基于曲率积分法的板材矫直理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材广泛应用于车辆、船舶、桥梁、航空航天等众多国民经济领域。随着市场经济的深化和科学技术的进步,用户对板材质量要求越来越高。尽管采用先进的轧制设备及工艺可以一定程度上提高板材质量,但是在轧制生产过程中,由于板厚不均、温度变化和冷却不均等原因可能会使板材产生弯曲、中波和边波等板形缺陷;另外,即使是平直的板材,如果残余应力过大,在机械加工、热处理、运输、使用等过程中,由于残余应力释放,还可能出现失稳而产生新的板形缺陷,严重时会产生微观裂纹甚至开裂。因此,板材还需要通过后续的矫直工序改善其平直度和控制残余应力,最终满足各行业的高质量工程标准要求。
     板材矫直过程的实质,就是通过矫直机上、下两排交错排列的矫直辊实现连续反复弹塑性弯曲变形,从而达到矫直和减少板形缺陷的目的。板材矫直质量很大程度上取决于矫直机的先进性和矫直工艺的合理性,这两者都依赖于先进的矫直理论。目前国内矫直理论落后于实践的现象比较明显,例如,虽然个别厂家推出了高刚度、全液压和全自动的新一代强力矫直机,但设计机理并不十分清晰,基本上还处于类比设计阶段,而工艺模块仍然要依赖于国外大公司。因此,开展板材矫直理论分析及相关工艺优化的系统深入研究,对于提高我国矫直机设计水平和矫直工艺应用水平、增强国内企业在该领域的核心竞争力具有重要的理论意义和广阔的应用前景。
     本文基于曲率积分法建立了反映压下量与反弯曲率和横向残余应力关系的解析模型,采用高效的算法进行了数值求解和试验验证;探讨了板材矫直过程中的曲率、应力、塑性变形率、矫直轨迹、矫直力和扭矩等主要矫直参数的变化规律;结合倾斜压下矫直方案并基于曲率积分法针对典型来料规格研究了辊系结构参数的确定方法;分析了影响矫直质量的主要因素,总结了这些因素与合理压下量的关系,创建了第三代强力液压矫直机弯辊辊形曲线数据库;基于曲率积分法准确绘制了与现场数据吻合的矫直能力边界曲线;以辊系压下量为设计变量,以总矫直力或者出口平直度最小为目标建立了多约束的非线性隐式压下工艺优化模型,并进行数值优化求解,优化结果和现场数据具有较好的一致性。
     本文取得的主要创新研究成果如下:
     ①推导了板材与相邻两辊之间接触角、压下量与曲率分布关系的曲率积分模型,首次采用优化方法对该模型推导的非线性方程组直接进行了数值求解,克服了以曲率积分模型为目标的迭代算法收敛性差和精度不够的缺点,实现了求解方法的创新。以该模型为基础,对横向残余应力进行了解析,探讨了压下量对板材矫后残余应力的影响规律。
     ②考虑倾斜压下矫直方案并基于曲率积分法准确计算了单辊最大矫直力和扭矩,根据强度理论确定了辊距下限,考虑矫直辊有限的压下行程确定了辊距上限,在保证矫直质量的条件下确定了最少辊数,从计算的所有品种的最小辊距中挑选出最大值作为最优辊距,改变了传统方法按照塑性极限状态确定单辊最大矫直力、矫直扭矩,进而确定辊距的思路,实现了结构参数确定方法的创新。
     ③从期望塑性变形率和设备最大力能参数限制角度建立了快速确定矫直能力边界的模型,绘制了粗略的矫直能力曲线,分析了其构成原理,以此为基础,结合倾斜压下方案并基于曲率积分法对每个厚度进行屈服极限极大化的准确搜索,获得了更接近实际的矫直能力边界曲线,为快速判定来料是否可矫、一定厚度板材可矫的最大屈服极限或一定屈服极限板材可矫的最大厚度提供了理论依据。
     ④探讨了来料板材厚度、材料屈服极限、弹性模量、压下量和弯辊凸度对矫直质量的影响,研究了在满足矫直质量条件下,这些因素与合理压下量的关系,所总结的理想弹塑性材料板材的弹性极限曲率与合理压下量之间的规律与创建的弯辊辊形曲线数据库可以为后续矫直工艺制定和在线合理设定弯辊力提供依据。
     ⑤以总矫直力最小或者出口平直度最优为目标,以辊系压下量为设计变量,以设备安全运行为部分不等式边界条件,以矫直能力边界所对应的实际压下量为另外一部分不等式边界条件,以压下量和辊系反弯能力的关系为等式约束条件建立了大型非线性隐式矫直压下工艺优化模型,并进行了高效的数值优化求解,优化的结果与现场几百个品种数据具有较好的一致性,验证了所建立模型的可靠性,为现场合理制定压下工艺提供了理论依据。
     本文在借鉴前人研究成果的基础上,系统和全面地深化了板材矫直基本理论,所取得的一些创新性的研究成果为合作企业提供了有力技术支撑。
Plates are widely used in the national economic areas including automobiles,shipbuilding, bridges construction, aerospace, et al. The required quality of plates hasbeen increasing with the development of the market economy and the progress ofscientific technologies. Although advanced rolling equipments and rolling technologiescan improve the quality of plates in some degree, it could be possible to appear someplate defects such as bending, middle wave, and edge wave due to the of the differenceof the temperature, nonuniformity of the thickness of plates. In addition, flat platesmight be still instable and form a new defect during the secondary manufacturing, heattreatments and transport process if there are great enough residual stresses in plates. Themore serious situation is the appearance of some microscopic crack on the surface ofplates. Therefore, bending plates should be leveled and the residual stress should befurther removed by the leveling process in the actual production for the high qualityproduction purpose of plates.
     The essence of the leveling process for plates is a continuous elastic-plasticitybending and reverse bending deformation process by staggered roller gaps so that thebending shape and residual stress can be removed finally. The quality of plates afterleveling is determined by the advantage of levelers and reasonability of the levelingtechnology which depend largely on the advanced leveling theory. Current levelingtheory is too simple to describe the leveling process which is not enough to satisfy thepractical application. Although some steel industries at home have proposed their newgeneration levelers with high stiffness characteristic and hydraulic system, they still donot understand the basic design principle fully. It means they are still at analogy-baseddesign level and rely on the major company aboard about the leveling process module.Therefore, the study of the leveling theory and research of the leveling technologyoptimization have important theoretical meaning and wide application foreground forimproving the equipment design and leveling technology level and enhancing the corecompetitiveness for steel companies at home.
     This paper built an analytical model related the roller gap, bending curvature andresidual stress horizontally based on the curvature integration method. This model wassolved numerically by an effective algorithm and the result was verified byexperimental data. The curvature, stress, plastic ratio, trajectory and mechanical parameters distribution during leveling process for the plate were discussed. A methodof designing the structure parameters of the roller system was proposed based on thecurvature integration method and linearly decreasing roller gap schedule. The mainfactors which influenced the leveling quality were analyzed. The relationship betweenthe factors and the reasonable roller gap was summarized. The database of roll bendingcurves was built for the third generation hydraulic leveler. The curves of levelingcapacity border matched well with field data were drawn based on the curvatureintegration method. A nonlinear and implicit technology optimization model withequality and inequality constraints was built. The roller gaps were selected as designvariables and the target was to minimize the total leveling force or the final flatness inthis model. It was solved by a numerical optimization algorithm. There was aconsistency between the optimization results and field data.
     The achievement of this paper could be listed as follow:
     ①The curvature integration model was proposed. This model could describe therelationship of contact angles between the plate and adjacent rollers, the roller gap andthe curvature distribution as well. An optimization method was used for the first time tosolve the nonlinear system of equations deduced by the curvature integration model.This method could avoid the disadvantage of poor convergence and precision of theiterative algorithm. The residual stress horizontally was analyzed based on this method.The influence of the roller gap on the residual stress after leveling was discussed.
     ②The maximum leveling force and torque of the single roller were calculatedaccurately considering the linearly decreasing roller gap schedule based on theintegration method. The lower roller spacing was determined by the strength theory. Theupper roller spacing was calculated according to the limited stroke of rollers. Theminimum roller number was selected in the condition of leveling quality of plates. Themaximum value among all the lower roller spacing of the plates was chosen as the finalroller spacing. This method changed the traditional idea on how to design the rollerspacing because the traditional idea calculated the maximum roller force and torque byan assumption of the plastic limit state. It means the proposed method is innovative fordesigning the structure parameters.
     ③A model constrained by expected plastic ratio and maximum mechanicalparameters was built to disseminate the leveling border quickly. The rough levelingcapacity curves were drawn approximately and the constitutive principle of final curvewas discussed. The maximum yield stress value was searched for each thickness considering the linearly decreasing roller gap schedule and the curvature integrationmethod. The precision leveling capacity curves closer enough to the actual curves werefound. The curves of the leveling capacity border could be used to judge whether theincoming plate could be leveled, the maximum yield stress of a specific thickness andthe maximum thickness of a specific yield stress.
     ④The influence of the thickness, yield stress, elasticity modulus of the incomingplate, roller gap and bending value of rollers on the leveling quality were discussed. Therelationship between these single variables and the reasonable roller gap wassummarized in the condition of good leveling quality for plates. This relation and thedatabase of the bending roller curves could provide evidences on how to set roller gapsand reasonable bending forces.
     ⑤A large scale nonlinear and implicit technology optimization model was built.The total leveling force and final flatness was selected as the target. The roller gap waschosen as the design variables. The final quality and the condition of safety operationfor the leveler were viewed as some inequality boundary conditions. The otherinequality boundary conditions were the maximum value of the roller gap related withthe leveling capacity border. The equality boundary condition was the relationshipbetween the roller gap and the bending curvature based on the curvature integrationmethod. This model was solved by an effective algorithm. The optimum results couldmatch hundreds of field data well which verify the reliability of the proposed model.This model could provide an theoretical foundation about setting reasonable roller gaps.
     This paper studied the basic leveling theory for plates systematically based on theachievements of former researchers. The innovative achievements could provide somestrong technical support for the cooperative enterprise.
引文
[1]王国栋,刘相华,王君.我国中厚板生产技术进步20年[J].轧钢.2004,21(6):5-9.
    [2]胡坚.第三代中厚板热矫直机辊系新特点的探索[J].重庆工业高等专科学校学报,2002,17:145-148.
    [3]陈瑛.中厚板矫直技术的发展[J].宽厚板,2002(6):10-14.
    [4]陈健就,许超.现代宽厚板矫直机[J].宝钢技术,1999.4.
    [5]王建强,袁建光.宝钢宽厚板全液压冷矫直机的选取[J].宝钢技术,2003(5):17-21.
    [6]王效岗,马勤,黄庆学.十五辊组合矫直机辊系优化方法[J].西安建筑科技大学学报200840(6):880-884.
    [7]王效岗.十五辊组合矫直机关键技术及理论模型的研究[D].兰州理工大学博士学位论文,2008.
    [8]贾林.辊式矫直机的发展趋势及其结构特点[J].工艺与装备,2006.3.
    [9]袁国,黄庆学,董辉,孟晓伟.中厚板矫直技术发展的现状与展望[J].太原重型机械学院学报.2002(23):40-43.
    [10]薛军安.厚板矫直技术发展现状[J].重型机械,2008,2(11),1-4.
    [11]郭同铀,江业泰,罗祯伟.韶钢全液压九辊热矫直机的结构和技术特点[J].宽厚板,2007,13(2):45-48.
    [12]刘建永,黄庆学,徐义波,刘松.中厚板矫直机弯辊装置结构分析[J].山西冶金,2009,117(1):26-28.
    [13]王效岗,黄庆学.新式中厚板矫直机的技术特点[J].山西冶金,2006(2):27-29.
    [14]崔甫.矫直原理与矫直机械[M].北京:冶金工业出版社,2005.
    [15]徐金来.济钢宽厚板矫直机调整方案的研究[D].北京科技大学硕士学位论文,1999.
    [16]井永水,窦忠强,李忠富.辊式矫直机平行压下方案的计算机仿真[J].北京科技大学学报2001,23(5):456-459.
    [17]井永水.板材非等辊距矫直理论的研究[D].北京科技大学硕士学位论文,1999.
    [18]汪建春.拉弯矫直过程中变形机理的探讨[J].武汉科技大学学报,200831(2):210-213.
    [19]刘妍,彭艳.带材板形缺陷的拉伸弯曲矫直理论研究[J].钢铁,2006,41(2):348-351.
    [20]肖林.金属带材连续拉伸弯曲矫直变形机理研究[D].北京科技大学博士学位论文,1999.
    [21]王文广,张清东,李忠富.宽带材拉伸弯曲变形的理论模型[J].北京科技大学学报,2009,31(1):98-102.
    [22]肖林,杨成仁,邹家祥.金属带材拉伸弯曲矫直过程简化解析分析(1)——带材延伸率计算方法的探讨[J].北京科技大学学报,1999,21(6):563:564.
    [23]肖林,苏逢荃,邹家祥,金属带材拉伸弯曲矫直过程简化解析分析之二——理想弹塑性带材在第1个弯曲辊上的拉弯过程分析[J].北京科技大学学报,2000,22(1):75-79.
    [24]肖林,邹家祥,杨成仁,苏逢荃.金属带材拉伸弯曲矫直过程简化解析分析之三——弯矩卸载阶段及弯矩再加载过程分析[J].北京科技大学学报,2000,22(3):270-273.
    [25]徐守国,王继中.带材浪形的拉伸弯曲矫直[J].钢铁,1989,24(7):25-30.
    [26] J.W. Morris, S.J. Hardy, J.T. Tomas.Some fundamental considerations for the control ofresidual flatness in tension leveling [J].The Journal of Materials Processing Technology.2002,12(1-3):385-396.
    [27]薛军安.中厚板矫直过程的理论分析及其控制系统[D].东北大学博士学位论文.2009.
    [28]黄雨华,徐有忠,杨会林.辊式矫直机的矫直变形理论新探[J],重型机械,1990(6):28-30.
    [29]周存龙,徐静,王国栋,刘相华.中厚板热矫直机压下模型[J].铁研究学报,2006,18(8):28-31.
    [30]金满霞.板材矫直工艺过程的理论分析及应用研究[D].上海交通大学学位论文,2006.
    [31]刘妍.基于改善板形的带材拉伸弯曲矫直理论研究及其仿真[D].燕山大学硕士学位论文,2007.
    [32]龙泉,罗会信,陈文俊,李文喜,王朝襄,熊建洲.拉伸弯曲矫直机矫直机理的仿真分析[J].铸造技术,2011,32(2):230-233.
    [33]叶亚宁.中厚板矫直及矫直辊热力耦合数值模拟研究[D].燕山大学硕士学位论文,2011.
    [34]张清东,刘天浩,朱简如.宽带钢拉伸弯曲矫直变形过程的有限元仿真[J].机械工程学报,2008,44(9):236-240.
    [35] H. Huh, H.W. Lee, S.R. Park, G.Y. Kim, S.H. Nam. The parametric process design of tensionleveling with an elasto.plastic finite element method[J]. Materials Processing Technology.2001,113(1):714-719.
    [36] S. Z. Li, Y. D. Yin, J. Xe, J. M. Hou, J. H. Yoon. Numerical Simulation of ContinuousTension Leveling Process of Thin Strip Steel and Its Application[J]. Journal of Iron and SteelResearch,2007,14(6):8-13.
    [37] F. Yoshida, M. Urabe. Computer-aided process design for the tension levelling of metallicstrips[J]. Journal of Materials Processing Technology,1999(89-90):218–223.
    [38]张春丽,杨晓臻,贺佳,赵志毅.热轧钢板矫直工艺的有限元分析[J].宝钢技术,2008(1):38-41.
    [39]李学通,杜凤山,于凤琴.中厚板矫直过程的有限元研究[J].重型机械.2005(1):44-46.
    [40]周存龙,王国栋,刘相华,秦建平.中厚板热矫直过程中加工硬化模量和反弯曲率的确定[J].塑性工程学报.2007,14(4):133-135.
    [41]高聪敏.带材辊式矫直过程的有限元分析[D].太原科技大学硕士学位论文,2008.
    [42]桂海莲,黄庆学,马立峰,田雅琴.多极边界元法在板材矫直变形分析中的应用[J].重庆大学学报,2010,33(5):95-99.
    [43] B. A. Behrens, T. E. Nadi, R. Krimm. Development of an analytical3D-simulation model ofthe leveling process[J]. Journal of Materials Processing Technology,2011(211):1060–1068.
    [44]周存龙.中厚板辊式热矫直过程数学模型与数值模拟[D].东北大学博士学位论文,2006.
    [45]管奔,臧勇,逄晓男,吕智勇,曲为壮.矫直过程截面复杂反弯的应力分布与反弯特性解析[J].中南大学学报,2012,43(5):1739-1745.
    [46]管奔,臧勇,曲为壮,吕智勇,冯伟.辊式矫直过程应力演变及其对反弯特性的影响[J].机械工程学报,2012,48(2):81-86.
    [47] E. Doege, R. Menz, S. Huinink. Analysis of the Leveling Process Based upon an AnalyticForming Model[J]. Annals of the CIRP,2002,51(1):191-194.
    [48]赵平科,刘树升,周存龙,白金兰.矫直辊与板材的接触点位置对矫直过程影响的研究[J].山西冶金,2007,106(2):47-48.
    [49] K. Kadota, R. Maeda. A method of analysis of curvature in the leveling process—Numericalstudy of roller leveling process. Journal of the Japan Society for Technology of Plasticity,1993,34(38):481-486.
    [50] T. Higo, H. Matsumoto, S. Ogawa. Effects of Numerical Expression of Stress-Strain Curve onCurvature of Material of Roller Leveling Process[J]. Journal of the Japan Society forTechnology of Plasticity,2002,43(496):439-443.
    [51]薛军安,胡贤磊等.辊式矫直过程弹塑性弯曲数学模型[J].钢铁研究学报,2008,20(11),33-36.
    [52]薛军安,崔丽等.辊式矫直过程的接触倾角与曲率耦合分析[J].中国冶金,2009,12(2):23-26.
    [53]薛军安,崔丽,胡贤磊,刘相华.塑性变形率对辊式矫直板材的影响[J].东北大学学报,2009,30(3):681-684.
    [54]徐冰,薛军安,丁天军,胡贤磊,刘相华.中厚板辊式矫直仿真软件设计[J]重型机械.2008,5:39-42.
    [55] K.C. Park, S.M. Hwang. Development of a Finite Element Analysis Program forRollerLeveling and Application for Removing Blanking Bow Defects of Thin SteelSheet[J].The Iron and Steel Institute of Japan.2002,42(9):990-999.
    [56] F.D.Fischer,F.G.Rammerstorfer. Buckling phenomena related to rolling and leveling of sheetmetal[J].International Journal of Mechanical Sciences.2000,42(10):1887–1910.
    [57]王效岗,黄庆学,马勤.中厚板的横向波浪矫直研究[J].中国机械工程,2009,20(1):95-98.
    [58]宋涛.中厚板矫直过程中中性层偏移量的研究分析[D].太原科技大学硕士学位论文,2008.
    [59]周存龙,徐静,王国栋,刘相华.中厚板在矫直后的残余应力分布分析[J].重型机械,2005(2):21-24.
    [60]龚本月,王志刚,李友荣,张红卫,黄娟.中厚板矫直残余应力仿真[J].塑性工程学报,2010,17(6):116-120.
    [61]周存龙,王国栋,刘相华,秦建平.辊式矫直机矫直辊的弯辊模型[J].东北大学学报,2005,26(5):460-462.
    [62]郑凌云.中厚板矫直机工作辊的弯辊分析[D].昆明理工大学硕士学位论文,2007.
    [63]崔丽,胡贤磊,刘相华.中厚板辊式矫直过程弯辊作用分析[J].钢铁研究学报,2012,24(2):6-10.
    [64]吴沙.中厚板辊式矫直机力能参数分析及板形动态仿真研究[D].重庆大学硕士学位论文.2010.
    [65]谭华,王勤,胡高举.酸轧联机带夹送辊七辊矫直机力能参数计算[J].钢铁技术,2003(3):19-21.
    [66]张红卫,王志刚,吕勇,李友荣,龚本月,黄娟.基于虚拟支点与曲线拟合的板带矫直机力能参数模型[J].钢铁,2011,46(7):61-63.
    [67]秦柏岩.十一辊中厚板热矫直机的力能分析[J].一重技术,2006(4):3-4.
    [68]孟令启.九辊矫直机压力公式的回归分析[J].重型机械,1998.33-38.
    [69]刘洪新.辊式矫直机力能参数及其与CAD集成方法的研究[D].东北大学硕士学位论文,2001.
    [70]杨征,孙大乐.热轧厂厚板矫直机矫直力测试分析[J].重型机械,2007,240-46.
    [71]何艳华.辊式矫直机承载能力综合研究[D].武汉科技大学硕士论文,2006.
    [72]崔甫.矫直残留应力对矫直机能耗的影响[J].东北工学院学报.1989,199-204.
    [73]刘志亮,张文志,王英杰.辊式矫直机矫直功率试验研究[J].物理测试,2007,25(3):12-14.
    [74]杨征.厚板横切机组辊式冷矫直机测试分析与矫直过程模拟研究[D].上海交通大学工程硕士论文,2007.
    [75]黄娟,王志刚,李友荣,龚本月,张红卫.单辊调整对中厚板矫直质量的影响[J].塑性工程学报,2011,18(4):44-48.
    [76]孙大乐,王学敏,范群,姚利松.强化金属材料强化系数对矫直机辊缝设定的影响分析[J].重型机械,2008,1:26-29.
    [77] J. B. Wiskel, H. Deng, C. Jefferies, H. Henein. Optimizing tension leveling process by meansof genetic algorithms and finite element method[J]. Ironmaking and Steelmaking,2011,38(1):45-51.
    [78]周存龙,王国栋,刘相华,秦建平.压弯量对板材矫直变形影响的有限元分析[J].塑性工程学报,2006,13(1):78-81.
    [79]周存龙,王国栋,谢东钢,张勇安.出口矫直辊压弯量对板材不平度的影响[J].重型机械,2008,10:10-13.
    [80]李翔.基于有限元方法的金属带材连续拉伸弯曲矫直工艺参数研究[D].重庆大学硕士学位论文,2005.
    [81]罗森.基于弹塑性理论的拉弯矫直过程仿真及工艺参数优化研究[D].重庆大学硕士学位论文,2008.
    [82]傅玉勇,李国龙,刘飞.拉伸弯曲矫直机张力与弯曲的配置关系研究[J].现代制造工程2006,7:61-64.
    [83]薛军安,胡贤磊,刘相华,王国栋,王建平.中厚板矫直规程的计算模型及其优化设定[J].钢铁研究,2007,35(3):45-48.
    [84]薛军安,周娜,胡贤磊,刘相华,王建平.中厚板热矫直过程机在线控制应用软件的开发[J].轧钢,2007,24(6):50-54.
    [85]金光毅,杜珊,王建平.中厚板生产线热矫直机过程自动化模型设定系统[J].冶金设备.2006(155):22-26.
    [86]谢霄鹏,孙大乐,范群.基于屈服强度自适应的矫直机辊缝补偿[J].轧钢,2009,26(1):62-65.
    [87]汪建春.五辊矫直机辊缝设定实用计算方法的研究[J].钢铁,2006,41(8):52-54.
    [88]杨双成.辊式矫直机矫直方案的优选与压下量的计算[J].重型机械,2000,(6):29-50.
    [89]张焕军,程晓茹,任勇,王振国,詹胜利,黄大军.九辊矫直机钢板矫直工艺的有限元模拟研究[J].特殊钢,2012,33(1):9-11.
    [90]刘鹏.太钢五轧钢板矫直机工艺参数优化研究[D].北京科技大学硕士学位论文,2004.
    [91]周晓宇.中厚板冷矫直工艺参数研究及数学模型优化[D].太原科技大学硕士学位论文,2011.
    [92]崔丽.中厚板辊式矫直过程模型研究[D].东北大学硕士学位论文,2009.
    [93]杨晓君.中厚板辊式矫直过程算法模型修正[D].太原科技大学硕士学位论文,2008.
    [94]赵杰锋,王景,李东宁,高丽霞.中板矫直工艺的研究与改进[J].宽厚板,2006,12(1):5-7.
    [95]王效岗,黄庆学,胡鹰.中厚板辊式矫直过程模型算法修正与应用[J].中国机械工程,2012,23(3):334-338.
    [96]徐秉业、刘信声.应用弹塑性力学[M].北京:清华大学出版社,2003.
    [97] G.M.L.GLADWELL.经典弹性力学中的基础问题.北京:北京理工大学出版社.1991.
    [98]邹家祥.轧钢机械[M].第3版.北京:冶金工业出版社.2006.
    [99]薛嘉庆.最优化原理与方法[M].北京:冶金工业出版社.
    [100] N. Andrei. Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithmfor unconstrainedoptimization, Eur. J. Oper. Res.2010,204(3):410-420.
    [101] M. Al-Baali. On the behaviour of a combined extra-updating/self-scaling BFGS model,J.Comput. Appl. Math.2001,134(1-2):269-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700