花生四烯酸和二十碳五烯酸合成途径的构建及大豆种子特异性启动子的改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多不饱脂肪酸(Polyunsaturated fatty acids, PUFAs),尤其是超长链多不饱和脂肪酸(Very long chain polyunsaturated fatty acids, VLC-PUFAs),具有十分重要的生理功能,是维持人体健康所必需的。通常情况下PUFAs主要来源于深海鱼油和海洋藻类,但是由于过度捕捞,海洋污染以及藻类生产PUFAs价格的昂贵,因此迫切需要寻找一种PUFAs的替代来源。
     随着转基因技术的迅速发展,利用转基因的油料作物生产PUFAs被认为是一种十分有前景的的替代来源。大豆是最主要的油料作物之一,含有非常丰富的亚油酸(Linoleic acid, LA)和α-亚麻酸(α-Linolenic acid,ALA),它们分别占大豆中总脂肪酸的55%和13%,是合成花生四烯酸(Arachidonic acid, ARA)和二十碳五烯酸(Eicosapentaenoic acid, EPA)的前体。因此,大豆是通过代谢工程生产ARA和EPA的重要宿主。在转基因植物中,ARA和EPA生物合成的Δ6途径已经被广泛研究了,但Δ8途径仅在拟南芥中进行研究并且不是种子特异性表达。由于在转基因植物中ARA和EPA生物合成的Δ6途径存在复杂的底物转换瓶颈,因此,在本研究中,我们分别在酿酒酵母和大豆中重构ARA和EPA生物合成的Δ8途径,构建出产ARA和EPA的酿酒酵母工程菌和无选择标记基因的转基因大豆;同时对BCSP952启动子进行改造,以便提高转基因大豆中ARA和EPA的合成效率。
     首先,分别从球等鞭金藻H29(Isochrysis galbana H29)、小眼虫藻FH277(Euglena gracilis FH277)和三角褐指藻(Phaeodactylum tricornutum)中克隆出Δ8途径中的三个基因Δ9延长酶基因IgASE2、Δ8脱氢酶基因efd2和Δ5脱氢酶基因ptd5,并在酿酒酵母INVSc1中鉴定它们的功能。IgASE2基因长1653bp,包括一个786bp的ORF (Open reading frame)、一个44bp的5’-UTR(Untranslatedregion)和一个823bp3’-UTR。该基因编码的延长酶IgASE2与已经报道的延长酶IgASE1的氨基酸序列有87%的相似性。IgASE2在酿酒酵母中表达时,能分别将LA和ALA转化成二十碳二烯酸(ω6-eicosadienoic acid, EDA)和二十碳三烯酸(ω3-eicosatrienoic acid, EtrA),LA和ALA的转化率分别是57.6%和56.1%,表明IgASE2基因是一个新的C18-Δ9专一性的PUFAs延长酶基因。efd2基因ORF长1266bp,编码421个氨基酸,它与已经报道的EFD1的氨基酸序列相似性为96%。efd2基因在酿酒酵母中表达时,催化底物EDA和EtrA转化成二高γ-亚麻酸(dihomo-γ-linolenic acid, DGLA)和二十碳四烯酸(eicosatetraenoic acid, ETA)的转化效率分别约为31.2%和46.3%,表明efd2是一个位置专一性的Δ8脱氢酶基因。ptd5基因ORF长1410bp,编码469个氨基酸。它在酿酒酵母中表达时,催化DGLA和ETA生成ARA和EPA的效率分别约28.7%和37.2%,表明ptd5是一个位置专一性的Δ5脱氢酶基因。
     然后,利用克隆的IgASE2、efd2和ptd5基因,分别在酿酒酵母和大豆中构建了ARA和EPA生物合成的Δ8(ω6-Δ8, ω3-Δ8)途径,获得了产ARA和EPA的酿酒酵母工程菌和无选择标记基因的转基因大豆。根据ARA和EPA生物合成的Δ8(ω6-Δ8, ω3-Δ8)途径,将该途径中所需要的三个目的基因IgASE2、efd2和ptd5的表达盒有机集合在一起,构建成酿酒酵母共表达载体pYAE5。将该表达载体pYAE5转化至酿酒酵母INVSc1,构建成酿酒酵母工程菌YAE985。该菌在添加外源底物LA和ALA的诱导培养基中诱导表达后,产生的ARA和EPA分别占总脂肪酸含量的1.6%和2.5%,LA转化成ARA以及ALA转化成EPA的最终转化率分别是10.1%和16.9%。这些结果表明,在酿酒酵母中成功地构建了ARA和EPA生物合成的Δ8(ω6-Δ8, ω3-Δ8)途径。
     利用RT-PCR(Real Time PCR)对工程菌YAE985的遗传稳定性进行了检测,结果表明:工程菌连续转接20次后,IgASE2、efd2和ptd5基因在转录水平仍然保持1:1:1的关系,说明没有发生遗传重组和目的基因部分丢失的情况,因此酿酒酵母工程菌YAE985具有很好的遗传稳定性。
     用大豆种子特异性启动子BCSP952分别构建基因IgASE2、efd2和ptd5的表达盒,并克隆进表达载体pBX,构建成通过Δ8(ω6-Δ8, ω3-Δ8)途径生物合成ARA和EPA的无选择标记转基因大豆的表达载体pX9AE5。用根瘤农杆菌介导的方法进行大豆转化,筛选出含有Δ8(ω6-Δ8, ω3-Δ8)生物合成途径的转基因大豆。然后对阳性转化植株进行雌二醇诱导,进一步筛选出无选择标记的转基因大豆。转基因大豆种子中ARA和EPA的含量分别占总脂肪酸含量的6.8%和3.6%。这些结果表明,在无选择标记的转基因大豆中成功地构建了ARA和EPA生物合成的Δ8(ω6-Δ8, ω3-Δ8)途径。
     最后,为了提高转基因大豆中ARA和EPA的合成水平,本文对BCSP952进行了功能分析。在此基础上,对BCSP952进行改造,以提高BCSP952的强度。为了分析BCSP952的功能,分别构建了BCSP952的5-端缺失启动子片段BCSP666、BCSP471、BCSP285和BCSP156。将它们连接到pBI121质粒的GUS基因上游后转化拟南芥并通过GUS组化检测和GUS酶活性测定来鉴定这些启动子的功能。结果表明:BCSP666的活性与BCSP952活性基本相同,达到BCSP952活性的96.5%;BCSP471的活性次之,约为BCSP952活性的69.4%;BCSP285和BCSP156的活性相对较低,仅为BCSP952活性的15.5%和10.1%;除BCSP156片段外,其余5’-端缺失启动子片段都具有种子特异性。说明:种子特异性元件的种类和数量直接影响启动子的强度;并且,在BCSP952启动子的转录起始位点至上游约-594位这个区段内,种子特异性启动子元件的数量越多,启动子的活性越强,但是超过这个区域,增加这些元件的数量,并不能有效增加启动子的强度。
     为了提高BCSP952的强度,通过在BCSP952启动子的-140位插入ABRE和Sph元件,构建成启动子BCSP952-aa、 BCSP952-as和BCSP952-ss,并将它们转化至拟南芥中进行功能鉴定。GUS组化检测和GUS活性测定表明:GUS基因只在种子中表达,说明改造后的启动子是种子特异性的启动子;BCSP952-as控制的GUS活性最高,约为BCSP952的180%、BCSP952-aa控制的GUS活性次之,约为BCSP952的112%、BCSP952-ss控制的GUS活性反而降低,约为BCSP952的88%。然后,从每种类型的启动子中选择GUS活性最高的4个株系进行southern杂交和RT-PCR分析。Southern杂交表明,含有BCSP952-ss的一个株系的GUS基因是双拷贝,其余启动子的株系中GUS基因都是单拷贝。RT-PCR分析表明:BCSP952-as控制的GUS基因转录水平最高,BCSP952-aa次之,BCSP952-ss最低,这与测定的GUS活性是一致的。这些结果说明:通过对BCSP952进行改造,提高了BCSP952的强度;并且BCSP952的-140位插入一个ABRE和一个Sph元件时的BCSP952-as最强,其强度比BCSP952提高了80%,在BCSP952的-140位插入两个ABRE元件时的BCSP952-aa次之,其强度比BCSP952提高了12%,在BCSP952的-140位插入两个Sph元件时的BCSP952-ss的强度反而降低。
Polyunsaturated fatty acids (PUFAs), especially very long chain polyunsaturatedfatty acids (VLC-PUFAs) with20carbons or more in length, are of great importancefor the normal development and metabolism of all organisms, and are essential formaintaining human health. Currently, the most available sources of PUFAs are marinefishes and marine algae. However, owing to long-term over-fishing andenvironmental pollution of the marine ecosystems as well as expensive cost to obtainPUFAs from marine algae, it is urgent for scientists to find an alternative source ofPUFAs for a sustainable source for VLC-PUFAs.
     With the rapid development of transgenic technologies, producing PUFAs bytransgenic oilseed crops has been demonstrated to be a promising alternative sourcefor PUFAs. Soybean is one of the most important oilseed crops as well as linoleicacid (LA) and α-linolenic acid (ALA) which are substrates of the synthesis of PUFAsin soybean oil account for up to55%and13%of total fatty acids, respectively. So,soybean has been an important host producing PUFAs by metabolic engineering. Thetwo pathways, conventional Δ6pathway and alternative Δ8pathway, for PUFAsbiosynthesis in transgenic plants have been described so far and genes encodingelongases and desaturases involved have been identified. Thanks to the bottlenecks ofcomplex substrate conversion in Δ6pathway, in present study, Δ8pathways ofarachidonic acid (ARA) and Eicosapentaenoic acid (EPA) biosynthsis werereconstituted in Saccharomyces cerevisiae and soybean to obtain marker-freetransgenic soybean producing ARA and EPA and soybean seed-specific promoterBCSP952was modified to improve the level of ARA and EPA biosynthsis in thetransgenic soybean.
     First, three genes presented in Δ8pathway, Δ9elongase gene (IgASE2), Δ8desaturase gene (efd2) and Δ5desaturase gene (ptd5) were cloned from Isochrysisgalbana H29, Euglena gracilis and Phaeodactylum tricornutum, repectively, andcharacterized by their heterologous expression in S. cerevisiae INVSc1. The IgASE2gene was1653bp in length, contained a786bp open reading frame (ORF) encoding a protein of261amino acids that shared87%identity with the reported Δ9elongase,IgASE1, and possessed a44bp5’-untranslated region and a823bp3’-untranslatedregion. IgASE2expressed in S. cerevisiae, elongated LA to eicosadienoic acid (EDA)and ALA to eicosatrienoic acid (EtrA) with57.6%(LA to EDA) and56.1%(ALA toEtrA) conversion ratio, respectively, confirming that IgASE2gene was a novelC18-Δ9-specific PUFAs elongase gene. The ORF of efd2was1266bp and encodeda protein of431amino acids that shared96%identity with the reported Δ8desaturase,EFD1. EFD2expressed in S. cerevisiae converted EDA to dihomo-γ-linolenic acid(DGLA) and EtrA to eicosatetraenoic acid (ETA) with substrate conversion ratio31.2%and46.3%, respectively, confirming that efd2was a Δ8-specific PUFAsdesaturase gene. Ptd5has an ORF of1410bp that encodes469amino acids. PTD5expressed in S. cerevisiae specifically catalyzed DGLA to ARA and ETA to EPA withsubstrate conversion ratio28.7%and37.2%, respectively, confirming that ptd5wasaΔ5-specific PUFAs desaturase gene.
     Then, using the cloned IgASE2, efd2and ptd5genes, we constructed thealternative Δ8pathway of ARA and EPA biosynthsis in S. cerevisiae and soybean andobtained engineered strain of S. cerevisiae producing ARA and EPA and free-markertransgenic soybean producing ARA and EPA. Based on the Δ8(ω6-Δ8, ω3-Δ8)pathway of ARA and EPA biosynthesis, the co-expression vector pYAE5of S.cerevisiae INVSc1was constructed by cloning the expression cassettes of IgASE2,efd2and ptd5into pYES2and transformed into INVSc1to obtain engineered strainYAE985producing ARA and EPA. When YAE985was cultivated in the inductionmedium with exogenous substrates LA and ALA, YAE985converted LA to ARA andALA to EPA with substrate conversion ratio10.1%and16.9%, respectively, as wellas ARA and EPA in YAE985accounted for up to1.6%and2.5%of total fatty acids,respectively. These results showed that the Δ8(ω6-Δ8, ω3-Δ8) pathway of ARA andEPA biosynthesis was successfully constructed in S. cerevisiae INVSc1.
     Genetic stability of YAE985was identified by determining the transcription ofIgASE2, efd2and ptd5in YAE985using real-time PCR (RT-PCR). IgASE2, efd2andptd5remained1:1:1at the transcription level when YAE985was continuouslyinoculated and cultured for20generations, confirming that the genes were not lost. The results verified that the engineered strain YAE985was stable.
     The expression cassettes of IgASE2, efd2and ptd5containing BCSP952wereconstructed by ligating them to the downstream of BCSP952, respectively. They werecloned into the vector pBX to construct the marker-free expression vector pX9AE5inthe transgenic soybean. pX9AE5was transformed into soybean by Agrobacteriumtumefaciens-mediated transformation (ATMT) and the transgenic soybean harboringpX9AE5was identified by kanamycin resistence and PCR. In order to delete theselectable marker gene in the transgenic soybean, the transgenic soybean was inducedwith β-estradiol and the marker-free transgenic soybean was constructed. In the seedsof the marker-free transgenic soybean, ARA and EPA were about6.8%and3.6%ofof total fatty acids. These results showed that the Δ8(ω6-Δ8, ω3-Δ8) pathway ofARA and EPA biosynthesis was successfully constructed in the marker-freetransgenic soybean.
     Finally, in order to improve the expression level of ARA and EPA in transgenicsoybean, we undertook the function analysis of BCSP952and further modified theBCSP952to improve its strength according to the function analysis of BCSP952. Inorder to understand the regulatory mechanism of BCSP952, a series of5′-deletedpromoters BCSP666, BCSP471, BCSP285and BCSP156were constructed and fusedto the β-glucuronidase (GUS) gene in pBI121as well as transformed into Arabidopsisthaliana via ATMT. The GUS activities of the promoters were detected in differenttissues. The GUS activities of BCSP666, BCSP471, BCSP285and BCSP156were96.5%,69.4%,15.5%and10.1%of BCSP952GUS activity, and the other promotersonly expressed in seed except BCSP156. The results showed that:(a) The type andamount of the seed-specific promoter elements directly impacted on the strength ofthe promoter.(b) Within the-594region, the more the seed-specific promoterelements, the stronger the promoter. However, beyond this region, the strength of thepromoter was limitedly improved if the elements were increased.
     In order to improve the strength of BCSP952, BCSP952-aa, BCSP952-as andBCSP952-ss were constructed by inserting ABRE and Sph elements into the-140siteof BCSP952and fused to the GUS gene in pBI121as well as transformed into A.thaliana via ATMT. The histovhemical analysis and fluorometric analysis showed that: GUS genes controlled by the modified BCSP952were only expressed in seed of A.thaliana, confirming that they were all seed-specific promoters, and GUS activities ofBCSP952-as, BCSP952-aa and BCSP952-ss were180%,112%and88%of BCSP952GUS activity, repectively.
     The southern hybridization and real-time PCR (RT-PCR) on the4lines oftransgenic A. thaliana containing different kinds of promoter in which the GUSactivities were the highest were conducted to further identified the strength of themodified BCSP952. The southern hybridization showed that the GUS genespresented in transgenic A. thaliana were single copy except a line containingBCSP952-ss. RT-PCR showed that at the transcription level, GUS gene controlled byBCSP952-as was expressed at highest level, followed by BCSP952-aa, whereas GUSgene controlled by BCSP952-ss was expressed at the lowest level, which wereconsistent with the GUS activities. The results indicated that the strength of BCSP952was improved by modification, and BCSP952-as inserted a ABRE and a Sph elementwas the strongest, followed by BCSP952-aa inserted two ABREs, whereas the thestrength of BCSP952-ss inserted two Sph elements decreased.
引文
[1]宿艳萍,曹志强,于锡刚, et al.多不饱和脂肪酸的功效及来源.人参研究,2001,13(4):7-9.
    [2]马艳玲.微生物油脂及其生产工艺的研究进展.生物加工过程,2006(4):9-11.
    [3]朱路英,张学成,宋晓金, et al. N-3多不饱和脂肪酸dha、epa研究进展.海洋科学,2007,31(11):78-84.
    [4] Sakuradani E, Shimizu S. Single cell oil production by Mortierella alpina. J Biotechnol,2009,144(1):31-36.
    [5] Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acidproduction. J Biosci Bioeng,1999,87(1):1-14.
    [6] Funk C. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science,2001,294(5548):1871-1875.
    [7] Smith W. The eicosanoids: Prostaglandins, thromboxanes, leukotrienes, and hydroxy-eicosaenoicacids. Biochemistry of lipids and membranes,1985(3):325-360.
    [8] Field C J, Clandinin M T, Van Aerde J E. Polyunsaturated fatty acids and t-cell function:Implications for the neonate. Lipids,2001,36(9):1025-1032.
    [9] Colquhoun A. Gamma-linolenic acid alters the composition of mitochondrial membranesubfractions,decreases outer mitochondrial membrane binding of hexokinase and alterscanitine palmitoyltransferase1properties in the waiker256rat tumou. Biochim Biophys Acta,2002,1583(1):74-84.
    [10] Cardiovascular disease resulting from a diet and lifestyle at odds with our paleolithic genome:How to become a21st-century hunter-gatherer;2004. Mayo Clinic.
    [11] Stewart J W, Kaplan M L, Beitz D C. Pork with a high content of polyunsaturated fatty acidslowers LDL cholesterol in women. Am J Clin Nutr,2001,74(2):179-187.
    [12] Hu F B. The role of n-3polyunsaturated fatty acids in the prevention and treatment ofcardiovascular disease. Drugs Today (Barc),2001,37(1):49-56.
    [13] Breslow J. N-3fatty acids and cardiovascular disease. Am J Clin Nutr,2006,83:1477-1482.
    [14] Clandinin M, Van Aerde J, Merkel K, et al. Growth and development of preterm infants fed infantformulas containing docosahexaenoic acid and arachidonic acid. The Journal of pediatrics,2005,146(4):461-468.
    [15] Stein J. Visual motion sensitivity and reading. Neuropsychologia,2003,41(13):1785-1793.
    [16] Wathes D, Abayasekara D, Aitken R. Polyunsaturated fatty acids in male and female reproduction.Biol Reprod,2007,77(2):190-201.
    [17] Lindqvist Y. Crystal structure of delta9stearoyl-acyl carrier protein desaturase from castor seedand its relationship to other diiron proteins. Embo J,1996,15:4081-4092.
    [18] Somerville C, Browse J. Dissecting desaturation: Plants prove advantageous. Trends Cell Biol,1996,6:148–153.
    [19] McConn M, Browse J. The critical requirement for linolenic acid is for pollen development, notphotosynthesis, in an arabidopsis mutant. Plant Cell,1996,8:403-416.
    [20] McConn M, Browse J. Polyunsaturated membranes are required for photosynthetic competence ina mutant of arabidopsis. Plant J,1998,15:521-530.
    [21] Tocher D R, Leaver M J, Hodgson P A. Recent advances in the biochemistry and molecularbiology of fatty acyl desaturases. Prog Lipid Res,1998,37(2-3):73-117.
    [22] Satouchi K, Hirano K, Sakaguchi M, et al. Phospholipids from the free-living nematodeCaenorhabditis elegans. Lipids,1993,28(9):837-840.
    [23] Watts J L, Browse J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditiselegans. Proc Natl Acad Sci U S A,2002,99(9):5854-5859.
    [24] Napier J A, Michaelson L V. Genomic and functional characterization of polyunsaturated fattyacid biosynthesis in Caenorhabditis elegans. Lipids,2001,36(8):761-766.
    [25] Kang Z B, Ge Y, Chen Z, et al. Adenoviral gene transfer of caenorhabditis elegans n-3fatty aciddesaturase optimizes fatty acid composition in mammalian cells. Proc Natl Acad Sci U S A,2001,98(7):4050-4054.
    [26] Masterson C, Wood C. Mitochondrial and peroxisomal beta-oxidation capacities of organs from anon-oilseed plant. Proc Biol Sci,2001,268(1479):1949-1953.
    [27] Su H M, Moser A B, Moser H W, et al. Peroxisomal straight-chain acyl-COA oxidase andd-bifunctional protein are essential for the retroconversion step in docosahexaenoic acidsynthesis. J Biol Chem,2001,276(41):38115-38120.
    [28] Ferdinandusse S, Denis S, Mooijer P A, et al. Identification of the peroxisomal beta-oxidationenzymes involved in the biosynthesis of docosahexaenoic acid. J Lipid Res,2001,42(12):1987-1995.
    [29] Chen Q, Yin F Q, Sprecher H. The questionable role of a microsomal delta8acyl-COA-dependentdesaturase in the biosynthesis of polyunsaturated fatty acids. Lipids,2000,35(8):871-879.
    [30] Sprecher H. Metabolism of highly unsaturated n-3and n-6fatty acids. Biochim Biophys Acta,2000,1486(2-3):219-231.
    [31] Lea W, Abbas A S, Sprecher H, et al. Long-chain acyl-COA dehydrogenase is a key enzyme in themitochondrial beta-oxidation of unsaturated fatty acids. Biochim Biophys Acta,2000,1485(2-3):121-128.
    [32] Qiu X, Hong H, MacKenzie S L. Identification of a delta4fatty acid desaturase fromthraustochytrium sp. Involved in the biosynthesis of docosahexanoic acid by heterologousexpression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem,2001,276(34):31561-31566.
    [33] Wallis J G, Browse J. The delta8-desaturase of Euglena gracilis: An alternate pathway forsynthesis of20-carbon polyunsaturated fatty acids. Arch Biochem Biophys,1999,365(2):307-316.
    [34] Meyer A, Cirpus P, Ott C, et al. Biosynthesis of docosahexaenoic acid in Euglena gracilis:Biochemical and molecular evidence for the involvement of a delta4-fatty acyl groupdesaturase. Biochemistry-us,2003,42(32):9779-9788.
    [35] Li M, Ou X, Wei D, et al.[cloning of delta8-fatty acid desaturase gene from Euglena gracilis andits expression in Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao,2010,26(11):1493-1499.
    [36] Qi B X, Beaudoin F, Fraser T, et al. Identification of a cdna encoding a novel c18-delta(9)polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid(dha)-producing microalga, Isochrysis galbana. Febs Lett,2002,510(3):159-165.
    [37] Li M, Ou X, Yang X, et al. Isolation of a novel c18-delta9polyunsaturated fatty acid specificelongase gene from dha-producing Isochrysis galbana h29and its use for the reconstitution ofthe alternative delta8pathway in Saccharomyces cerevisiae. Biotechnol Lett,2011,33(9):1823-1830.
    [38] Tonon T, Harvey D, Larson T R, et al. Long chain polyunsaturated fatty acid production andpartitioning to triacylglycerols in four microalgae. Phytochemistry,2002,61(1):15-24.
    [39] Wallis J G, Watts J L, Browse J. Polyunsaturated fatty acid synthesis: What will they think of next?Trends Biochem Sci,2002,27(9):467.
    [40] Metz J G, Roessler P, Facciotti D, et al. Production of polyunsaturated fatty acids by polyketidesynthases in both prokaryotes and eukaryotes. Science,2001,293(5528):290-293.
    [41] Allen E E, Facciotti D, Bartlett D H. Monounsaturated but not polyunsaturated fatty acids arerequired for growth of the deep-sea bacterium Photobacterium profundum ss9at high pressureand low temperature. Appl Environ Microbiol,1999,65(4):1710-1720.
    [42] Bauer C C, Ramaswamy K S, Endley S, et al. Suppression of heterocyst differentiation inanabaena pcc7120by a cosmid carrying wild-type genes encoding enzymes for fatty acidsynthesis. Fems Microbiol Lett,1997,151(1):23-30.
    [43] Honda D, Yokochi T, Nakahara T, et al. Molecular phylogeny of labyrinthulids andthraustochytrids based on the sequencing of18s ribosomal rna gene. J Eukaryot Microbiol,1999,46(6):637-647.
    [44] Pereira S, Leonard A, Mukerji P. Recent advances in the study of fatty acid desaturases fromanimals and lower eukaryotes. Prostaglandins, Leukotrienes and Essential Fatty Acids,2003,68:97-106.
    [45] Napier J, Michaelsont L, Keith Stobart A. Plant desaturases: Harvesting the fat of the land. CurrOpin Plant Biol,1999,2(2):123-127.
    [46] Chaturvedi R, Krothapalli K, Makandar R, et al. Plastid omega3-fatty acid desaturase-dependentaccumulation of a systemic acquired resistance inducing activity in petiole exudates ofArabidopsis thaliana is independent of jasmonic acid. Plant J,2008,54(1):106-117.
    [47] Venegas-Caleron M, Beaudoin F, Garces R, et al. The sunflower plastidial omega3-fatty aciddesaturase (hafad7) contains the signalling determinants required for targeting to, andretention in, the endoplasmic reticulum membrane in yeast but requires co-expressedferredoxin for activity. Phytochemistry,2010,71(10):1050-1058.
    [48] Andreu V, Collados R, Testillano P S, et al. In situ molecular identification of the plastid omega3fatty acid desaturase fad7from soybean: Evidence of thylakoid membrane localization. PlantPhysiol,2007,145(4):1336-1344.
    [49] Shanklin J, Whittle E, Fox B G. Eight histidine residues are catalytically essential in amembrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkanehydroxylase and xylene monooxygenase. Biochemistry-us,1994,33(43):12787-12794.
    [50] Ye V M, Bhatia S K. Metabolic engineering for the production of clinically important molecules:Omega-3fatty acids, artemisinin, and taxol. Biotechnol J,2012,7(1):20-33.
    [51] Ntambi J M. Regulation of stearoyl-COA desaturase by polyunsaturated fatty acids andcholesterol. J Lipid Res,1999,40(9):1549-1558.
    [52] Bellenger J, Bellenger S, Clement L, et al. A new hypotensive polyunsaturated fatty acid dietarycombination regulates oleic acid accumulation by suppression of stearoyl COA desaturase1gene expression in the shr model of genetic hypertension. Faseb J,2004,18(6):773-775.
    [53] Jones B H, Maher M A, Banz W J, et al. Adipose tissue stearoyl-COA desaturase mrna isincreased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol,1996,271(1Pt1):E44-49.
    [54] Carrillo C, Del Mar Cavia M, Alonso-Torre S R. Oleic acid versus linoleic and alpha-linolenicacid. Different effects on ca signaling in rat thymocytes. Cell Physiol Biochem,2011,27(3-4):373-380.
    [55] Manerba A, Vizzardi E, Metra M, et al. N-3PUFAs and cardiovascular disease prevention. FutureCardiol,2010,6(3):343-350.
    [56] de Goede J, Verschuren W M, Boer J M, et al. Alpha-linolenic acid intake and10-year incidenceof coronary heart disease and stroke in20,000middle-aged men and women in thenetherlands. PLoS One,2011,6(3):e17967.
    [57] Borgeson C E, de Renobales M, Blomquist G J. Characterization of the delta12desaturase in theamerican cockroach, periplaneta americana: The nature of the substrate. Biochim BiophysActa,1990,1047(2):135-140.
    [58] Cripps C, Borgeson C, Blomquist G J, et al. The delta12-desaturase from the house cricket,acheta domesticus (orthoptera: Gryllidae): Characterization and form of the substrate. ArchBiochem Biophys,1990,278(1):46-51.
    [59] Peyou-Ndi M M, Watts J L, Browse J. Identification and characterization of an animal delta(12)fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. ArchBiochem Biophys,2000,376(2):399-408.
    [60] Spychalla J P, Kinney A J, Browse J. Identification of an animal omega-3fatty acid desaturase byheterologous expression in Arabidopsis. Proc Natl Acad Sci U S A,1997,94(4):1142-1147.
    [61] Zhou X R, Green A G, Singh S P. Caenorhabditis elegans delta12-desaturase fat-2is abifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the delta12and delta15positions. J Biol Chem,2011,286(51):43644-43650.
    [62] Sayanova O, Shewry P R, Napier J A. Histidine-41of the cytochrome b5domain of the boragedelta6fatty acid desaturase is essential for enzyme activity. Plant Physiol,1999,121(2):641-646.
    [63] Kimura S, Emi Y, Ikushiro S, et al. Systematic mutations of highly conserved his49andcarboxyl-terminal of recombinant porcine liver nadh-cytochrome b5reductase solubilizeddomain. Biochim Biophys Acta,1999,1430(2):290-301.
    [64] Sayanova O, Beaudoin F, Libisch B, et al. Mutagenesis of the borage delta(6) fatty acid desaturase.Biochem Soc Trans,2000,28(6):636-638.
    [65] Kroger J, Schulze M B. Recent insights into the relation of delta5desaturase and delta6desaturaseactivity to the development of type2diabetes. Curr Opin Lipidol,2012,23(1):4-10.
    [66] de Antueno R J, Allen S J, Ponton A, et al. Activity and mrna abundance of delta-5and delta-6fatty acid desaturases in two human cell lines. Febs Lett,2001,491(3):247-251.
    [67] D'Andrea S, Guillou H, Jan S, et al. The same rat delta6-desaturase not only acts on18-but alsoon24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis. BiochemJ,2002,364(Pt1):49-55.
    [68] Hastings N, Agaba M, Tocher D R, et al. A vertebrate fatty acid desaturase with delta5and delta6activities. Proc Natl Acad Sci U S A,2001,98(25):14304-14309.
    [69] Tocher D R, Ghioni C. Fatty acid metabolism in marine fish: Low activity of fatty acyl delta5desaturation in gilthead sea bream (Sparus aurata) cells. Lipids,1999,34(5):433-440.
    [70] Ghioni C, Tocher D R, Bell M V, et al. Low C18to C20fatty acid elongase activity and limitedconversion of stearidonic acid,18:4(n-3), to eicosapentaenoic acid,20:5(n-3), in a cell linefrom the turbot, Scophthalmus maximus. Biochim Biophys Acta,1999,1437(2):170-181.
    [71] Mitchell A G, Martin C E. A novel cytochrome b5-like domain is linked to the carboxyl terminusof the Saccharomyces cerevisiae delta-9fatty acid desaturase. J Biol Chem,1995,270(50):29766-29772.
    [72] Itoh R, Toda K, Takahashi H, et al. Delta-9fatty acid desaturase gene containing acarboxyl-terminal cytochrome b5domain from the red alga Cyanidioschyzon merolae. CurrGenet,1998,33(3):165-170.
    [73] Rutter A J, Lloyd D, Harwood J L. Characterisation of the fatty acid delta12-desaturase ofAcanthamoeba castellanii. Biochem Soc Trans,1995,23(3):407S.
    [74] Domergue F, Lerchl J, Zahringer U, et al. Cloning and functional characterization ofPhaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acidbiosynthesis. Eur J Biochem,2002,269(16):4105-4113.
    [75] Domergue F, Spiekermann P, Lerchl J, et al. New insight into Phaeodactylum tricornutum fattyacid metabolism. Cloning and functional characterization of plastidial and microsomaldelta12-fatty acid desaturases. Plant Physiol,2003,131(4):1648-1660.
    [76] Kainou K, Kamisaka Y, Kimura K, et al. Isolation of delta12and omega3-fatty acid desaturasegenes from the yeast Kluyveromyces lactis and their heterologous expression to producelinoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast,2006,23(8):605-612.
    [77] Zhang X, Li M, Wei D, et al. Identification and characterization of a novel yeast omega3-fattyacid desaturase acting on long-chain n-6fatty acid substrates from Pichia pastoris. Yeast,2008,25(1):21-27.
    [78] Sakuradani E, Abe T, Iguchi K, et al. A novel fungal omega3-desaturase with wide substratespecificity from arachidonic acid-producing Mortierella alpina1s-4. Appl MicrobiolBiotechnol,2005,66(6):648-654.
    [79] Oura T, Kajiwara S. Saccharomyces kluyveri fad3encodes an omega3fatty acid desaturase.Microbiology+,2004,150(Pt6):1983-1990.
    [80] Pereira S L, Huang Y S, Bobik E G, et al. A novel omega3-fatty acid desaturase involved in thebiosynthesis of eicosapentaenoic acid. Biochem J,2004,378(Pt2):665-671.
    [81] Akpinar A, Fox S R, Ratledge C, et al. Biotransformation of arachidonic acid and othereicosanoids by the yeast Dipodascopsis uninucleata, the oomycete fungi Saprolegnia diclinaand Leptomitus lacteus and the zygomycete fungus Mortierella isabellina. Adv Exp Med Biol,1997,433:231-234.
    [82] Sakuradani E, Abe T, Shimizu S. Identification of mutation sites on omega3desaturase genesfrom Mortierella alpina1s-4mutants. J Biosci Bioeng,2009,107(1):7-9.
    [83] Sayanova O, Haslam R, Guschina I, et al. A bifunctional delta12,delta15-desaturase fromAcanthamoeba castellanii directs the synthesis of highly unusual n-1series unsaturated fattyacids. J Biol Chem,2006,281(48):36533-36541.
    [84] Zhang S, Sakuradani E, Ito K, et al. Identification of a novel bifunctional delta12/delta15fattyacid desaturase from a basidiomycete, Coprinus cinereus TD822-2. Febs Lett,2007,581(2):315-319.
    [85] Wilson R A, Calvo A M, Chang P K, et al. Characterization of the Aspergillus parasiticusdelta12-desaturase gene: A role for lipid metabolism in the aspergillus-seed interaction.Microbiology+,2004,150(Pt9):2881-2888.
    [86] Tan L, Meesapyodsuk D, Qiu X. Molecular analysis of6desaturase and6elongase fromConidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a omega3fatty acid withnutraceutical potentials. Appl Microbiol Biotechnol,2011,90(2):591-601.
    [87] Sakuradani E, Kobayashi M, Shimizu S. Delta6-fatty acid desaturase from an arachidonicacid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus,Aspergillus. Gene,1999,238(2):445-453.
    [88] Laoteng K, Mannontarat R, Tanticharoen M, et al. Delta(6)-desaturase of Mucor rouxii with highsimilarity to plant delta(6)-desaturase and its heterologous expression in Saccharomycescerevisiae. Biochem Biophys Res Commun,2000,279(1):17-22.
    [89] Kendrick A, Ratledge C. Desaturation of polyunsaturated fatty acids in Mucor circinelloides andthe involvement of a novel membrane-bound malic enzyme. Eur J Biochem,1992,209(2):667-673.
    [90] Missotten J, De Smet S, Raes K, et al. Effect of supplementation of the maternal diet with fish oilor linseed oil on fatty-acid composition and expression of delta5-and delta6-desaturase intissues of female piglets. Animal,2009,3(8):1196-1204.
    [91] Ruiz-Lopez N, Haslam R P, Venegas-Caleron M, et al. Enhancing the accumulation of omega-3long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterativemetabolic engineering and genetic crossing. Transgenic Res,2012.
    [92] Ruiz-Lopez N, Sayanova O, Napier J A, et al. Metabolic engineering of the omega-3long chainpolyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot,2012.
    [93] Knutzon D S, Thurmond J M, Huang Y S, et al. Identification of delta5-desaturase fromMortierella alpina by heterologous expression in bakers' yeast and canola. J Biol Chem,1998,273(45):29360-29366.
    [94] Michaelson L V, Lazarus C M, Griffiths G, et al. Isolation of a delta5-fatty acid desaturase genefrom Mortierella alpina. J Biol Chem,1998,273(30):19055-19059.
    [95] Saito T, Morio T, Ochiai H. A second functional delta5fatty acid desaturase in the cellular slimemould Dictyostelium discoideum. Eur J Biochem,2000,267(6):1813-1818.
    [96] Sayanova O, Haslam R, Qi B, et al. The alternative pathway C20delta8-desaturase from thenon-photosynthetic organism Acanthamoeba castellanii is an atypical cytochrome b5-fusiondesaturase. Febs Lett,2006,580(8):1946-1952.
    [97] Tu W C, Cook-Johnson R J, James M J, et al. Barramundi (lates calcarifer) desaturase withdelta6/delta8dual activities. Biotechnol Lett,2012,1-10.
    [98] Morais S, Castanheira F, Martinez-Rubio L, et al. Long chain polyunsaturated fatty acid synthesisin a marine vertebrate: Ontogenetic and nutritional regulation of a fatty acyl desaturase withdelta4activity. Biochim Biophys Acta,2012,1821(4):660-671.
    [99] Tonon T, Harvey D, Larson T R, et al. Identification of a very long chain polyunsaturated fattyacid delta4-desaturase from the microalga Pavlova lutheri. Febs Lett,2003,553(3):440-444.
    [100] Li Y, Monroig O, Zhang L, et al. Vertebrate fatty acyl desaturase with delta4activity. Proc NatlAcad Sci U S A,2010,107(39):16840-16845.
    [101] Leonard A, Pereira S, Sprecher H, et al. Elongation of long-chain fatty acids. Prog Lipid Res,2004,43(1):36-54.
    [102] Luthria D L, Sprecher H. Studies to determine if rat liver contains multiple chain elongatingenzymes. Biochim Biophys Acta,1997,1346(3):221-230.
    [103] Takeno S, Sakuradani E, Murata S, et al. Molecular evidence that the rate-limiting step for thebiosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids,2005,40(1):25-30.
    [104] Hashimoto K, Yoshizawa A C, Okuda S, et al. The repertoire of desaturases and elongasesreveals fatty acid variations in56eukaryotic genomes. J Lipid Res,2008,49(1):183-191.
    [105] Tvrdik P, Asadi A, Kozak L P, et al. Cig30, a mouse member of a novel membrane protein genefamily, is involved in the recruitment of brown adipose tissue. J Biol Chem,1997,272(50):31738-31746.
    [106] Tvrdik P, Westerberg R, Silve S, et al. Role of a new mammalian gene family in the biosynthesisof very long chain fatty acids and sphingolipids. J Cell Biol,2000,149(3):707-718.
    [107] Todd J, Post-Beittenmiller D, Jaworski J G. Kcs1encodes a fatty acid elongase3-ketoacyl-CoAsynthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J,1999,17(2):119-130.
    [108] Falcone A, Nelissen H, Fleury D, et al. Cytological investigations of the Arabidopsis thalianaelo1mutant give new insights into leaf lateral growth and elongator function. Ann Bot,2007,100(2):261-270.
    [109] Puyaubert J, Garbay B, Costaglioli P, et al. Acyl-CoA elongase expression during seeddevelopment in Brassica napus. Bba-mol Cell Biol L,2001,1533(2):141-152.
    [110] Qin Y M, Pujol F M, Shi Y H, et al. Cloning and functional characterization of two cdnasencoding nadph-dependent3-ketoacyl-CoA reductased from developing cotton fibers. CellRes,2005,15(6):465-473.
    [111] Oh C S, Toke D A, Mandala S, et al. Elo2and elo3, homologues of the Saccharomyces cerevisiaeelo1gene, function in fatty acid elongation and are required for sphingolipid formation. J BiolChem,1997,272(28):17376-17384.
    [112] Kendrick A, Ratledge C. Lipids of selected molds grown for production of n-3and n-6polyunsaturated fatty acids. Lipids,1992,27(1):15-20.
    [113] Das T, Thurmond J M, Bobik E, et al. Polyunsaturated fatty acid-specific elongation enzymes.Biochem Soc Trans,2000,28(6):658-660.
    [114] Leonard A, Bobik E, Dorado J, et al. Cloning of a human cDNA encoding a novel enzymeinvolved in the elongation of long-chain polyunsaturated fatty acids. Biochem J,2000,350(Pt3):765-770.
    [115] Jiang X, Qin L, Tian B, et al. Cloning and expression of two elongase genes involved in thebiosynthesis of docosahexaenoic acid in Thraustochytrium sp. Fjn-10. Wei Sheng Wu XueBao,2008,48(2):176-183.
    [116] Taoka Y, Nagano N, Okita Y, et al. Effect of tween80on the growth, lipid accumulation and fattyacid composition of Thraustochytrium aureum atcc34304. J Biosci Bioeng,2011,111(4):420-424.
    [117] Matsuda T, Sakaguchi K, Hamaguchi R, et al. The analysis of {delta}12-fatty acid desaturasefunction revealed that two distinct pathways are active for the synthesis of polyunsaturatedfatty acids in Thraustochytrium aureum atcc34304. J Lipid Res,2012.
    [118] Petrie J R, Liu Q, Mackenzie A M, et al. Isolation and characterisation of a high-efficiencydesaturase and elongases from microalgae for transgenic LC-PUFA production. MarBiotechnol,2010,12(4):430-438.
    [119] Petrie J R, Mackenzie A M, Shrestha P, et al. Isolation of three novel long-chain polyunsaturatedfatty acid delta9-elongases and the transgenic assembly of the entire Pavlova salinadocosahexaenoic acid pathway in Nicotiana benthamiana1. J Phycol,2010,46(5):917-925.
    [120] Lee J C, Anbul P, Kim W H, et al. Identification of delta9-elongation activity fromThraustochytrium aureum by heterologous expression in Pichia pastoris. Biotechnol BioprocE,2008,13(5):524-532.
    [121] Kang D H, Anbu P, Jeong Y S, et al. Identification and characterization of a novel enzymerelated to the synthesis of PUFAs derived from Thraustochytrium aureum atcc34304.Biotechnol Bioproc E,2010,15(2):261-272.
    [122] Sakuradani E, Nojiri M, Suzuki H, et al. Identification of a novel fatty acid elongase with a widesubstrate specificity from arachidonic acid-producing fungus Mortierella alpina1s-4. ApplMicrobiol Biot,2009,84(4):709-716.
    [123] Kaewsuwan S, Bunyapraphatsara N, Cove D J, et al. High level production of adrenic acid inPhyscomitrella patens using the algae Pavlova sp. Delta(5)-elongase gene. Bioresour Technol,2010,101(11):4081-4088.
    [124] Zank T K, Zahringer U, Beckmann C, et al. Cloning and functional characterisation of anenzyme involved in the elongation of delta6-polyunsaturated fatty acids from the mossPhyscomitrella patens. Plant J,2002,31(3):255-268.
    [125] Koletzko B, Lien E, Agostoni C, et al. The roles of long-chain polyunsaturated fatty acids inpregnancy, lactation and infancy: Review of current knowledge and consensusrecommendations. J Perinat Med,2008,36(1):5-14.
    [126] Riediger N D, Othman R A, Suh M, et al. A systemic review of the roles of n-3fatty acids inhealth and disease. J Am Diet Assoc,2009,109(4):668-679.
    [127] Venegas-Caleron M, Sayanova O, Napier J A. An alternative to fish oils: Metabolic engineeringof oil-seed crops to produce omega-3long chain polyunsaturated fatty acids. Prog Lipid Res,2010,49(2):108-119.
    [128] Sayanova O, Napier J A. Transgenic oilseed crops as an alternative to fish oils. ProstaglandinsLeukot Essent Fatty Acids,2011,85(5):253-260.
    [129] Damude H, Kinney A. Engineering oilseed plants for a sustainable, land-based source of longchain polyunsaturated fatty acids. Lipids,2007,42(3):179-185.
    [130] Damude H G, Kinney A J. Enhancing plant seed oils for human nutrition. Plant Physiol,2008,147(3):962-968.
    [131] Kinney A J. Metabolic engineering in plants for human health and nutrition. Curr OpinBiotechnol,2006,17(2):130-138.
    [132] Clemente T E, Cahoon E B. Soybean oil: Genetic approaches for modification of functionalityand total content. Plant Physiol,2009,151(3):1030-1040.
    [133] Truksa M, Wu G, Vrinten P, et al. Metabolic engineering of plants to produce very long-chainpolyunsaturated fatty acids. Transgenic Res,2006,15(2):131-137.
    [134] Singh S, Zhou X, Liu Q, et al. Metabolic engineering of new fatty acids in plants. Curr OpinPlant Biol,2005,8(2):197-203.
    [135] Raymond Park J, McFarlane I, Hartley Phipps R, et al. The role of transgenic crops insustainable development. Plant Biotechnol J,2011,9(1):2-21.
    [136] Beaudoin F, Michaelson L V, Lewis M J, et al. Production of C20polyunsaturated fatty acids(PUFAs) by pathway engineering: Identification of a pufa elongase component fromCaenorhabditis elegans. Biochem Soc Trans,2000,28(6):661-663.
    [137] Kajikawa M, Yamato K T, Kohzu Y, et al. Isolation and characterization of delta(6)-desaturase,an elo-like enzyme and delta(5)-desaturase from the liverwort Marchantia polymorpha andproduction of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichiapastoris. Plant Mol Biol,2004,54(3):335-352.
    [138] Kajikawa M, Yamato K T, Sakai Y, et al. Isolation and functional characterization of fatty aciddelta5-elongase gene from the liverwort Marchantia polymorpha l. Febs Lett,2006,580(1):149-154.
    [139] Li Y T, Li M T, Fu C H, et al. Improvement of arachidonic acid and eicosapentaenoic acidproduction by increasing the copy number of the genes encoding fatty acid desaturase andelongase into Pichia pastoris. Biotechnol Lett,2009,31(7):1011-1017.
    [140] Meyer A, Kirsch H, Domergue F, et al. Novel fatty acid elongases and their use for thereconstitution of docosahexaenoic acid biosynthesis. J Lipid Res,2004,45(10):1899.
    [141] Tavares S, Grotkjaer T, Obsen T, et al. Metabolic engineering of Saccharomyces cerevisiae forproduction of eicosapentaenoic acid, using a novel {delta}5-desaturase from Parameciumtetraurelia. Appl Environ Microbiol,2011,77(5):1854-1861.
    [142] Reddy A S, Thomas T L. Expression of a cyanobacterial delta6-desaturase gene results ingamma-linolenic acid production in transgenic plants. Nat Biotechnol,1996,14(5):639-642.
    [143] Sayanova O, Smith M A, Lapinskas P, et al. Expression of a borage desaturase cdna containingan n-terminal cytochrome b5domain results in the accumulation of high levels ofdelta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci U S A,1997,94(8):4211-4216.
    [144] Qiu X, Hong H P, Datla N, et al. Expression of borage delta6desaturase in Saccharomycescerevisiae and oilseed crops. Can J Bot,2002,80(1):42-49.
    [145] Hong H, Datla N, Reed D W, et al. High-level production of gamma-linolenic acid in Brassicajuncea using a delta6desaturase from Pythium irregulare. Plant Physiol,2002,129(1):354-362.
    [146] James M J, Ursin V M, Cleland L G. Metabolism of stearidonic acid in human subjects:Comparison with the metabolism of other n-3fatty acids. Am J Clin Nutr,2003,77(5):1140-1145.
    [147] Lemke S L, Vicini J L, Su H, et al. Dietary intake of stearidonic acid-enriched soybean oilincreases the omega-3index: Randomized, double-blind clinical study of efficacy and safety.Am J Clin Nutr,2010,92(4):766-775.
    [148] Whelan J. Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potentialhealth benefits. J Nutr,2009,139(1):5-10.
    [149] Whelan J, Gouffon J, Zhao Y. Effects of dietary stearidonic acid on biomarkers of lipidmetabolism. J Nutr,2012,142(3):630S-634S.
    [150] Ursin V M. Modification of plant lipids for human health: Development of functional land-basedomega-3fatty acids. J Nutr,2003,133(12):4271-4274.
    [151] Eckert H, La Vallee B, Schweiger B J, et al. Co-expression of the borage delta6desaturase andthe arabidopsis delta15desaturase results in high accumulation of stearidonic acid in theseeds of transgenic soybean. Planta,2006,224(5):1050-1057.
    [152] Hammond B G, Lemen J K, Ahmed G, et al. Safety assessment of sda soybean oil: Results of a28-day gavage study and a90-day/one generation reproduction feeding study in rats. RegulToxicol Pharmacol,2008,52(3):311-323.
    [153] Ruiz-Lopez N, Haslam R P, Venegas-Caleron M, et al. The synthesis and accumulation ofstearidonic acid in transgenic plants: A novel source of 'heart-healthy' omega-3fatty acids.Plant Biotechnol J,2009,7(7):704-716.
    [154] Qi B, Fraser T, Mugford S, et al. Production of very long chain polyunsaturated omega-3andomega-6fatty acids in plants. Nat Biotechnol,2004,22(6):739-745.
    [155] Graham I A, Larson T, Napier J A. Rational metabolic engineering of transgenic plants forbiosynthesis of omega-3polyunsaturates. Curr Opin Biotechnol,2007,18(2):142-147.
    [156] Abbadi A, Domergue F, Bauer J, et al. Biosynthesis of very-long-chain polyunsaturated fattyacids in transgenic oilseeds: Constraints on their accumulation. The Plant Cell,2004,16(10):2734-2748.
    [157] Napier J, Beaudoin F, Michaelson L, et al. The production of long chain polyunsaturated fattyacids in transgenic plants by reverse-engineering. Biochimie,2004,86(11):785-792.
    [158] Napier J A, Sayanova O, Qi B, et al. Progress toward the production of long-chainpolyunsaturated fatty acids in transgenic plants. Lipids,2004,39(11):1067-1075.
    [159] Kinney A, Cahoon E, Damude H, et al.Production of very long chain polyunsaturated fatty acidsin oilseed plants. World Patent, patent WO2004/071467,2004
    [160] Wu G, Truksa M, Datla N, et al. Stepwise engineering to produce high yields of very long-chainpolyunsaturated fatty acids in plants. Nat Biotechnol,2005,23(8):1013-1017.
    [161] Robert S S, Singh S P, Zhou X R, et al. Metabolic engineering of Arabidopsis to producenutritionally important dha in seed oil. Funct Plant Biol,2005,32(6):473-479.
    [162] Robert S S. Production of eicosapentaenoic and docosahexaenoic acid-containing oils intransgenic land plants for human and aquaculture nutrition. Mar Biotechnol (NY),2006,8(2):103-109.
    [163] Domergue F, Abbadi A, Ott C, et al. Acyl carriers used as substrates by the desaturases andelongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstitutedin yeast. J Biol Chem,2003,278(37):35115-35126.
    [164] Domergue F, Abbadi A, Heinz E. Relief for fish stocks: Oceanic fatty acids in transgenic oilseeds.Trends Plant Sci,2005,10(3):112-116.
    [165] Cheng B, Wu G, Vrinten P, et al. Towards the production of high levels of eicosapentaenoic acidin transgenic plants: The effects of different host species, genes and promoters. TransgenicRes,2010,19(2):221-229.
    [166] Chen R, Matsui K, Ogawa M, et al. Expression of delta6, delta5desaturase and glelo elongasegenes from Mortierella alpina for production of arachidonic acid in soybean [glycine max (l.)merrill] seeds. Plant Sci,2006,170(2):399-406.
    [167] Damude H G, Kinney A J. Engineering oilseeds to produce nutritional fatty acids. Physiol Plant,2008,132(1):1-10.
    [168] James C.2011年全球生物技术/转基因作物商业化发展态势.中国生物工程杂志,2012,32(1):1-14.
    [169] Flavell R B, Dart E, Fuchs R L, et al. Selectable marker genes: Safe for plants? Biotechnology(N Y),1992,10(2):141-144.
    [170] Miki B, McHugh S. Selectable marker genes in transgenic plants: Applications, alternatives andbiosafety. J Biotechnol,2004,107(3):193-232.
    [171] Ramessar K, Peremarti A, Gomez-Galera S, et al. Biosafety and risk assessment framework forselectable marker genes in transgenic crop plants: A case of the science not supporting thepolitics. Transgenic Res,2007,16(3):261-280.
    [172] Sundar I K, Sakthivel N. Advances in selectable marker genes for plant transformation. J PlantPhysiol,2008,165(16):1698-1716.
    [173] Tuteja N, Verma S, Sahoo R K, et al. Recent advances in development of marker-free transgenicplants: Regulation and biosafety concern. J Biosci,2012,37(1):167-197.
    [174] Woo H J, Suh S C, Cho Y G. Strategies for developing marker-free transgenic plants. BiotechnolBioproc E,2011,16(6):1053-1064.
    [175] Dale P J, Clarke B, Fontes E M. Potential for the environmental impact of transgenic crops. NatBiotechnol,2002,20(6):567-574.
    [176] Kuiper H A, Kleter G A, Noteborn H P, et al. Assessment of the food safety issues related togenetically modified foods. Plant J,2001,27(6):503-528.
    [177] Smyth S, Khachatourians G G, Phillips P W. Liabilities and economics of transgenic crops. NatBiotechnol,2002,20(6):537-541.
    [178] Qu J, Mao H Z, Chen W, et al. Development of marker-free transgenic jatropha plants withincreased levels of seed oleic acid. Biotechnol Biofuels,2012,5(1):10.
    [179] Manimaran P, Ramkumar G, Sakthivel K, et al. Suitability of non-lethal marker and marker-freesystems for development of transgenic crop plants: Present status and future prospects.Biotechnol Adv,2011,29(6):703-714.
    [180] Shiva Prakash N, Bhojaraja R, Shivbachan S K, et al. Marker-free transgenic corn plantproduction through co-bombardment. Plant Cell Rep,2009,28(11):1655-1668.
    [181] Wu L, Nandi S, Chen L, et al. Expression and inheritance of nine transgenes in rice. TransgenicRes,2002,11(5):533-541.
    [182] Baker B, Schell J, L rz H, et al. Transposition of the maize controlling element “activator” intobacco. PNAS,1986,83(13):4844-4848.
    [183] Yoder J, Palys J, Alpert K, et al. Ac transposition in transgenic tomato plants. Mol Gen Genet,1988,213(291-296).
    [184] Ebinuma H, Sugita K, Matsunaga E, et al. Selection of marker-free transgenic plants using theisopentenyl transferase gene. Proc Natl Acad Sci U S A,1997,94(6):2117-2121.
    [185] Goldsbrough A, Lastrella C, Yoder J. Transposition mediated re-positioning and subsequentelimination of marker genes from transgenic tomato. Nat Biotechnol,1993,11:1286-1292
    [186] Kopertekh L, Broer I, Schiemann J. A developmentally regulated cre-lox system to generatemarker-free transgenic brassica napus plants. Methods Mol Biol,2012,847:335-350.
    [187] Dale E C, Ow D W. Gene transfer with subsequent removal of the selection gene from the hostgenome. Proc Natl Acad Sci U S A,1991,88(23):10558-10562.
    [188] Gleave A P, Mitra D S, Mudge S R, et al. Selectable marker-free transgenic plants without sexualcrossing: Transient expression of cre recombinase and use of a conditional lethal dominantgene. Plant Mol Biol,1999,40(2):223-235.
    [189] Zuo J, Niu Q W, Moller S G, et al. Chemical-regulated, site-specific DNA excision in transgenicplants. Nat Biotechnol,2001,19(2):157-161.
    [190] Sreekala C, Wu L, Gu K, et al. Excision of a selectable marker in transgenic rice (Oryza sativa l.)using a chemically regulated cre/loxp system. Plant Cell Rep,2005,24(2):86-94.
    [191] Zhang Y, Li H, Ouyang B, et al. Chemical-induced autoexcision of selectable markers in elitetomato plants transformed with a gene conferring resistance to lepidopteran insects.Biotechnol Lett,2006,28:7.
    [192] Luo K, Sun M, Deng W, et al. Excision of selectable marker gene from transgenic tobacco usingthe gm-gene-deletor system regulated by a heat-inducible promoter. Biotechnol Lett,2008,30(7):1295-1302.
    [193] Wang Y, Chen B, Hu Y, et al. Inducible excision of selectable marker gene from transgenic plantsby the cre/lox site-specific recombination system. Transgenic Res,2005,14(5):605-614.
    [194] Cao M X, Huang J Q, Yao Q H, et al. Site-specific DNA excision in transgenic rice with acell-permeable cre recombinase. Mol Biotechnol,2006,32(1):55-63.
    [195] Ma B G, Duan X Y, Niu J X, et al. Expression of stilbene synthase gene in transgenic tomatousing salicylic acid-inducible cre/loxp recombination system with self-excision of selectablemarker. Biotechnol Lett,2009,31(1):163-169.
    [196] Chong-Perez B, Kosky R G, Reyes M, et al. Heat shock induced excision of selectable markergenes in transgenic banana by the cre-lox site-specific recombination system. J Biotechnol,2011.
    [197] Ba X, Wang Q, Chu C. Excision of a selective marker in transgenic rice using a novel cre/loxpsystem controlled by a floral specific promoter. Transgenic Res,2008,17:1035-1043.
    [198] Mlynarova L, Conner A J, Nap J P. Directed microspore-specific recombination of transgenicalleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J,2006,4(4):445-452.
    [199] Moravcikova J, Vaculkova E, Bauer M, et al. Feasibility of the seed specific cruciferin cpromoter in the self excision cre/loxp strategy focused on generation of marker-freetransgenic plants. Theor Appl Genet,2008,117(8):1325-1334.
    [200] Lyznik L A, Mitchell J C, Hirayama L, et al. Activity of yeast flp recombinase in maize and riceprotoplasts. Nucleic Acids Res,1993,21(4):969-975.
    [201] Woo H J, Cho H S, Lim S H, et al. Auto-excision of selectable marker genes from transgenictobacco via a stress inducible flp/frt site-specific recombination system. Transgenic Res,2009,18(3):455-465.
    [202] Onouchi H, Nishihama R, Kudo M, et al. Visualization of site-specific recombination catalyzedby a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet,1995,247(6):653-660.
    [203] Ebinuma H, Komamine A. Mat (multi-auto-transformation) vector system. The oncogenes ofagrobacterium as positive markers for regeneration and selection of marker-free transgenicplants. In Vitro Cell Dev-pl,2001,37(2):103-113.
    [204] Toriyama K, Chiba A, Nakagawa Y. Visualization of somatic deletions mediated by r/rssite-specific recombination and induction of germinal deletions caused by callusdifferentiation and regeneration in rice. Plant Cell Rep,2003,21(6):605-610.
    [205] Ballester A, Cervera M, Pena L. Efficient production of transgenic citrus plants using isopentenyltransferase positive selection and removal of the marker gene by site-specific recombination.Plant Cell Rep,2007,26(1):39-45.
    [206] Beachy R N, Chen Z L, Horsch R B, et al. Accumulation and assembly of soybeanbeta-conglycinin in seeds of transformed petunia plants. Embo J,1985,4(12):3047-3053.
    [207] Lessard P A, Allen R D, Fujiwara T, et al. Upstream regulatory sequences from twobeta-conglycinin genes. Plant Mol Biol,1993,22(5):873-885.
    [208] Imoto Y, Yamada T, Kitamura K, et al. Spatial and temporal control of transcription of thesoybean beta-conglycinin alpha subunit gene is conferred by its proximal promoter region andaccounts for the unequal distribution of the protein during embryogenesis. Genes Genet Syst,2008,83(6):469-476.
    [209] Yoshino M, Nagamatsu A, Tsutsumi K, et al. The regulatory function of the upstream sequenceof the beta-conglycinin alpha subunit gene in seed-specific transcription is associated with thepresence of thery sequence. Genes Genet Syst,2006,81(2):135-141.
    [210] Yoshino M, Kanazawa A, Tsutsumi K I, et al. Structure and characterization of the gene encodingalpha subunit of soybean beta-conglycinin. Genes Genet Syst,2001,76(2):99-105.
    [211] Chandrasekharan M B, Bishop K J, Hall T C. Module-specific regulation of the beta-phaseolinpromoter during embryogenesis. Plant J,2003,33(5):853-866.
    [212] Shirsat A, Wilford N, Croy R, et al. Sequences responsible for the tissue specific promoteractivity of a pea legumin gene in tobacco. Mol Gen Genet,1989,215(2):326-331.
    [213] Goossens A, Dillen W, De Clercq J, et al. The arcelin-5gene of phaseolus vulgaris directs highseed-specific expression in transgenic phaseolus acutifolius and arabidopsis plants. PlantPhysiol,1999,120(4):1095-1104.
    [214] Stalberg K, Ellerstrom M, Josefsson L G, et al. Deletion analysis of a2s seed storage proteinpromoter of Brassica napus in transgenic tobacco. Plant Mol Biol,1993,23(4):671-683.
    [215] Radke S, Andrews B, Moloney M, et al. Transformation of Brassica napus l. Usingagrobacterium tumefaciens: Developmently regulated expression of reintruduced napin gene.Theor Appl Genet,1988,75:685-694.
    [216] Kridl G, McCarter D, Rose R, et al. Isolation and charaterization of an expressed napin genefrom Brassica rapa. Seed Sci Technol,1991,1:209-219.
    [217] Colot V, Robert L S, Kavanagh T A, et al. Localization of sequences in wheat endosperm proteingenes which confer tissue-specific expression in tobacco. Embo J,1987,6(12):3559-3564.
    [218] Kluth A, Sprunck S, Becker D, et al.5' deletion of a gbss1promoter region from wheat leads tochanges in tissue and developmental specificities. Plant Mol Biol,2002,49(6):669-682.
    [219] Qu le Q, Xing Y P, Liu W X, et al. Expression pattern and activity of six glutelin gene promotersin transgenic rice. J Exp Bot,2008,59(9):2417-2424.
    [220] Yang L, Wakasa Y, Kawakatsu T, et al. The3'-untranslated region of rice glutelin GluB-1affectsaccumulation of heterologous protein in transgenic rice. Biotechnol Lett,2009,31(10):1625-1631.
    [221] Washida H, Wu C Y, Suzuki A, et al. Identification of cis-regulatory elements required forendosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol,1999,40(1):1-12.
    [222] Zhao Y, Okita T W. Interactions of the glutelin gt35' flanking regulatory regions with ricenuclear proteins. Plant Cell Physiol,1995,36(8):1657-1667.
    [223] Zhao Y, Leisy D J, Okita T W. Tissue-specific expression and temporal regulation of the riceglutelin gt3gene are conferred by at least two spatially separated cis-regulatory elements.Plant Mol Biol,1994,25(3):429-436.
    [224] Qu L, Takaiwa F. Evaluation of tissue specificity and expression strength of rice seed componentgene promoters in transgenic rice. Plant Biotechnol J,2004,2(2):113-125.
    [225] Schernthaner J P, Matzke M A, Matzke A J. Endosperm-specific activity of a zein gene promoterin transgenic tobacco plants. Embo J,1988,7(5):1249-1255.
    [226] Marraccini P, Deshayes A, Petiard V, et al. Molecular cloning of the complete11s seed storageprotein gene of coffea arabica and promoter analysis in transgenic plants. PlantPhysiol.Biochem,1999,37(4):273-282.
    [227] Morcillo F, Hartmann C, Duval Y, et al. Regulation of7s globulin gene expression in zygotic andsomatic embryos of oil palm. Physiol Plant,2001,112(2):233-243.
    [228] Sunilkumar G, Connell J P, Smith C W, et al. Cotton alpha-globulin promoter: Isolation andfunctional characterization in transgenic cotton, arabidopsis, and tobacco. Transgenic Res,2002,11(4):347-359.
    [229] Schuler M A, Schmitt E S, Beachy R N. Closely related families of genes code for the alpha andalpha' subunits of the soybean7S storage protein complex. Nucleic Acids Res,1982,10(24):8225-8244.
    [230] Allen R D, Bernier F, Lessard P A, et al. Nuclear factors interact with a soybean beta-conglycininenhancer. Plant Cell,1989,1(6):623-631.
    [231] Lessard P A, Allen R D, Bernier F, et al. Multiple nuclear factors interact with upstreamsequences of differentially regulated beta-conglycinin genes. Plant Mol Biol,1991,16(3):397-413.
    [232] Lessard P, Allen R, Fujiwara T, et al. Upstream regulatory sequences from two β-conglyciningenes. Plant Mol Biol,1993,22:873-885.
    [233] Cahoon E B, Carlson T J, Ripp K G, et al. Biosynthetic origin of conjugated double bonds:Production of fatty acid components of high-value drying oils in transgenic soybean embryos.Proc Natl Acad Sci U S A,1999,96(22):12935-12940.
    [234] Tierney M, Bray E, Allen R, et al. Isolation and characterization of a genomic clone encoding theβ-subunit of β-conglycinin. Planta Med,1987,172:356-363.
    [235] Awazuhara M, Kim H, Goto D B, et al. A235-bp region from a nutritionally regulated soybeanseed-specific gene promoter can confer its sulfur and nitrogen response to a constitutivepromoter in aerial tissues of Arabidopsis thaliana. Plant Sci,2002,163(1):75-82.
    [236]財音青格乐.大豆种子特异性启动子的克隆与功能研究:[博士学位论文].天津.南开大学,2004.
    [237] Dickinson C D, Evans R P, Nielsen N C. Ry repeats are conserved in the5'-flanking regions oflegume seed-protein genes. Nucleic Acids Res,1988,16(1):371.
    [238] Chen Z L, Naito S, Nakamura I, et al. Regulated expression of genes encoding soybeanbeta-conglycinins in transgenic plants. Dev Genet,1989,10(2):112-122.
    [239] Chamberland S, Daigle N, Bernier F. The legumin boxes and the3' part of a soybeanbeta-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants.Plant Mol Biol,1992,19(6):937-949.
    [240] Ezcurra I, Ellerstrom M, Wycliffe P, et al. Interaction between composite elements in the napapromoter: Both the b-box ABA-responsive complex and the RY/G complex are necessary forseed-specific expression. Plant Mol Biol,1999,40(4):699-709.
    [241] Stalberg K, Ellerstrom M, Josefsson L, et al. Deleion analysis of a2s seed storage proteinpromoter of Brassica napus in transgenic tobacco. Plant Mol Biol Rep,1993,23:671-683.
    [242] Chen Z L, Pan N S, Beachy R N. A DNA sequence element that confers seed-specificenhancement to a constitutive promoter. Embo J,1988,7(2):297-302.
    [243] Josefsson L G, Lenman M, Ericson M L, et al. Structure of a gene encoding the1.7S storageprotein, napin, from Brassica napus. J Biol Chem,1987,262(25):12196-12201.
    [244] Wu C, Washida H, Onodera Y, et al. Quantitative nature of the prolamin-box, ACGT and AACAmotifs in a rice glutelin gene promoter: Minimal cis-element requirements forendosperm-specific gene expression. Plant J,2000,23(3):415-421.
    [245] Itoh Y, Kitamura Y, Fukazawa C. The glycinin box: A soybean embryo factor binding motifwithin the quantitative regulatory region of the11s seed storage globulin promoter. Mol GenGenet,1994,243(3):353-357.
    [246] Yoshihara T, Washida H, Takaiwa F. A45-bp proximal region containing AACA and GCN4motifis sufficient to confer endosperm-specific expression of the rice storage protein glutelin gene,glua-3. Febs Lett,1996,383(3):213-218.
    [247] Suzuki A, Wu C Y, Washida H, et al. Rice myb protein osmyb5specifically binds to the AACAmotif conserved among promoters of genes for storage protein glutelin. Plant Cell Physiol,1998,39(5):555-559.
    [248] Wu C Y, Suzuki A, Washida H, et al. The GCN4motif in a rice glutelin gene is essential forendosperm-specific gene expression and is activated by opaque-2in transgenic rice plants.Plant J,1998,14(6):673-683.
    [249] Kawagoe Y, Campbell B R, Murai N. Synergism between CACGTG (G-box) and CACCTGcis-elements is required for activation of the bean seed storage protein beta-phaseolin gene.Plant J,1994,5(6):885-890.
    [250] Bustos M M, Guiltinan M J, Jordano J, et al. Regulation of beta-glucuronidase expression intransgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a french beanbeta-phaseolin gene. Plant Cell,1989,1(9):839-853.
    [251] Zhang L, Qiu Z, Hu Y, et al. ABA treatment of germinating maize seeds induces vp1geneexpression and selective promoter-associated histone acetylation. Physiol Plant,2011,143(3):287-296.
    [252] Liao Y, Zhang J S, Chen S Y, et al. Role of soybean GmbZIP132under abscisic acid and saltstresses. J Integr Plant Biol,2008,50(2):221-230.
    [253] Liao Y, Zou H F, Wei W, et al. Soybean GmbZIP44, GmbZIP62and GmbZIP78genes functionas negative regulator of ABA signaling and confer salt and freezing tolerance in transgenicarabidopsis. Planta,2008,228(2):225-240.
    [254] Yang X, Yang Y N, Xue L J, et al. Rice abi5-like1regulates abscisic acid and auxin responses byaffecting the expression of ABRE-containing genes. Plant Physiol,2011,156(3):1397-1409.
    [255] Qian W, Tan G, Liu H, et al. Identification of a bhlh-type G-box binding factor and its regulationactivity with G-box and box I elements of the pschs1promoter. Plant Cell Rep,2007,26(1):85-93.
    [256] Stone S L, Kwong L W, Yee K M, et al. Leafy cotyledon2encodes a B3domain transcriptionfactor that induces embryo development. Proc Natl Acad Sci U S A,2001,98(20):11806-11811.
    [257] Ladin B F, Doyle J J, Beachy R N. Molecular characterization of a deletion mutation affectingthe alpha'-subunit of beta-conglycinin of soybean. J Mol Appl Genet,1984,2(4):372-380.
    [258] van der Geest A H, Hall T C. A68bp element of the beta-phaseolin promoter functions as aseed-specific enhancer. Plant Mol Biol,1996,32(4):579-588.
    [259] Takaiwa F, Oono K, Kato A. Analysis of the5' flanking region responsible for theendosperm-specific expression of a rice glutelin chimeric gene in transgenic tobacco. PlantMol Biol,1991,16(1):49-58.
    [260] Truksa M, Vrinten P, Qiu X. Metabolic engineering of plants for polyunsaturated fatty acidproduction. Mol Breeding,2009,23:1-11.
    [261] Petrie J R, Mackenzie A M, Shrestha P, et al. Isolation of three novel long-chain polyunsaturatedfatty acid delta9-elongases and the transgenic assembly of the entire Pavlova salinadocosahexaenoic acid pathway in Nicotiana benthamiana. J Phycol,2010,46(5):917-925.
    [262] Qi B, Fraser T C, Bleakley C L, et al. The variant 'his-box' of the c18-delta9-pufa-specificelongase IgASE1from Isochrysis galbana is essential for optimum enzyme activity. FebsLett,2003,547(1-3):137-139.
    [263] Meng F, Gong Y, Ma D. Recent progress in treatment of aquaculture wastewater based onmicroalgae--a review. Wei Sheng Wu Xue Bao,2009,49(6):691-696.
    [264] Yang Z, Wei D, Xing L, et al. Cloning and expression in Saccharomyces cerevisiae ofdelta5-fatty acid desaturase gene from Phaeodactylum tricornutum. Sheng Wu Gong ChengXue Bao,2009,25(2):195-199.
    [265] Sugita K, Kasahara T, Matsunaga E, et al. A transformation vector for the production ofmarker-free transgenic plants containing a single copy transgene at high frequency. Plant J,2000,22(5):461-469.
    [266] Hinchee M, Ward D, Newell C A. Production of transgenic soybean plants using agrobacteriummediated DNA transfer. Nat Biotechnol,1988,6:915-922.
    [267] Danaldson P A, Simmonds D H. Susceptibility to Agrobacterium tumefaciens and cotyledonarynode transformat ion in short season soybean. Plant Cell Rep,2000,19:478-484..
    [268] Paz M M, Martinez J C, Kalvig A B, et al. Improved cotyledonary node method using analternative explants derived from mature seed for efficient agrobacterium-mediated soybeantransformation. Plant Cell Rep,2006,25:206-213.
    [269] Loganathan M, Maruthasalam S, YShiu L, et al. Regeneration of soybean (Glycine max l.Merrill) through direct somatic embryogenesis from the immature embryonic shoot tip. InVitro Cell Development biology-plant,2010,6:265-273.
    [270] Hong H P, Zhang H Y, Olhoft P, et al. Organogenic callus as the target for plant regeneration andtransformation via Agrobacterium in soybean. In Vitro Cellular&Development Biology-Plant,2007,43:558-568.
    [271] Crowe A J, Abenes M, Plant A, et al. The seed-specific transactivator, ABI3, induces oleosingene expression. Plant Sci,2000,151(2):171-181.
    [272] Nakashima K, Fujita Y, Katsura K, et al. Transcriptional regulation of ABI3-andABA-responsive genes including rd29b and rd29a in seeds, germinating embryos, andseedlings of arabidopsis. Plant Mol Biol,2006,60:51-68.
    [273] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-snrk2pathway inABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant,2012.
    [274] Gomez-Porras J L, Riano-Pachon D M, Dreyer I, et al. Genome-wide analysis ofABA-responsive elements ABRE and CE3reveals divergent patterns in arabidopsis and rice.BMC Genomics,2007,8:260.
    [275] Yoshida T, Fujita Y, Sayama H, et al. Areb1, AREB2, and ABF3are master transcription factorsthat cooperatively regulate ABRE-dependent ABA signaling involved in drought stresstolerance and require ABA for full activation. Plant J,2010,61(4):672-685.
    [276] Monke G, Altschmied L, Tewes A, et al. Seed-specific transcription factors ABI3and FUS3:Molecular interaction with DNA. Planta,2004,219(1):158-166.
    [277] Marcotte W R, Jr., Russell S H, Quatrano R S. Abscisic acid-responsive sequences from the Emgene of wheat. Plant Cell,1989,1(10):969-976.
    [278] Finkelstein R, Gampala S S, Lynch T J, et al. Redundant and distinct functions of the ABAresponse loci ABA-insensitive(ABI)5and ABRE-binding factor (ABF)3. Plant Mol Biol,2005,59(2):253-267.
    [279] Guerriero G, Martin N, Golovko A, et al. The RY/Sph element mediates transcriptionalrepression of maturation genes from late maturation to early seedling growth. New Phytol,2009,184(3):552-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700