1292
    [89] Rzadkiewicz S A, Mariotti C, Heinrich P. Numerical simulation of submarine landslides andtheir hydraulic effects. JOURNAL OF WATERWAY PORT COASTAL AND OCEANENGINEERING-ASCE,1997,123(4):149~157
    [90] Sue L P, Nokes R I, Davidson M J. Tsunami generation by submarine landslides:comparison of physical and numerical models. ENVIRONMENTAL FLUID MECHANICS,2011,11(2):133~165
    [91]徐波,蒋昌波,邓斌,等.三维滑坡涌浪的产生及其传播过程的数值研究.交通科学与工程,2011,(2):39~45
    [92]李未,王如云,张长宽.滑坡涌浪的产生与传播波形分析与计算.水科学进展,2004,(1):45~49
    [93]王晓鸿,刘汉超,张倬元.滑坡涌浪的二维有限元分析.地质灾害与环境保护,1996,(4):20~23
    [94]余仁福.黄河龙羊峡工程近坝库岸滑坡涌浪及滑坡预警研究.水力发电,1995,(3):14~16
    [95]杜娟,汪洋,彭光泽,等.三峡库区大石板滑坡涌浪预测.安全与环境工程,2007,(3):92~95
    [96]谭跃虎,权威,李二兵,等.卡拉水电站田三滑坡体失稳机理及涌浪计算.防灾减灾工程学报,2011,(3):288~293
    [97] Harbitz C B, Pedersen G, Gjevik A B. Numerical simulations of large water waves due tolandslide. Journal of Hydraulic Engineering,1993,119(12)
    [98] Johnsgard H, Pedersen G. Slide generated waves in near-shore regions, A lagrangiandescription. Phys. Chem. Earth,1996,21(12):45~49
    [99]严骏龙.水库滑坡涌浪的二维有限元分析方法.水利学报,1983,(7):41~46
    [100]杨学堂,刘斯凤,杨耀.黄腊石滑坡群石榴树包滑坡涌浪数值计算.武汉水利电力大学(宜昌)学报,1998,(3):54~58
    [101]潘家铮.建筑物的抗滑稳定和滑坡分析.水利出版社,1980.
    [102]李树武,刘惠军.某水电站库区滑坡滑速涌浪预测.地质灾害与环境保护,2006,(1):74~77
    [103]郭洪巍,吴葱葱.水库滑坡涌浪的数学模型及其应用.华北水利水电学院学报,2000,(1):24~27
    [104] Watts P, Imamura F, Grilli S T. Comparing model simulations of three benchmark tsunamigeneration cases. Sci. Tsunami Hazards,2000,18(2):107~124
    [105] Postacioglu N, Ozeren M S. A semi-spectral modelling of landslide tsunamis.GEOPHYSICAL JOURNAL INTERNATIONAL,2008,175(1):1~16
    [106] Greene H G, Murai L Y, Watts P, et al. Submarine landslides in the santa barbara channel aspotential tsunami sources. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES,2006,6(1):63~88
    [107] Jiang L, Leblond P H. The coupling of a submarine slide and the surface waves which itgenerates. Journal of Geophysical Research,1992,97(C8):12712~12731
    [108] Jiang L, Leblond P H. Numerical modeling of an underwater bingham plastic mudslide andthe waves which it generates. Journal of Geophysical Research,1993,98(C6):10303~10310
    [109] Kamphuis J W, Bowering R J. Impulse waves generated by landslides: Proc. of12th ICCE,ASCE.1972,575~588
    [110] Bohannon R G, Gardner J V. Submarine landslides of san pedro escarpment, southwest oflong beach, california. Marine Geology,2004,203(3-4):261~268
    [111] Striem H L, Miloh T. Tsunamis induced by submarine slumpings off the coast of israel.Israel Atomic Energy Commission, Licensing Division,1975.
    [112] Heezen B C, Ewing M. Turbidity currents and submarine slump, and the grand banksearthquake. Science of Tsunami Hazards,1952,250:849~873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700