用户名: 密码: 验证码:
有益农用微生物资源鉴定和相关基因的克隆及其功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究主旨是鉴定并开发有益农用微生物资源,并对相关功能基因进行克隆和功能验证研究;本文的研究内容主要包括两部分:第一部分是苏云金芽胞杆菌(Bacillus thuringiensis, Bt)营养期杀虫蛋白基因(Vegetative insecticidal protein, Vip)资源的鉴定及功能验证,这是分子育种的上游工作,即发掘新的高效的杀虫基因资源,为农作物抗虫育种提供新的高效的基因资源;第二部分是大豆慢生根瘤菌属新种的鉴定研究。
     苏云金芽胞杆菌是目前研究最深入、历史最悠久、使用最广泛的生物防治微生物。为了提高生防制剂的杀虫活性、扩大杀虫谱和解决害虫的抗性问题,开发新的、高效杀虫蛋白的基因资源是解决这些问题的有效途径,这对我国的生物防治领域的发展有着重要的意义。Vip作为第二代生物杀虫剂,其与ICPs蛋白的氨基酸序列无同源性,两者的杀虫机理完全不同;Vip对某些害虫的杀虫活性比ICPs的杀虫活性还高,还对ICPs不能杀死的昆虫具有较好的活性。因此,分析不同生态环境下vip,基因资源分布情况,并开发新的、高效的vip基因是解决长期主要使用ICPs所带来的抗性问题的有效途径。根据以上研究背景,这部分的研究主要包括以下三个方面:
     第一,四川地区苏云金芽胞杆菌vip基因资源的评价。从四川盆地不同生态环境的14个地区采集的1789个土样中分离了2134个Bt菌株,因此证明了四川地区蕴藏着丰富的Bt菌株,且不同生态环境的Bt分布不同。本研究使用vipls-vipla, vip2s-vip2a和vip3s-vip3a引物对分别鉴定了2134个Bt菌株vip1、vip2和vip3基因资源情况,其中有8.6%和14.6%的Bt菌株分别含有vip1和vip2基因,67.4%的Bt菌株含有vip3基因。与vp1和vip2基因资源分布相比,四川地区vp3基因资源相对较为丰富。由于巴郎山和峨嵋山独特的生态环境,例如:高海拔、低温、氧压低、积雪覆盖,这两个地方的Bt菌株不含有vip1和vip2基因,且只有9.2%和8.4%的Bt菌株含有vip3基因。Vip1和Vip2是二元毒素,但是有些地方的Bt菌株只含有其中之一,例如:白马寺和梁山。不产生任何阳性PCR产物的Bt菌株可能不含有vip基因或者含有vip突变基因。尤其是能够产生Vip3的阳性蛋白带的22个Bt菌株,其很有可能含有新的的vip基因。
     第二,挖掘新的、高效的Vip,及生物活性功能验证。本研究采用PCR-RFLP鉴定的新的vip1基因,开发出了新的的二元毒素基因viplAcl/vip2Ae3;并建立了一个仅使用限制性内切酶AciI的PCR-RFLP鉴定体系,该方法简单、快速、有效。二元毒素基因viplAcl和vip2Ae3基因共表达于载体pCOLADuet-1,共表达蛋白Vip1Ac1/Vip2Ae3对同翅目害虫棉蚜(Aphis gossypii)有较好的杀虫活性,其致死中浓度LC50为87.5(34.2-145.3)ng mL-1。本研究建立的鉴定体系为挖掘更多新的、高效的Vip蛋白有着重要的意义;本研究挖掘的新的的Vip1Ac1-Vip2Ae3二元毒素为Vip资源库提供了新的资源,对于害虫的生物防治和昆虫的抗药性有着重要的意义。
     第三,构建多价效工程菌株,提高其杀虫活性、扩大杀虫谱和解决昆虫的抗性问题。Vip3主要对鳞翅目害虫有毒杀活性,Cyt2主要对蚊子幼虫有杀虫活性,并具有溶细胞和溶血作用,且对一些Cry蛋白具有协同增效作用。本研究将cyl2Aa3与vip3Aa29基因表达于pCOLADuet-1载体上,并分析了Cyt2Aa3和Vip3Aa29蛋白的协同作用。Vip3Aa29和Cyt2Aa3的共表达蛋白对同翅目害虫倦库蚊和稻瘿蚊的LC50分别为1.10μg mL-1and39μg mL-1,且对倦库蚊的毒杀活性存在较小的抑制作用。Vip3Aa29和Cyt2Aa3的共表达蛋白对水稻二化螟和甜菜夜蛾的LC5o分别为50.2μg mL-1和59.0μgmL-1,且存在协同增效作用。Vip3Aa29和Cyt2Aa3共表达蛋白对棉铃虫有明显的抑制作用,其抑制中浓度IC50为162.5μg mL-1,且SF接近于1,因此Vip3Aa29和Cyt2Aa3蛋白对棉铃虫不存在协同作用。本研究首次发现Vip3Aa29与Cyt2Aa3之间存在协同作用,为Vip3杀虫蛋白活性的提高提供了理论依据。
     在大豆根瘤菌资源分析方面,随着分类方法的不断发展,根瘤菌新种群越来越多地被发现,从而完善了根瘤菌的种群分类系统。本研究通过对16个大豆根瘤菌与慢生根瘤菌属所有种标准菌株的16S rRNA、结瘤基因nodC、固氮基因nifH以及六个持家基因(atpD、glnll、recA、gyrB、rpoB、dnaK)构建了系统发育树,结果发现这16个根瘤菌在系统发育树上处于一个独立的分支上面,是慢生根瘤菌属的一个新种。然后,从这个新种群的三个亚群中分别选择了009、085和099三个菌株进行DNA-DNA杂交,其gDNA与其他种的gDNA同源性明显小于70%,这进一步证明了这个种群是慢生根瘤菌的新种;这三个菌株的G+C含量是62-64%。最后,将这个新种命名为渥太华慢生根瘤菌(Bradyrhizobium ottawense),并将099菌株作为标准菌株保存于HAMBI,其保藏号为HAMBI3284,其表型特征描述如下:B. ottawense sp. gov.为革兰氏阴性菌株,菌株大小为0.4-0.9μm×1.7-2.3μm,形状为杆状,带有极生或亚极生鞭毛:最适生长温度为28℃,最适生长盐分是1%NaCl,最适生长pH是7.2;在YEM平板培养基上,28℃条件下培养7天,单菌落为白色、圆形且光滑,大小都是小于1mm,其世代生长时间为10.7-12.3h,且能产碱;对卡拉霉素(100(100μg/mL)、四环素(20μg/mL)、氯霉素(100μg/mL)、头孢霉素(<5μg/mL)盘尼西林(<10μg/mL)和红霉素(100μg/mL)六种抗生素具有抗性;能利用D-甘露糖、L-树胶醛糖做为碳源,对麦芽糖和L-鼠李糖的利用是微弱的;能将苏氨酸作为氮源来利用,且对L-脯氨酸和L-谷氨酸的利用是十分微弱的;其能与豆科植物Glycine max, Glycine soja, Macroptilium atropurpurem, Vigna unguiculata, Phaseolus vulgaris, Desmodium canadense, Amphicarpa bracteata共生结瘤,且大部分根瘤的固氮效率较高,但与Amphicarpa bracteata和Phaseolus vulgaris的共生结瘤而不能有效地固氮。
The main subject of the thesis is the identification and exploitation for beneficial and agricultural Bacteria and the clone and function test of some useful genes from the Bacteria. The thesis inculds two parts. The fist part is the identification and function test of Vegetative insecticidal protein (Vip) genes from Bacillus thuringiensis (Bt). The part is the research on the upstream work of molecular breeding, which is identification of novel and high activity genes of biological control. The research can provide novel and high activity gene sources for molecular breeding. The second part is the characterization for a new species of Rhizobium geneus.
     Bacillus thuringiensis (Bt) is the biological control Bacteria of the most thorough resrarch, the oldest history and the widest application. To enhance insecticidal activity, enlarge insecticidal spectrum and solve the resistance problem of insects, the effective method is the exploitation of novel and high activity insecticidal protein genes, which is beneficial for the biological control in China. As the second generation toxin of biological control, VIPs show no holomogy of amino acid with ICPs, and their insecticidal mechanism is different. VIPs show higher toxic activity to some insects than ICPs, and VIPs can show pesticidal activity to some insects that ICPs have no activity against. Therefore, the effective ways of solving the problem of using ICPs long time is the analysis of distribution of vip genes in different entiroment and the exploitation of novel and high activity toxin genes. According to the above reasons, the research results of the part mainly focused on the three points behind:
     Firstly, the distrubtion of vip genes from B. thuringiensis in Sichuan was evaluated.2134Bt strains were isolated from1789soil samples of14sites with different environments in Sichuan, which demonsteated abundant Bt strains in Sichuan and different distrubtion of Bt in diverse environments. Vip1, vip2and vip3genes of2134Bt strains were identified by primers of vipls-vipla, vip2s-vip2a and vip3s-vip3a, respectively. Strains containing vip3-type genes were the most abundant in our collection (67.4%), followed by vip2-type genes (14.6%) and vipl-type genes (8.1%). Comparing with vipl and vip2genes, vip3genes were more abundant in Sichuan. Because of unique environment with high altitude, low temperature, insufficient oxygen, and abundant snow, Bt srtains coming from the two sites had no vipl and vip2genes, and only9.2%and8.4%Bt strains contained vip3genes. Although Vipl and Vip2were binary toxins, there were only one of the two genes in some sites, such as Bi Ma Si and Liang Shan. Bt strains without any PCR products with the three pairs of primer may had no vip genes, or contained mutational vip genes. Especially, the22Bt strains with vip3genes PCR product may contain novel vip3genes.
     Secondly, novel and high activity VIPs were exploited, and their biological activity were tested. A novel vipl gene were identified with the method of PCR-RFLP, and a novel binary toxin gene of viplAcl/vip2Ae3were exploited. A identification system only with enduclease Acil was built, and the method are simple, fast and effective. ViplAcl and vip2Ae3were co-expressioned in pCOLADuet-1. The co-expression proteins showed high toxicity against Aphis gossypii, the50%lethal concentration (LC50) was87.5(34.2-145.3) ng mL-1. It is beneficial to use the identification system to exploite more novel and high activity Vip. As a novel binary toxin, ViplAcl-Vip2Ae3applied one more binary toxin into Vip resource libiary, which is beneficial for biological control and the resistance of insects.
     Thirdly, engineering bacteria with one more genes were constructed, which may be helpful for enhancing insecticidal activity, amplifying toxicity spectrum and solveing the problem of insect resistance. Vip3mainly shows toxicity to Lepidoptera. Cyt2maily has insecticidal activity against mosquito larvae, haemolysis and cytolytic function and synergism with some Cry proteins. Cyl2Aa3and vip3Aa29genes were co-expressioned in pCOLADuet-1, and the synergism Cyt2Aa3and Vip3Aa29proteins were analysised. The LC50of co-expression proteins against Culex quinquefasciatus and Chironomus tepperi respectively were0.53μg mL-1and36μg mL-1, and Vip3Aa29and Cyt2Aa3showed a little of antagonistic effect against Cx. quinquefasciatus. The LC50of the co-expression proteins against Chilo suppressalis and Spodoptera respectively were50.2μg mL-1and59.0μg mL-1, and Vip3Aa29and Cyt2Aa3had synergistic effect against the two insects. The co-expression protein of Vip3Aa29and Cyt2Aa3could inhibit Helicoverpa armigera growth, with50%inhibition concentration at22.6μg mL-1. Its SF was close to1, so there was not synergistic effect between Vip3Aa29and Cyt2Aa3. It was the first time to report that Vip3Aa29and Cyt2Aa3had synergism between each other, which applied theory basis for enhancing the insecticidal activity of Vip3.
     The second part is the analysis of rhizobium sources. With the development of classification method, more and more groups of rhizobium have been identified, which perfect the classification system of rhizobium. Phylogentic trees of nine genes (16S rRNA, nodC, nifH, atpD, glnⅡ, recA, gyrB, rpoB, dnaK) were built for16rhizobium isolated from soybean and all of the type strains of Bradyrhizobium. As a result, the16rhizboubium strains was a independent group on phylogentic tree, which suggested that the group was a novel species of Bradyrhziboium. Then, three rhizobium strains of009,085and099were selected for DNA-DNA hybridization. The homology of gDNA between the three selected strain's gDNA and other type strain's gDNA was obviously less than70%, and the results also proved that the group was a novel species of Bradyrhizobium. The G+C contents of the three rhizobium strains (009,085and099) were between62%and64%. The novel species was named as Bradyrhizobium ottawense, and099was selected as the type strain.099were preserved in HAMBI, and its accession number is HAMB13284.
     Pheotype of Bradyrhizobium ottwaense:Gram negative rods as for the novel species of Bradyrhizobium genus. The size of cells is0.4-0.9μm×1.7-2.3μm, and the shape is ellipse with polar or subpolar flagellum. The optium growth temperature, salt and pH of tested strains were28℃,1%NaCl and7.2, respectively. Colonies are white, roundness and smooth in YMA at28℃for7days, and the size of colony was less than1mm. The generation time of the species was10.7-12.3hours, and the strains can product alkali. The strains showed resistance to kanamycin sulfate (100μg/mL), tetracycline (20μg/mL), chloramphenicol (100μg/mL), erythromycin (<5μg/mL), cefuroxime sodium (<10μg/mL), penicillin G sodium (100ug/mL). Assimilation of D-mannose, L-arabinose as carbon source is positive. Assimilation of maltose and L-rhamnose as carbon is weak. Assimilation of L-threonine as nitrogen source is positive. Assimilation of L-proline and L-glutamic acid as nitrogen source is weak. The type strain nodulate leguminous plants of Glycine max, Glycine soja, Macroptilium alropurpurem, Vigna unguiculata, Phaseolus vulgaris, Desmodium canadense, Amphicarpa bracteata, and the fixing nitrogen efficiency of most nod is high. Although the type strain nodulates Amphicarpa bracteata and Phaseolus vulgaris, it can not fix nitrogen for the two leguminous plants.
引文
[1]中国科学院微生物研究所.伯杰氏细菌鉴定手册[M].北京:科学出版社,1984.
    [2]Baroy, F., Lecadet, M. M., Deleluse, A. Cloning and sequencing of three new putative toxin genes from Clostridium befermentans [J]. Gene,1998,211:293-295.
    [3]Feitelson, J. S. The Bacillus thuringiensis family tree. In:Kim, L. (Ed.) Advanced Engineered Pesticides [J]. Marcel Dekker. New York,1993,63-72.
    [4]Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins [J]. Mol. Boil. Rev.,1998,62: 807-813.
    [5]Pinto, L. M., Azambuja, A. O., Diehl, E. et al. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae) [J]. Braz. J. Biol.,2003,63(2):301-306.
    [6]Takeshi, I., Tomonori, I., Ken, S., et al. Cloning and expression of two crystal protein genes, cry30Bal and cry44Aal, obtained from a highly mosquitocidal strain, Bacillus thuringiensis subsp. entomocidus INA288 [J]. Appl. Environ. Microbiol., 2006,72(8):5673-5676.
    [7]Yu, H., Zhang, J., Huang, D. F. et al. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer: Holotrichia parallela [J]. Curr. Microbiol., 2006,53:13-17.
    [8]Tan, F.R., Zhu, J., Tang, J., et al. Cloning and characterization of two novel crystal protein genes, cry54Aal and cry30Fal, from Bacillus thuringiensis strain BtMc28 [J]. Curr. Microbiol.,2009,58 (6):654-659.
    [9]Kotze, A. C., O'Grady, J., Gough, J. M., et al. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock [J]. Int. J. Parasitol.,2005,35:1013-1022
    [10]Guo, S.X., Liu, M., Peng, D.H., et al. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518 [J]. Appl. Environ. Microbiol.,2008,74(22):6997-7001
    [11]Zheng, D. S., Valdez-Cruz, N. A., Armengol, G. Co-expression of the mosquitocidal toxins CytlAa and Cry11Aa from Bacillus thuringiensis Subsp. israelensis in Asticcacaulis excentricus [J]. Curr Microbiol.,2007,54:58-62.
    [12]李荣森,陈涛。几种苏云金芽胞杆菌的毒力及形态结构。微生物学报,1981,21(3):311-317。
    [13]Donovan, W. P., GonzalezJ, M. J., Gilbert, M. P., et al. Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to Coleopteran larvae, and nucleotide sequence of the toxin gene [J]. Mol. Gen. Genet., 1988,214(3):365-372.
    [14]Rodriguez-Padilla, C., Galan-Wong, L., de Barjac, H., et al. Bacillus thuringiensis subspecies neoleonensis serotype H-24, a new subspecies which produces a triangular crystal [J]. J. Invertebr. Pathol.,1990,56(2):280-282.
    [15]Calabrese, D. M., Nickerson, K. W., Lane, L. C. A comparison of protein crystal subunit sizes Bacillus thuringiensis [J]. Can. J. Microbiol.,1980,26:1006-1010.
    [16]任改信,冯喜吕,冯维熊。苏云金杆菌伴胞晶体的形态及抗原特性体。微生物学报,1983,23(1):57-62。
    [17]Smith, R. A., Couche, G. A. The phyllo plane as a source of Bacillus thuringiensis variants [J]. Appl. Environ. Microbiol.,1991,57:311-315.
    [18]Schnepf, E., Criekmore, N., Van Rie, J., et al. Bacillus thuringiensis and its pesticidal crystal proteins [J]. Microbiol. Mol. Biol. Rev.,1998,623:3775-3806.
    [19]Iriarte, J., Porcar, M., Lecadet, M. et al. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain [J]. Curr. Microbiol.,2000, 40(6):402-408.
    [20]Chen, F. C., Tsai, M. C., Peng, C. H., et al. Dissection of cry gene profiles of Bacillus thuringiensis isolates in Taiwan [J]. Curr. Microbiol.,2004,48(4):270-275.
    [21]Jara, S., Maduell, P., Orduz, S. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia [J]. J.Appl. Microbiol.,2006,101 (1):117-24.
    [22]Jouzani, G. S., Abad, A. P., Seifinejad, A., et al. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran [J]. J. Ind. Microbiol. Biotechnol.,2008,35(2): 83-94.
    [23]Ohba, M., Shisa, N., Thaithanun, S., et al. A unique feature of Bacillus thuringiensis H-serotype flora in soils of a volcanic island of Japan [J]. J. Gen. Appl. Microbiol.,2002,48 (4):233-235.
    [24]Maeda, M., Mizuki, E., Nakamura, Y., et al. Recovery of Bacillus thuringiensis from marine sediments of Japan [J]. Curr. Microbiol.,2000,40(6):418-422.
    [25]Ishiwata, S. On a kind of severe flacherie (sotto disease) [J]. Dainihon Sanshi Kaiho.1901,114:1-5.
    [26]Anwar, H. M., Ahmed, S., Hoque, S. Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh [J]. J. Invertebr. Pathol.,1997,70: 221-225.
    [27]Leckie, S. E., Prescott, C. E., Grayston, S. J. et al. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability [J]. Microb. Ecol.,2004,48 (1):29-40.
    [28]Wang, J., Boets, A., Van, R. J. et al. Characterization of cry1, cry2, and cry9 genes in Bacillusthuringiensis isolates from China [J]. J. Invertebr. Pathol.,2003,82 (1):63-71.
    [29]戴莲韵,王学聘.苏云金芽胞杆菌研究进展[M].北京,科学出版社,1997:5-6.
    [30]Salehi Jouzani, G., Pourjan Abad, A., Seifinejad, a., et al. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran [J]. Ind Microbiol Biotechnol,2007,13: 634-638.
    [31]Ariuro, R.R., Ibarra, J.E. Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetive extrangenic palindromic sequence-based PCR analysis [J]. Appl Environ Microbiol,2005,62(6):1346-1355.
    [32]Bergey, John, G.G., Noel, R.K. et al. Bergey's manual of determinative bacteriology [M].9th ed. Lippincott,1994.
    [33]Khyami H.H., Hajaij, M., Charles, J.F. Characterization of Bacillus thuringiensis ser. jordanica (serotype H71), a novel serovariety isolated in Jordan [J]. Curr. Microbiol.,2003,47(1):26-31.
    [34]Beron, C.M., Curattil, Salerno, G.L. New strategy for identification of novel cry2 type genes from Bacillus Ihuringiensis strains [J]. Appl. Environ. Microbiol.,2005, 71(2):761-765.
    [35]张文成,陈月华,任改新。我国粮食粉尘中苏芸金芽胞杆菌的分离及H血清型鉴定[J]。武警医学院学报,2004,13(5):351-353。
    [36]喻子牛。苏云金杆菌[M]。科学出版社,1990。
    [37]戴莲韵,王学聘。苏云金芽胞杆菌研究进展[M]。北京:科学出版社,1997.15-20。
    [38]黄健屏,杨婵君,唐炜臻,等。苏云金杆菌印第安变种和九州变种的酯酶分析[J]。微生物学通报,1984,3:97-99。
    [39]Xu, D., Cote, J. C. Sequence diversity of the Bacillus thuringiensis and B. cereus sensu lato flagellin (H Antigen) protein:Comparison with H serotype diversity [J]. Appl. Environ. Microbiol.,2006,72 (2):4653-4662.
    [40]Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins [J]. Mol. Boil. Rev.,1998,62: 807-813.
    [41]Knowles, B.H., Blatt, M.R., Tester, M., et al. A cytolyfcd dlta-endotoxin from Bacillus thingiensis var. israelensis forms cation-selective channals in planar lipid bilayes [J]. FEBS Lett.,1989,244:259-262.
    [42]Zhu, Y.J., Liu, B., Sengonca, C. Efficiency of Bacillus thuringiensis with Abamectin on different agricultural pests and their natural enemies [M]. Gottingen: Cuviller Verlag Gottingen,2005:1-3.
    [43]张宏宇,邓望喜,喻子牛。苏云金芽胞杆菌的遗传多样性,Ⅱ.杀虫晶体蛋白及其基因型[J]。遗传,2000,22(2):125-128。
    [44]李长友,张杰,宋福平,等。苏云金芽胞杆菌菌株B-Pr-88的生物学特性[J]。植物保护学报,2004,31(1):21-25。
    [45]喻子牛,孙明,刘子铎,等。苏云金芽胞杆菌的分类及生物活性蛋白基因[J]。中国生物防治,1996,12(2):85-89。
    [46]Ferre, J., Van Rie, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis [J]. Annu. Rev. Entomol.,2002,47:501-533.
    [47]Masson, L., Tabashnik, B.E., Liu, Y.B., et al. Helix 4 of the Bacillus thuringiensis CrylAa toxin lines the lumen of the ion channel [J]. J. Biol. Chem., 1999,274:31996-32000.
    [48]Van Rie, J., Jansens, S., Hofte, H., et al. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins [J]. Appl. Environ. Microbiol.,1990,56:1378-1385.
    [49]Bravo, A., Gomez, I., Conde, J., et al. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains [J]. Biochimicaet Biophysica Acta, 2004,1667:38-46.
    [50]Gomez, I., Pardo-Lopez L., Munoz-Garay, C., et al. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis [J]. Peptides,2007,28:169-173.
    [51]Zhang, X., Candas, M., Griko, N. B., et al. Cytotoxicity of Bacillus thuringiensis Cryl Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells [J]. Cell Death and Differentiation,2005,12:1407-1416.
    [52]Zhang, X., Candas, M., Griko, N. B., et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis [J]. Proc. Natl. Acad. Sci.,2006,103:9897-9902.
    [53]Jurat-Fuentes, J. L., Adang, M. J. Characterization of a Cry1Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae [J]. European J. Biochem.,2004,271:3127-3135.
    [54]Jurat-Fuentes, J. L., Adang, M. J. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae [J]. J. Inver. Pathol.,2006,92 (3):166-171.
    [55]Mclean, K. M., Whitely, H. R. Expression in Escherichia coli of a cloned crystal protein gene of Bacillust huringiensiss subsp. Israelensis [J]. J. Bacterial.,1987,169: 1017-1023.
    [56]Wirth, M. C., Federici, B. A., Walton, W. E. Cyt1A from Bacillus thuringiensis synergize activity of Bacillus sphaericus against Aedes aegypti (Diptera:Culicidae) [J]. Appl. Environ. Microbiol.,2000,66:1093-1097.
    [57]Tomas, W. E., Etlar, D. J. Bacillus thuringiensis var. israelensis crystal delta-Endotoxin:efects on insects and mammalian cells invitro and invivo [J]. J. Cell Sci., 1983,60:181-197.
    [58]Knowles, B.H., Blat, M. R., Tester, M., et al. A cytolitic delta-endotoxin from Bacillus thingiensis var.israelensis forms cation-selective channals in planar lipid bilayes [J]. FEBS Lett.,1989,244:259-262.
    [59]Cao, G.Y. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects [J]. Appl. Environ. Microbiol.,1997(2): 532-536.
    [60]Mac Innes T. C, Bouwer G. An improved bioassay for the detection of Bacillus thuringiensis beta-exotoxin [J]. J. Invertebr. Pathol.,2009,101 (2):137-139.
    [61]Hiroshi, I., Yasushi, H., Yutaka, M., et al. A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis [J]. Mol. Biotechnol.,2007,36: 90-101.
    [61]Shi, X., Shao, C., Zhang, X., et al. Modulation of Bacillus thuringiensis phosphatidylinositol-specific phospholipase C activity by mutations in putative dimerization interface [J]. J. Biol. Chem.,2009,284(23):15607-15618.
    [62]Kevany, B. M., Rasko, D. A., Thomas, M.G. Characterization of the complete zwittermicin a biosynthesis gene cluster from Bacillus cereus [J]. App. Environ. Microbiol.,2009,75(4):1144-1155.
    [63]Ohba, M., Mizuki, E., Uemori, A. Parasporln, a new anticancer protein group from Bacillus thuringiensis [J]. Anticancer Res.,2009,29(l):427-433.
    [64]Warren, G. W., Koziel, M. G., Mullins, M. A., et al. Novel pesticidal proteins and strains [P]. World Interlectual Property Organization. WO 96/10083,1996,5: 849-870.
    [65]Estruch, J. J., Warren, G. W., Mullins, M. A., et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects [J]. Proc Natl Acad Sci USA,1996,93(11):5389-5394.
    [66]Petosa, C., Collier, R.J., Klimpel, K.R., et al. Nature,1997,385:833-838.
    [67]Schnepf, E.,Crickmore, N., Rie, J.V., et al. Microbiol Mol Biol Rev,1998, 62:775-806.
    [68]Warren, G.W., Koziel, M.G., Mullins, M.A., et al. World Intellectual Property Organization Patent WO 1998/5,849,870.
    [69]Fang, J. The vegetative insecticidal protein genes of Bacillus thuringiensis and expression in transgenic rice, Dissertation for Ph. D., Zhejiang University, Supervisors:Shen Z.C., and Cheng J.A.,2006:6-7.
    [70]Warren, G.W. et al. Vegetative insecticidal proteins:novel proteins for control of corn pests [J]. In Advances in Insect Control, the Role of Transgenic Plants ed. Carozzi, N.B. and Koziel,1997:109-121. London:Taylors & Francis Ltd.
    [71]蔡启良,刘子铎,孙明,等。苏云金芽胞杆菌营养期杀虫蛋白基因的克隆及表达分析[J]。生物工程学报,2002,18(5):578-582。
    [72]刘荣梅,张杰,高继国,等。苏云金芽胞杆菌营养期杀虫蛋白基因vip3A的研究[J]。高技术通讯,2004,9:39-42。
    [73]Bhalla, R., Dalal, M.S., Panguluri, S.K., et al. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis [J]. FEMS Microbiology Letters,243(2):467-472.
    [74]Li, C.Y., Oppert, B., Higgins, R.A., et al. Susceptibility of dipel-resistant and-susceptible Ostrinia nubilalis (Lepidoptera Crambidae) to individual Bacillus thuringiensis protoxins [J]. J Econ. Entom.,98(4):1333-1340.
    [75]Selvapandiyan, A., Arora, N., Rajagopal, R., et al. Toxicity analysis of N- and C- terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis [J]. App. Environ. Microbiol.,67(12):5855-5858.
    [76]Chen, J., Yu, J., Tang, M., et al. Comparison of the expression of Bacillus thuringiensis full-length and N-terminally truncated vip3A gene in Escherichia coli [J]. J. App. Mocrobiol.,95(2):310-316.
    [77]Leem, K., Walters, F. S., Hart, H., et al. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1 Ab82endotoxin [J]. App. Environ. Microbiol.,2003,69 (8):464824657.
    [78]Sena, J.A.D., Hernandea-Rodrifuez, C.S., Ferre, J. Interaction of Bacillus thuringiensis Cryl and Vip3A proteins with Spodoptera frugiperda midgut binging sites [J]. App. Environ. Microbiol.,2009,75(7):2236-2237.
    [79]Lee, M.K., Miles, P., Chen, J.S. Brush broder membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midgets [J]. Biochem. Bioph. Res. Co.,2006,339(4):1043-1047.
    [80]Lee, M.K., Walters, F.S., Hart, H., et al. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein VIP3A differs from that of CrylAb 8-endotoxin [J]. App. Environ. Microbiol.,2003,69(8):4648-4657.
    [81]陈宏等。玉米根萤叶甲的抗逊陛与防治研究进展[J]。植物保护,2009,6:6-11。
    [82]张俊华等。玉米根萤叶甲在中国的潜在适生区域与检疫措施研究[J]。植物检疫,2009,23(6):9-12。
    [83]张丽杰等。警惕危险性害虫——玉米根萤叶甲传入我国。昆虫知识,2002,39(2):82-88)。
    [84]周帼萍,袁志明。蜡状芽胞杆菌(Bacillus cereus)污染及其对食品安全的影响[J]。食品科学,2007,28(3):357-360。
    [85]Jucovic, M., Walters, F.S., Warren, G.W., Palekar, N.V., Chen, J.S. From enzyme to zymogen:engineering Vip2, an ADP-rbiosyltransferase from Bacillus cereus, for conditional toxicity [J]. Protein Eng. Des. Sel.,2008,21:631-638.
    [86]Lobna, A. M., Slim To. Characterization of a novel Vip3-type from Bacillus thuringiensis and evidence of its presence on a large plasmid [J]. FEMS Microbiol. Lett.,2005 (24):353-358.
    [87]Ellis, Murray D., Negrotto, et al. Cot102 insecticidal cotton [P]. United States Patent Application,20060130175
    [88]Chen, J.W., Tang, L.X., Tang, M.J., et al. Cloning and expression product of vip3A gene from Bacillus thuringiensis and analysis of insecticidal activity [J]. Chinese Journal of Biotechnology,2002,18 (6):687-692.
    [89]Arora, N., Selvapandiyan, A., Agrawal, N., et al. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Biochem. Bioph [J]. Res. Co.,2003,310(1):158-162.
    [90]Shi, Y.X., Yuan, M.J., Chen, J.W., et al. Effects of helper protein P20 from Bacillus thuringiensis on Vip3A expression [J]. Acta Microbiologica Sinica,2006, 46(1):85-89.
    [91]Zhu, C., Ruan, L., Peng, D., et al. Vegatative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp. kurstaki against Spodoptera exigua [J]. Lett. Appl. Microbiol.,2006,42(2):109-114.
    [92]Arora, N., Ahmad, T., Rajagopal, R., et al. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1 [J]. Biochem. Bioph. Res. Co.,2003, 307(3):620-625.
    [93]师永霞,陈建武,庞义,等。苏云金杆菌辅助蛋白P20对营养期杀虫蛋白Vip3A表达的影响[J]。微生物学报,2006,46(1):85-89。
    [94]蔡启良,刘子铎,孙明,等。苏云会芽胞杆菌营养期杀虫蛋白Vip与Cry蛋白的协同作用[J]。微生物学报,2003,30(5):43-48。
    [95]Fang, J., Xu, X.L., Wang, P., et al. Characterization of chimeric Bacillus thuringiensis Vip3 Toxins [J]. Appl Environ Microbiol,2007,73:956-961.
    [96]杨自文,吴宏文,王开梅,等。从士壤中高效分离苏云金芽胞杆菌的方法[J]。中国生物防治,2000,16(12):6-30。
    [97]Chankhamhaengdecha, S.T., Tantichodok, A., Panbangred, W. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawaiSP41 against Spodoptera exigua [J]. J Biotech,2008,237:1-29.
    [98]Loguercio, L.L., Barreto, M.L., Rocha, T.L., et al. Combined analysis of supernatant-based feeding bioassay and PCR as a first-tier screening strategy for Vip-derived activities in Bacillus thuringiensis strains effective agains tropical fall armyworm [J]. J Appl Microbiol,2002,93:269-277.
    [99]Sambrook, J.E., Fritsch, E.F., Maaiatis, T.A. Laboratory of Molecular Cloning,3nd edn [J]. Cold Spring Harbor Laboratory Press, New York,2002.
    [100]Wu, J.Y., Zhao, F.Q., Bai, J., et al. Evidence for positive darwinian selection of vip gene in Bacillus thuringiensis [J]. J Gene Genom,2007,34:649-660.
    [101]Hernandez-Rodriguez, C.S., Boets, A., Van-Rie, J., et al. Screening and identification of vip genes in Bacillus thuringiensis strains [J]. J Appl Microbiol 2009, 107:219-225.
    [102]Zsuzsanna, A., Christine, R. Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from the expressed sequence tags [J]. Curr. Genet.,2004,46:240-246.
    [103]Pang, Y., Frut, R., Federici, B.A. Synthesis and toxicity of full-length and truncated bacterial Cryl VD mosquitocidal proteins expressed in lepidopteran cells using a baculovirus vector [J]. J. Gen. Virol.,1992,73:89-101.
    [104]Li, H.T., Yao, J., Guo, W., et al. Cloning and expression of cry2Aa genes from isolates of Bacillus thuringiensis and their bioactivity [J]. J. Agr. Biotechnol.,2005, 13:787-791.
    [105]Fang, J., Xu, X., Wang, P., el al. Characterization of chimeric Bacillus thuringiensis Vip3 toxins [J]. Appl. Environ. Microb.,2007,73:956-961.
    [106]Sattar, S., Biswas, P. K., Hossain, M. A., et al. Search for Vegetative Insecticidal Proteins (VIPs) from local isolates of Bacillus thuringiensis effective against lepidopteran and homopteran insect pests [J]. J. Biopestic.,2008,1:216-222.
    [107]Tabashnik, B.E. Evolution of resistance to Bacillus thuringiensis [J]. Ann. Rev. Entomol.,1994,39:47-79.
    [108]Tabashnik, B.E., Gassmann, A.J., Crowder, D.W., et al. Insect resistance to Bt crops:evidence versus theory [J]. Nat. Biotechnol.,2008,26:199-202.
    [109]Kuo, W., Chak, K. Identification of Novel cry-Type Genes from Bacillus thuringiensis Strains on the Basis of Restriction Fragment Length Polymorphism of the PCR-Amplified DNA [J]. Appl. Environ. Microb.,1996,62:1369-1377.
    [110]Song, F., Zhang, J., Gu, A. Identification of cryll-Type Genes from Bacillus thuringiensis Strains and Characterization of a Novel cry1I-Type Gene [J]. Appl. Environ. Microb.2003,69:5207-5211.
    [111]Zhu, J., Zheng, A.P., Tan, F.R. Characterisation and expression of a novel holotype crystal protein gene, cry56Aal, from Bacillus thuringiensis strain Ywc2-8 [J]. Biotechnol. Lett.,2009,32:283-288.
    [112]Zhu, J., Zheng, A., Wang, S., et al. Characterization and expression of cry4Cbl and cry30Gal from Bacillus thuringiensis strain HS18-1 [J]. J. Invertebr. Pathol., 2010,103:200-202.
    [113]Beard, C.E., Court, L., Boets, A., et al. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection [J]. Curr. Microbiol.,2008,57:195-199.
    [114]Hernandez-Rodriguez, C. S., Boets, A., Van Rie, J. Screening and identification of vip genes in Bacillus thuringiensis strains [J]. J. Appl. Microbiol.,2009, 107:219-225.
    [115]Antal, Z., Rascle, C., Fevre, M., et al. Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from expressed sequence tags[J]. Curr. Genet.,2004,46:240-246.
    [116]Zsuzsanna, A., Christine, R. Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from the expressed sequence tags. Curr. Genet.,2004,46:240-246.
    [117]Sattar. S., Biswas. P. K., Hossain, M.A., et al. Search for Vegetative Insecticidal Proteins (VIPs) from local isolates of Bacillus thuringiensis effective against lepidopteran and homopteran insect pests [J]. J. Biopestic.,2008,1:216-222.
    [118]Crickmore, N., Zeigler, D.R., Feitelson, J., et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins [J]. Microbiol. Mol. Biol. R.,1998,62:807-813.
    [119]Pomdonkoy, B., Chewawiwat, N., Tanapongpipat, S., et al. Cloning and characterization of a cytolytic and mosquito larvicidal 8-endotoxin from Bacillus thuringiensis subsp. Darmstadiensis [J]. Curr. Microbiol.,2003,46:94-98.
    [120]Wu, D., Johnson, J.J., Federeci, B.A. Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis [J]. Mol. Microbiol.,1994,13:965-972.
    [121]Promdonkoy, B., Promdonkoy, P., Panyim, S. Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae [J]. FEMS Microbiol. Lett., 2005,252 (1):121-126.
    [122]Hughes, P. A., Stevens, M. M., Park, H., et al. Response of larval Chironomus tepperi (Diptera: Chironomidae) to individal Bacillus thuringiensis var. israelensis toxins [J]. J. Invertebr. Pathol.,2005,88:34-39.
    [123]Pomdonkoy, B., Chewawiwat, N., Tanapongpipat, S., et al. Cloning and characterization of a cytolytic and mosquito larvicidal δ-endotoxin from Bacillus thuringiensis subsp. Darmstadiensis [J]. Curr. Microbiol.,2003,46:94-98.
    [124]Zhu. C., Ruan. L., Peng. D., et al. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua [J]. Lett. Appl. Microbiol.,2005,42:109-114.
    [125]Tabashnik, B.E. Evaluation of Synergism among Bacillus thuringiensis Toxins [J]. Appl. Environ. Microb.,1992,58 (10):3343-3346.
    [126]Wirth, M. C., Park, H. W., Walton, W. E.,et al. Cytl A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus [J]. Appl. Environ. Microb.,2005,71 (1):185-189.
    [127]Crickmore, N., Bone, E. J., Williams, J. A., et al. Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp.israelensis [J]. FEMS. Microbiol. Lett,1995,131 (3):249-254.
    [128]Thomas, W. E., Ellar, D. J. Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal δ-endotoxin [J]. FEBS Lett.,1983,154:362-368.
    [129]Promdonkoy, B., Promdonkoy, P., Panyim, S. Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae [J]. FEMS Microbiol. Lett., 2005,252(1):121-126.
    [130]Zhu, C., Ruan, L., Peng, D., el al. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua [J]. Lett. Appl. Microbiol.,2005,42:109-114.
    [131]H6fte, H., Whiteley, H. R. Insecticidal crystal proteins of Bacillus thuringiensis [J]. Microbiol. Rev.,1989,53:242-255.
    [132]Meyer, S. K., Tabashnik, B. E., Liu, Y. B., et al. Cytl A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of diamondback moth (Plutella xylostella) and pink bollworm(Pectinophora gossypiella) [J]. Appl. Environ. Microb.,2001,67 (1):462-463.
    [133]Wirth, M. C., Delecluse, A., Walton, W. E. Cyt1 Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. medellin and B. thuringiensis subsp. israelensis synergize Bacillus sphaericus against Aedes aegypti and resistant Culex quinquefasciatus (Diptera: Culicidae) [J]. Appl. Environ. Microb.,2001,67 (7):3280-3284.
    [134]Federici, B. A., Bauer, A. S. Cytl Aa Protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, chrysomela scripta, and suppresses high levels of resistance to Cry3Aa [J]. Appl. Environ. Microb.,1998,64 (11):4368-4371.
    [135]陈文新,汪恩涛,陈文峰。根瘤菌-豆科植物共生多样性与地理环境的关系[J]。中国农业科学,2004,37(1):81-86。
    [136]雷霞,陈文峰,隋新华,等。根瘤菌多相分类的研究进展[J]。微生物学杂志,2007,27:77-80。
    [137]Subba Rao, N. S. Soil Microbiology (of Soil Microorganisms and Plant Growth) [M],2001, Science Publishers, Inc., USA.
    [138]陈文新。土壤和环境微生物学[M]。北京:北京农业大学出版社,1990。
    [139]陈文新。根瘤菌的分类[M]。南京:南京农业大学出版社,1987:134-136。
    [140]Frank, B. ber die pilzsymbiose der leguminosen [J]. Ber. Dtsch. Bot. Ges.,1889, 7:332-346.
    [141]Chen, W. X., Yan, G H., Li, J. L. Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov [J]. Int. J. Syst. Bacteriol.,1988,38:392-397.
    [142]Chen, W. X., Wang, E. T., Wang, S.Y., et al. Characteristics of Rhizobium Tianshanense sp. Nov., a moderately and slowly growing root nodule bacterium isolated from an arid daline environment in Xinjiang, People's Republic of China [J]. Int. J. Syst. Bacteriol.,1995,45:153-159.
    [143]Jordan, D. C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium japonicum gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants [J]. Int. J. Syst. Bacteriol.,1982,32:136-139.
    [144]De Lajudie, P., Willems, A., Nick, G., et al. Characterization of troical tree rhizobia and description of Mesorhizobium plurifarium sp. nov [J]. Int. J. Syst. Bacteriol.,1998,48:369-382.
    [145]Dreyfus, B. L., Garcia, J. L., Gillis, M. Characterization of Azorhizobium caulinodans gen. nov. sp. Nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata [J]. Int. J. Syst. Bacteriol.,1988,39:89-98.
    [146]Sy, A., Gitaud, E., Jourand, P., et al. Methlotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legymes [J]. J. Bacteriol.,2001,183: 214-220.
    [147]Moulin, L., Munive, A., Dreyfus, B., et al. Nodulation of legumes by members of the β-subclass of Proteobacteria [J]. Nature,2001,411:948-95.
    [148]Chen, W. X., Laevens, S., Lee, T. M., et al. Ralstonia taiwanensis sp. Nov., isolated from root nodules of Minosa species and sputum of a cystic fibrosis patient [J]. Int. J. Syst. Evol. Microbiol.,2001,51:1729-1735.
    [149]Rivas, R., Velazquea, E., Willems, A., et al. A new species of Devosia that form a unique nitrogen-fixing root nodule symbiosis with the aquatic Legume Neptunia natans (L.f.) Druce [J]. Appl. Envir. Microbiol.,2002,68:5217-5222.
    [150]Ngom, A., Nakagawa, Y., Sawada, H., et al. A novel symbiotic nitrogen-fixing member of the Ochrobactrum Giade isolated from root nodules of Acacia mangium [J]. J. Gen. Appl. Microbiol.,50:17-27.
    [151]Valverdw, A., Igual, J. M., Peix, A., et al. Rhizobium lusitanum sp. Nov. a bacterium that nodulates Phaseolus vulgaris [J]. Int. J. Syst. Evol. Microbiol.,2006, 56(11):2631-2637.
    [152]Lin, D. X., Wang, E. T., Tang, H., et al. Shinella kummerowiae sp. Nov., a novel symbiotic bacterium isolated from root nodule of the herbal legume Kummerowia stipulacea [J]. Int. J. Syst. Evol. Microbiol.,58:1409-1413.
    [153]Gao, Y. Classification and identification of Inguilinus nodiradicis CCBAU 01442 and mechanism of inorganic phosphate dissolved by phosphate-soluble bacteria [J]. SY 022010017,2010.
    [154]Hollis, A. B., Kloos, W. E., Elkan, G. H. DNA-DNA hybridization dtudies of Rhizobium japonicum and related Rhizobiaceae [J]. J. Gen. Microbiol.,1981,123: 215-222.
    [153]Wei, G. H., Wang, E. T., Chen, W. X., et al. Rhizobium indigoferae sp. Nov. and Sinorhizobium kummerwiae sp. nov., respectively isolated from Indigoferae sp. and Kummerowia stipulacea [J]. Int. J. Syst. Evol. Microbiol.,2002,52:2231-2239.
    [155]Squartini, A., Struffi, P., Doring, H., et al. Rhizobium sullae sp. nov., (formerly Rhizobium hedysari) the root-nodulle microsymbiont of Hedysarum coronarium [J]. Int. J. Syst. Evol. Microbiol.,2002,52(4):1267-1276.
    [156]Wei, G. H., Tan, Z. Y., Zhu, M. E., et al. Characterization of rhizobia idolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and discription of Rhizobium loessense sp, nov [J]. Int. J. Syst. Evol. Microbiol.,2003,53:1575-1583.
    [157]Quan, Z. X., Bae, H. S., Baek, J. H., et al. Rhizobium daejeonense sp. nov. Isolated from a cyanide teratment bioreactor [J]. Int. J. Syst. Evol. Microbiol.,2005, 55(6):2543-2549.
    [158]de Lajudie, P., Willems, A., Pot, B., et al. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb [J]. nov., S. saheli sp. Nov. Int. J. Syst. Bcteriol.,1994,44:751-753.
    [159]Nick, G., de Lajudie, P., Eaedly, B. D. Sinorhizobium arbor is sp. nov. and Sinorhizobium kostiese sp. nov., isolated from leguminous trees in Sudan an Kenya [J]. Int. J. Syst. Bacteriol.,1999,49:1359-1368.
    [160]Jarvis., B. D., Van Berkum, W., Chen, W. X., et al. Teansfer of Rhizobium loli, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov [J]. Int. J. Syst. Bacterial.,1997,47: 895-898.
    [161]Kuykendall, L. D., Saxwna, B., Devine, T. E., et al. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. Nov [J]. Can. J. Microbiol.,1992,38:501-505.
    [162]Xu, L. M., Ge, C., Cui, Z., et al. Bradyrhizobium liaoningense sp. Nov., isolated from the root nodules of soybeans [J]. Int. Syst. Bscterial.,1995,45:705-711.
    [163]Yao, Z. Y., Kan, F. L., Wang, E. T., et al. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and descripton of Bradyrhizobium yuanmingense sp. Nov [J]. Int. J. Syst. Evol. Microbiol,2002,52:2219-2230.
    [164]Rivas, R., Willems, A., Palomo, J. L. Bradyrhizobium betae sp. nov. isolated from roots of Beta vulgaris affected by tumor-like deformations [J]. Int. J. Syst. Evol. Microbiol.,2004,54(4):1271-1275.
    [165]Vinuesa, P., Leon-Barrios, M., Silva, C., et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae:Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. Genistearum, Bradyhizobium geno-species alpha and Bradyrhizobium genospecies beta [J]. Int. J. Syst. Evol. Microbiol.,2005,55:569-575.
    [166]Islam, M. S., Kawasaki, H., Muramatsu, Y., et al. Bradyrhizobium iriomotense sp. nov., Isolated from a Tumor-like root of the legume Entada koshunensis from Iriomote isoland in Japan [J]. Biosci. Biotechnol. Biochen.,2008,72(6):1416-1429.
    [167]Ramirez-Bahena, M. H., Peis, A., Rivas, R., et al. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus [J]. Int. J. Syst. Evol. Microbilo.,2009,59:1929-1934.
    [168]Chahboune, R., Carro, L., Peix, A., et al. Bradyrhizobium cytisi sp. nov. isolated from effective nodules of Cytisus villosus in Morocco [J].2011, doi:10.1099/ijs.0. 027649-0.
    [169]DeLey, J. Reexamination of the association between meltiong point, buoyant density, and chemical base composition of deoxyrhibonucleix acid [J]. J. Bacteriol., 1970,101:738-754.
    [170]Woese, C. R. Bacterial evolution [J]. Microbiol. Rev.,1987,51:221-269.
    [171]Colwell R. R. Polyphasic taxonomy of the geneus Vibrio:numerical taxonomy of Vibrio cholerae, Vibro parahaemolyticus, and related Vibrio species [J]. J. Bacteriol.,1970,204:410-433.
    [172]Van Berkum, P., Therefework, Z., Paulin, L., et al. Discordant phylogenies within the rrn loci of Rhizobia [J]. J. Bacteriol.,2003,185(10):2988-2998.
    [173]Martens, M., Dawyndt, P., Coopman, R., et al. Advantages of multilocus sequence analysis for taxonomic studies:a case study using 10 houskeeping genes in genus Ensifer (including former Sinorhizobium) [J]. Int. J. Sys. Evol. Microbiol.,58: 200-214.
    [174]Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., et al. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia [J]. Int. J. Syst. Evol. Microbiol.,2001,51:2037-2048.
    [175]Vinuesa, P., Silva, C., Werner, D. et al. Population genetics and phylogenetic inference in bacterial molecular systematics:the roles of migration and recombination in Bradyrhizobium species cohesion and delineation [J]. Mol. Phylogenet. Evol.,2005, 34:29-54.
    [176]Stepkowski, T., Moulin, L., Krzyzanska, A., et al. European Origin of Bradyrhizobium Populations Infecting Lupins and Serradella in Soils of Western Australia and South Africa [J]. Appl. Environ. Microb.,2005,71(11):7041-7052.
    [177]Vinuesa, P., Rojas-Jimenez, K., Contreras-Moreira, B., et al. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent [J]. Appl. Environ. Microb.,2008,74 (22),6987-6996.
    [178]Martens, M., Dawyndt, P., Coopman, R., et al. Advantages of multilocus sequence analysis for taxonomic studies:a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium) [J]. Int. J. Syst. Evol. Microbiol., 2008,58:200-214.
    [179]Menna, P., Barcellos, F. G. & Hungria, M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnlI, recA, atpD and dnaK genes [J]. Int. J. Syst. Evol. Microbiol.,2009,59:2934-2950.
    [180]Islam, M.S., Kawasaki, H., Muramatsu, Y.M., et al. Bradyrhizobium iriomotense sp. nov., Isolated from a Tumours-Like Root of the Legume Entada koshunensis from Iriomote Island in Japan [J]. Biosci. Biotechnol. Biochem.,2008,72 (6):1416-1429.
    [182]van Berkum, P.,& Fuhrmann. J. F. Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence [J]. Int. J. Syst. Evol. Microbiol.,2000,50: 2165-2172.
    [183]Willems, A., Doignon-Bourcier, F., Goris, J., et al. DNA-DNA hybridization study of Bradyrhizobium strains [J]. Int. J. Syst. Evol. Microbiol.:2001,51: 1315-1322.
    [184]Wayne, L. G., Brenner, D. J., Colwell, R. R., et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic [J]. Int. J. Syst. Bacteriol.,1987,37:463-464.
    [185]Mesbah M., Premachandran U., Whitman W. B. Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography [J]. Int. J. Syst. Bacteriol.,1989,39(2):159-167.
    [186]Powers, E.M. Efficacy of the Ryu Nonstaining KOH Technique for Rapidly Determining Gram Reactions of Food-Borne and Waterborne Bacteria and Yeasts [J]. Appl. Environ. Microb.,1995,61(10):3756-3758.
    [187]Xu, L. M., Ge, C., Cui, Z., et al. (1995). Bradyrhizobium liaoningense sp. Nov., Isolated from the Root Nodules of Soybean [J]. Int. J. Syst. Evol. Microbiol.,1995, 45(4):706-711.
    [188]Gao, J. L., Sun, J. C., Li, Y., et al. Numerical taxonomy and DNA relatedness of tropical Rhizobia isolated from Hainan Province, China. Bradyrhizobium liaoningense sp. Nov., Isolated from the Root Nodules of Soybean [J]. Int. J. Syst. Evol. Microbiol.,1994,44(1):151-158.
    [189]Itakura, M., Tabata, K., Eda, S. et al. Generation of Bradyrhizobium japonicum Mutants with Increased N2O Reductase Activity by Selection after Introduction of a Mutated dnaQ Gene [J]. Appl. Environ. Microb.,2008,74 (23):7258-7264.
    [190]Sameshima, R., Isawa, T., Sadowsky, M. J., et al. Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSK, RSL and IS1631 [J]. FEMS Microbiol. Ecol.,2003,44:191-202.
    [191]Wittwer, J. W., "Exponential Growth Rate in Excel" from Vertex42.com)-[http:// www.vertex42.com/ExcelArticles/exponential-growth.htmL]
    [192]Norris, D. O. Acid production by rhizobium a unifying concept [M]. Plant and soil XXII (2):143-166.
    [193]Chahboune R., Carro L., Peix A., et al. Bradyrhizobium cytisi sp. nov. isolated from effective nodules of Cytisus villosus in Morocco [J]. Int. J. Syst. Evol. Microbiol.,2011,61(1):doi:10.1099/ijs.0.027649-0.
    [194]Bromfield, E. S. P., Thurman, N. P., Whitwill, S. T., et al. Plasmids and symbiotic effectiveness of representative phage types from two indigenous populations of Rhizobium meliloti [J]. J. Gen. Microbiol.,1987,133:3457-3466.
    [195]Brenner, D. J., Krieg, N. R.& Staley, J. T. Bergey's manual of systematic bacteriology [M],2005, second edition, volume two, part C:438-442.
    [196]Woese, C. R. Bacterial evolution. Microbiol. Rev. [M],1987,51:221-269.
    [197]陈文新,汪恩涛。中国根瘤菌,慢生根瘤菌[M]。科学出版社,2011:301-325。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700