曝气生物滤池处理城市污水的效能与微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体污染是我国面临的重要环境问题,而城市污水是我国水体的重要污染源,生物处理是解决城市污水问题最有效的方法。曝气生物滤池(BAF)作为第三代生物膜法的代表工艺之一,在城市污水二级处理中有良好的应用前景。微生物是生物处理系统中污染物去除的主要功能生物,深入研究其微生物群落结构与功能,对认识处理系统的本质、提高处理效率以及控制系统的稳定性具有重要意义。基于培养和分离纯化的传统技术已经无法满足对环境微生物群落结构研究的要求,本研究以青岛麦岛污水处理厂BAF为研究对象,综合使用多种分子生物学手段,包括核酸提取、分子克隆文库构建、16S rDNA序列同源性分析、聚合酶链式反应(PCR)、变性梯度凝胶电泳(DGGE)和荧光定量PCR技术,分析BAF系统中的微生物特性,研究了影响BAF群落结构稳定性的因素,初步探索了微生物群落结构与系统处理效能的关系。
     青岛市麦岛污水处理厂采用曝气生物滤池处理城市污水,对主要污染物COD、NH3-N、TP和SS的年平均去除率分别为89.1%、75.3%、83.4%和93.0%,处理效能稳定,出水水质能够达到《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级B排放标准,显示了该工艺具有良好的污水处理能力。对Biostyr曝气生物滤池处理城市污水的关键影响因素的研究结果表明,当滤池进水COD和NH3-N质量浓度分别为60-260mg/L和22-65mg/L时,最佳运行参数是:水力负荷2.5-3.3m~3/m~2.h;COD容积负荷小于3.3kg/m~3.d;氨氮负荷小于0.6kg/m~3.d;气水比5:1;温度15-28℃,反冲洗时间21-24h。建立了曝气生物滤池有机物去除动力学模型:
     C/C_0=e~(0.0118H/q~(-0.9423))
     微生物种群分布表明,沿程优势微生物依次分别为异养菌和硝化菌,微生物组成和活性的不同导致BAF各段对不同污染物的去除能力不同,BAF降解COD的最佳填料层高度为0-150cm,硝化NH3-N的最佳填料层高度为100-350cm,0-100cm段的填料层对SS的去除率贡献最大。
     曝气生物滤池生物膜的细菌多样性结果表明BAF生物膜中细菌多样性十分丰富,按照优势类群依次β-proteobacterium类群(占38.6%),γ-proteobacterium类群(占18.2%),Bacteroidetes类群(占13.6%),-proteobacterium类群(占9.1%),-proteobacterium类群、Nitrospirae类群(各占4.5%)和Firmicutes类群(占2.3%)。BAF中主要的有机物去除功能菌是食酸假单胞菌、球衣菌、黄单胞菌和黄杆菌;亚硝化细菌为亚硝化单胞菌,硝化细菌为硝化螺菌;主要的反硝化细菌为生丝微菌和丛毛单胞菌。
     对气水比、温度和反冲洗对BAF群落结构的影响分析结果表明,BAF具有良好的生态稳定性,在气水比为5:1生境下滤池内流态稳定,生物膜结构合理,出水水质最佳;低温(T<15℃)会影响到BAF菌群多样性,使滤池内优势菌群变得单一,但是这种单一的优势菌群能够维持BAF的稳定运行;聚类分析表明反冲洗作为影响因子极大地影响着BAF的群落结构,因此,控制好滤池的反冲洗强度和频率是BAF高效运行的关键环节。
     除趋势典范对应分析(DCCA)结果表明,气水比、反冲洗和水温是影响BAF群落结构的主要的环境因子,COD去除率、氨氮去除率、总磷去除率和硝态氮浓度对BAF内物种的影响显著(P<0.001),其中COD去除率与群落结构的相关性较大,为-0.7947(P<0.001),而亚硝态氮浓度与排序轴没有达到统计学上的相关性,与BAF中微生物群落结构演替没有明显关系。
Water pollution is one of the most serious environmental problems in China, andmunicipal wastewater is a major pollution source to water bodies in our country.Biological treatment process is the most efficiently used method to treat municipalwastewater. Biological aerated filter (BAF) as one of the representative process ofthird-generation biofilm process has a great application potential in the secondarytreatment of municipal wastewater. In the biological treatment systems,microorganisms are key organisms in pollutant removal. Therefore, a better study ofthe bacterial community structure and function in the treatment system can help toelucidate the pollutant removal mechanism of BAF and enhance the treatmentperformance stability. Traditional technologies for environmental microbiologyresearches mainly based on culture and separation could not satisfy nowadaysenvironmental microbiology research. In this paper, the BAF used in Qingdao Maidaosewage treatment plant is studied, microorganism characteristic in full-scale BAF isinvestigated using molecular techniques, including nucleic acids extraction, clonelibrary construction,16S rDNA sequence homology analysis, polymerase chainreaction (PCR), denaturing gradient gel electrophoresis (DGGE), and quantitativereal-time PCR techniques. The factors affecting the microbial community structureare identified. The relationship between microbial community dynamics and systemfunction is analyzed.
     Qingdao Maidao wastewater treatment plant uses Biostyr BAF for municipalwastewater treatment, major pollutants COD, NH3-N, TP and SS removal efficiencyof the annual average are89.1%,75.3%,83.4%and93.0%, respectively. Processingperformance and stability, the effluent indexes are better than the Ⅰ-B criteriaspecified in discharge standard of pollution for municipal wastewater treatment plant(GB18198-2002), shows that the process has a good capacity of sewage treatment.The results of the affecting factors of BAF show that when COD and NH3-N ininfluent are between60-260mg/L and22-65mg/L, respectively. The optimumhydraulic loading is between2.5-3.3m~3/m~2.h. The optimum COD loading is below 3.3kg/m~3.d. The optimum ammonia nitrogen loading is below0.6kg/m~3.d;Theoptimum gas to liquid ratio is5:1. The optimum temperature is between15-28℃. Theoptimum backwash time is21-24h. The organic removal kinetic model of BAF is
     C/C_0=e~(0.0118H/q~(-0.9423))
     The difference of microbial composition and activity can cause diverse ability ofdifferent pollutants removed. Results of microbial population distribution show thatthe dominant microbes are heterotrophic bacteria and denitrifying bacteria along theheight, respectively. For BAF, the best height of COD degradation is0-150cm,nitrifying NH3-N best height is100-350cm, and0-100cm segment of media take thelargest contribution to the removal rate of SS.
     BAF biofilm bacterial diversity results show that the bacterial diversity in theBAF is very rich, dominant microorganisms is β-proteobacterium groups, γ-proteobacterium groups, Bacteroidetes group,-proteobacterium groups,-proteobacterium groups, Nitrospirae and Firmicutes in the order. In the Biostyr BAF,Pseudomonas, Sphaerotilus, Xanthomonas and Flavobacterium are dominantmicroorganisms to remove organic pollutants, Nitrosomonas is advantage nitrosationbacteria, Nitrospira is advantage nitrification bacteria, Hyphomicrobium andComamonas are advantage denitrifying bacteria.
     The influence of gas water ratio, temperature and backwash on BAF communitystructure are analyses, the results show that BAF has good ecological stability. Whenthe gas water ratio is5:1, the filter flow of BAF is in stability, biological membranestructure is reasonable and the effluent is the best. Low temperature (T<15℃) willaffect the bacterial diversity of BAF, make advantage bacterium group within thefilter becomes single, but this kind of single advantage bacterium group can maintainthe stable operation of the BAF. Low temperature will affect the bacterial diversity ofBAF, make advantage bacterium group within the filter becomes single, but this kindof single advantage bacterium group can maintain the stable operation of the BAF.Clustering analysis indicates that the backwash as influence factor greatly affects thecommunity structure of BAF. Therefore, a good control for the intensity andfrequency of backwash is a key link in efficient operation of BAF.
     The DCCA analysis results show that, the gas/water ratio, backwashing and temperature are the main effect factors of BAF community structure. The effects ofCOD, ammonia nitrogen and total phosphorus removal rate, and the concentration ofnitrate nitrogen on BAF species is significantly (P<0.001), in which the correlationbetween COD removal rate and community structure is the largest, the value is-0.7947(P<0.001). However, the nitrite nitrogen concentration did not reachstatistical correlation with the axis, so there is no obvious relationship betweenmicrobial community structure succession in BAF and the nitrite nitrogenconcentration.
引文
[1]国家环保局.2011年中国环境状况公报.中国环境科学出版社.2011
    [2]陈宜菲.我国水环境污染现状及其防治.黑龙江科技信息,2008(35):187-188
    [3]陶俊杰,于军亭,陈振选等.城市污水处理技术与工程事例.化学工业出版社,2005
    [4]赵乐军.城市污水再生利用规划设计.中国建筑工业出版社.2011
    [5]王国华,任鹤运编著.工业废水处理工程设计与实例.化学工业出版社,2005
    [6]窦娜莎.曝气生物滤池处理城市污水的主要影响因素及细菌多样性.[硕士学位论文].青岛:中国海洋大学:2010
    [7]张丙印,倪广恒编著.城市水环境工程.清华大学出版社.2005
    [8]邱珊.曝气生物滤池处理城市生活污水的特性研究及工艺改良.[博士学位论文].哈尔滨:哈尔冰工业大学,2010
    [9]刘小英,赵红梅,彭党聪等.SBR中生物除磷颗粒污泥的反硝化聚磷研究.环境科学,2008,29(8):2254-2259
    [10]刘旭,王淑莹,彭永臻等. SBR双颗粒污泥系统脱氮除磷性能研究.环境科学学报,2012,32(7):1537-1541
    [11] Junyue Bai, Haolong Xu, Yidan Zhang, et al. Combined industrial and domestic wastewatertreatment by periodic allocating water hybrid hydrolysis acidification reactor followed bySBR. Biochemical Engineering Journal,2013,70(15):115-119
    [12]陆日明,苏伟健.珠三角地区A2/O工艺和倒置A2/O工艺运行效果研究.水处理技术,2012,38(7):83-88
    [13]李鹏峰,郑兴灿,孙永利等. A2/O工艺污水处理厂的主要能耗点识别及节能途径.中国给水排水,2012,28(8):6-10
    [14] Wei Zeng, Lei Li, Ying-ying Yang, et al. Modeling nitrite and nitrate variations in A2Oprocess under different return oxic mixed liquid using an extended model. Enzyme andMicrobial Technology,2011,48(2):134-142
    [15]乔海兵,王淑莹,李桂荣.连续流间歇曝气氧化沟处理生活污水脱氮除磷研究.环境污染治理技术与设备,2006,7(7):11-14
    [16]李艳霞,张亮.城市污水氧化沟处理工艺设计.化学工程与设备,2012,9:208-211
    [17] Wei Liu, Dianhai Yang, Li Xu, et al. Effect of Return Sludge Pre-concentration on BiologicalPhosphorus Removal in a Novel Oxidation Ditch. Chinese Journal of ChemicalEngineering,2012,20(4):747-753
    [18]马艳娜,王素兰,李瑞等.A2/O工艺强化脱氮效果中试研究.水处理技术,2012,8(38):80-87
    [19]彭永臻,王建华,陈永志. A2/O-BAF联合工艺处理低碳氮比生活污水.北京工业大学学报,2012,38(4):590-595
    [20] Yan Feng, Yanzhen Yu, Liping Qiu et al. Performance of water quenched slag particles(WQSP) for municipal wastewater treatment in a biological aerated filter (BAF). Biomassand Bioenergy,2012,45:280-287
    [21]张薇,史开武,孔惠.曝气生物滤池(BAF)的发展与现状.北京石油化工学院学报,2005,13(3):24-30.
    [22]郑俊,吴浩汀编著.曝气生物滤池工艺的理论与工程应用.化学工业出版社,2005
    [23] Hamoda M.F, AI-Sharekh H.A. Sugar wastewater treatment with aerated fixedfilm biologicalsystem. Wat.Sei.Tech.1999,40(1):313-321
    [24] Wasterman PW, Bieudo J R, Kantardijieff A. Upflow biological aerater filter for the treatmentof flushed swine manure. Bioresourse Technology.2000,74(1):181-190
    [25]王金南等.中国水污染防治体制与政策.中国环境科学出版社,2003
    [26]《城镇污水处理厂污染物排放标准》(GB18918-2002)
    [27] Crites, R, Tchobanoglous.Small and Decentralized Wastewater Management Systems,McGraw-Hill Book Company, New York,1998.
    [28]孙向群.中小型污水处理厂现状分析及对策.中国资源综合利用,2006,24(5):23-24
    [29]程永玲,姚铁锋,唐浩等.曝气生物滤池(BAF)研究进展.广西轻工业,2011,1:73-75
    [30]江萍.曝气生物滤池处理城市污水的研究.水处理技术,2003,29(3):172-174
    [31]邱珊.曝气生物滤池处理城市生活污水的特性研究及工艺改良.博士学位论文.哈尔滨工业大学,2010,6
    [32] Stephenson T. High rate aerobic wastewater treatment processes what next proceedings of thethird international symposium on environmental biotechnology. Ostend Belgium,1997,1:57-66
    [33] Morgan-Sagastume J M, Noyola A. Evaluation of an aerobic submerged filter packed withVoleanic seoria.BioresoureeTeehnology.2008,99:2528-2536.
    [34]邓征宇,杨春平,曾光明等.曝气生物滤池技术进展.环境科学技术与技术.2010,33(8):88-93
    [35] Metcalf, Eddy Inc. Wastewater Engineering:Treatment and Reuse.4th. Beijing: TsinghuaUniversity Press,(photocopy version),2003:957-959.
    [36] L.Yang, L. Chou, W. Shieh. Biofilter Treatment of Aquaeulture water for ReuseApplieation.2001,12(2):49-52.
    [37] Rebecca Moore, Joanne Quarmby, Tom Stephenson. The effects of media size on theperformance of biological aerated filters. Wat. Res.,2001(35):2514~2522
    [38] Francisco Osorio, Eresto Hontoria. Wastewater treatment with a double-layer submergedbiological aerated filter, using waste materials as biofilm support. Jounal of EnvironmentalManagement,2002(65):79~84
    [39] Zhao X. Oil field wastewater treatment in Biological Aerated Filter by immobilizedmicroorganisms. Process Biochemistry,2006,41:1475~1483
    [40]熊志斌,邵林广.曝气生物滤池技术研究进展.当代化工,2009.38(1):61-64
    [41]刘灿灿,沈耀良.曝气生物滤池的工艺特性及运行控制.工业用水与废水,2008,39(2):20-23
    [42]崔福义,张兵,唐利.曝气生物滤池技术研究与应用进展.环境污染治理技术与设备,2005,6(10):1-7.
    [43]黄绪达.高密度沉淀池与BAF组合工艺处理城市生活污水的研究.[博士学位论文].青岛:中国海洋大学:2009
    [44]王炜亮,毕学军,张波.曝气生物滤池的特点、应用及发展.青岛建筑工程学院学报,2004,25(4):62-67
    [45]易彪,陶涛,朱鹏.曝气生物滤池处理城市污水的工程应用.中国给水排水,2007,23(20):60-62
    [46]黄绪达,王琳,王洪辉.麦岛污水处理厂Biostyr高效生物滤池设计.中国给水排水,2008,24(4):51-54
    [47] Yaqin Zhao, Qinyan Yue, Renbo Li, Min Yue, Shuxin Han, Baoyu Gao, Qian Li, Hui Yu,Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewatertreatment in biological aerated filter (BAF). Bioresource Technology,2009,100(21):4955-4962
    [48] G. Farabegoli, A. Chiavola, E. Rolle, The Biological Aerated Filter (BAF) as alternativetreatment for domestic sewage: Optimization of plant performance. Journal of HazardousMaterials,2009,171:1126-1132
    [49] Jinyou Shen, Rui He, Hongxia Yu, et al. Biodegradation of2,4,6-trinitrophenol (picric acid)in a biological aerated filter (BAF). Bioresource Technology,2009,100(6):1922-1930
    [50] Delin Su, Jianlong Wang, Kaiwen Liu, et al. Kinetic Performance of Oil-field ProducedWater Treatment by Biological Aerated Filter. Chinese Journal of Chemical Engineering,2007,15(4):591-594
    [51] Xin Zhao, Yanming Wang, Zhengfang Ye, et al.Oil feld wastewater treatment in BiologicalAerated Filter by immobilized microorganisms. Process Biochemistry,2006,41:1475–1483
    [52] Bo Liu, Dongdong Yan, Qi Wang, et al. Feasibility of a two-stage biological aerated filterfor depth processing of electroplating-wastewater. Bioresource Technology,2009,100(17):3891-3896
    [53] Won-Seok Chang, Hung-Thuan Tran, Doo-Hyun Park, Rui-Hong Zhang, Dae-Hee Ahn,Ammonium nitrogen removal characteristics of zeolite media in a Biological Aerated Filter(BAF) for the treatment of textile wastewater, Journal of Industrial and EngineeringChemistry,2009,15(4):524-528,
    [54] J.A.Herrera Melian, A. Ortega Mendez, J. Arana, etc. Degradation and detoxifcation offormalin wastewater with aerated biological flters and wetland reactors. ProcessBiochemistry,2008,43:1432-1435
    [55] Wenhis Cheng. Using a biological aerated filter to treat mixed water-borne volatile organiccompounds and assessing its emissions. Journal of Environmental Sciences,2009,21(11):1497-1502
    [56] H.Hasan, S.Abdullah, S.Kamarudin, et al. Response surface methodology for optimization ofsimultaneous COD, NH4+-N and Mn2+removal from drinking water by biological aeratedfilter. Desalination,2011,275:50-61
    [57]李凯,张华伟,曹文平等.BAF工艺预处理微污染水源水的研究.中国资源综合利用,2008,26(7):17-18
    [58]郑家麒,梁敬斌,王达.曝气生物滤池在生活污水处理中的技术应用.冶金动力,2008,1:79~82
    [59] L. G. Mendoza-Espinosa, T. Stephenson. Organic and Hydraulic Shock Loading on aBiological Aerated Filter. Environmental Technology,2001,22(3):321~330
    [60]刘灿灿,金吴云,沈耀良,袁煦.陶粒曝气生物滤池处理生活污水影响因素的研究.苏州科技学院学报(工程技术版),2008,21(3):27-32
    [61] Shanping Li, Jiangjie Cui, Qilei Zhang. Performance of blast furnace dust clay sodiumsilicate ceramic particles (BCSCP) for brewery wastewater treatment in a biological aeratedfilter. Desalination,2010,258:12–18
    [62] Yaqin Zhao, Qinyan Yue, Renbo Li, et al. Research on sludge-fly ash ceramic particles (SFCP)for synthetic and municipal wastewater treatment in biological aerated filter (BAF).Bioresource Technology,2009,100(21):4955-4962
    [63] Shuxin Han, Qinyan Yue, Min Yue, et al. Effect of sludge-fy ash ceramic particles (SFCP)on synthetic wastewater treatment in an A/O combined biological aerated flter. BioresourceTechnology,2009,100:1149–1155.
    [64] Ying Bao, Liang Zhan, Chunxiao Wang. Carbon foams used as packing media in a biologicalaerated filter system. Materials Letters,2011,65:3154–3156
    [65] Won-Seok Chang, Hung-Thuan Tran, Doo-Hyun Park, et al. Ammonium nitrogen removalcharacteristics of zeolite media in a Biological Aerated Filter (BAF) for the treatment oftextile wastewater. Journal of Industrial and Engineering Chemistry,2009,15(4):524-528
    [66] S. He, G. Xue, H. Kong. The performance of BAF using natural zeolite as flter media underconditions of low temperature and ammonium shock load. Journal of Hazardous Materials,2007,143:291–295
    [67] Y. Liu, T. Yang, D. Yuan, et al. Study of municipal wastewater treatment with oyster shell asbiological aerated filter medium. Desalination,2010,254:149–153
    [68] Fang Liu, Chao-Cheng Zhao, Dong-Feng Zhao, et al. Tertiary treatment of textile wastewaterwith combined media biological aerated filter (CMBAF) at different hydraulic loadings anddissolved oxygen concentrations. Journal of Hazardous Materials,2008,160(1):161-167
    [69] Guodong Ji, Jingjing Tong, Yufei Tan. Wastewater treatment efficiency of a multi-mediabiological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wallembedded design. Bioresource Technology,2011,102:550–557
    [70] Lee H, Han J, Yun Z. Biological nitrogen and phosphorus removal in UCT-type MBRprocess. Water Science and Technology,2009,59(11):2093-2099.
    [71] Kim M, Nakhla G. The beneficial role of intermediate clarification in a novel MBR basedprocess for biological nitrogen and phosphorus removal. Journal of Chemical Technologyand Biotechnology,2009,84(5):637-642.
    [72] Yong-wei Ding, Lin Wang, Bao-zhen Wang, et al. Removal of nitrogen and phosphorus in acombined A2/O-BAF system with a short aerobic SRT. Journal of Environmental Sciences,2006,18(6):1082-1087
    [73] Yongzhi Chen, Chengyao Peng, Jianhua Wang. Effect of nitrate recycling ratio onsimultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biologicalaerated filter (BAF) system. Bioresource Technology,2011,102:5722–5727
    [74] H.Ryu, J. Kang, S. Lee. Evaluation of a Three-Stage Biological Aerated Filter SystemCombined Recirculation/Dynamic Flow in Treating Low Carbon-to-Nitrogen RatioWastewater. Environmental engineering science,2009,26(8):1349~1357
    [75] H. Ryu, S. Lee. Comparison of4-Stage Biological Aerated Filter (BAF) with MLE Process inNitrogen Removal from Low Carbon-to-Nitrogen Wastewater. Environmental engineeringscience,2009,26(1):163~170
    [76] H.Ryu, D. Kim, H. Lim, et al. Nitrogen removal from low carbon-to-nitrogen wastewater infour-stage biological aerated filter system. Process Biochemistry,2008,43:729-735
    [77] Xujie Lu, Bo Yang, Jihua Chen, et al. Treatment of wastewater containing azo dye reactivebrilliant red X-3B using sequential ozonation and upflow biological aerated filter process.Journal of Hazardous Materials,2009,161(1):241-245
    [78] Xiaojun Wang, Xiaoyang Gu, Dexian Lin, et al. Treatment of acid rose dye containingwastewater by ozonizing e biological aerated flter. Dyes and Pigments,2007,74:736-740.
    [79] Zhimin Fu, Yugao Zhang, Xiaojun Wang. Textiles wastewater treatment using anoxic filterbed and biological wriggle bed-ozone biological aerated filter. Bioresource Technology,2011,102:3748–3753
    [80] W. Hong, Y. Qing, Z. Yong, et al. Advanced landfill leachate treatment using a two-stageUASB-SBR system at low temperature. Journal of Environment Science,2010,22(4):481-485.
    [81] Yanyu Wu, Shaoqi Zhou, Xiuya Ye, et al. Transformation of pollutants in landfill leachatetreated by a combined sequence batch reactor, coagulation, Fenton oxidation and biologicalaerated filter technology. Process Safety and Environmental Protection,2011,89:112-120
    [82] Xiaojun Wang, Sili Chen, Xiaoyang Gu, et al. Pilot study on the advanced treatment oflandfll leachate using a combined coagulation, fenton oxidation and biological aerated flterprocess. Waste Management,2009,29(4):1354-1358
    [83] Baogang Zhang, Huazhang Zhao, Shungui Zhou, et al. A novel UASB-MFC-BAF integratedsystem for high strength molasses wastewater treatment and bioelectricity generation.Bioresource Technology,2009,100(23):5687-5693
    [84] Peng Cheng, Huazhang Zhao, Bin Zhao, et al. Pilot treatment of wastewater from Dioscoreazingiberensis C.H. Wright production by anaerobic digestion combined with a biologicalaerated flter. Bioresource Technology,2009,100:2918–2925
    [85] H. Zhao, P. Cheng, B. Zhao, et al. Yellow ginger processing wastewater treatment by a hybridbiological process. Process Biochemistry,2008,43:1427–1431.
    [86] S. Lim, P. Fox. A kinetic analysis and experimental validation of an integrated system ofanaerobic filter and biological aerated filter. Bioresource Technology,2011,22(102):10371-10376
    [87] J. Melian, A. Mendez, J. Arana, et al. Degradation and detoxifcation of formalin wastewaterwith aerated biological flters and wetland reactors. Process biochemistry,2008,43:1432-1435
    [88] Li Fan, Jinren Ni, YanjunWu, at al. Treatment of bromoamine acid wastewater usingcombined process of micro-electrolysis and biological aerobic flter. Journal of HazardousMaterials,2009,162:1204–1210
    [89] Jinshui Yang, Weijie Liu, Baozhen Li. Application of a novel backwashing process in upflowbiological aerated filter. Journal of Environmental Sciences,2010,22(3):362–366
    [90] Liping Qiu, Jun Ma, Lixin Zhang. Characteristics and utilization of biologically aerated filterbackwashed sludge. Desalination,2007,208:73–80
    [91] Weijie Liu, Hongli Yuan, Jinshui Yang, et al. Characterization of bioflocculants frombiologically aerated filter backwashed sludge and its application in dying wastewatertreatment. Bioresource Technology,2009,100(9):2629-2632
    [92] Chunrong Wang, Jun Li, Baozhen Wang, et al. Development of an empirical model fordomestic wastewater treatment by biological aerated flter. Process biochemistry,2006,41:778~782
    [93] Jinyou Shen, Rui He, Lianjun Wang, et al. Kinetics of COD Removal in a Biological AeratedFilter in the Presence of2,4,6-Trinitrophenol (Picric Acid). Chinese Journal of ChemicalEngineering,2009,17(6):1021-1026
    [94] N. Pace, D. Stahl, D. Lane, et al. The analysis of natural microbial populations by ribosomalRNA sequence. Advanced in Microbial Ecology,1986,9:51-55.
    [95] C. Pollard. A quantitative measure of nitrifying bacterial growth. Water Research,2006,40(8):1569-1576
    [96] Xin Zhao, Yanming Wang, Zhengfang Ye, et al. Oil feld wastewater treatment in BiologicalAerated Filter by immobilized microorganisms. Process Biochemistry,2006,41:1475–1483
    [97] Songzhe Fu, Hongxia Fan, Shuangjiang Liu, et al. A bioaugmentation failure caused by phageinfection and weak bioflm formation ability. Journal of Environmental Sciences,2009,21:1153–1161
    [98] Ying-jie Shen, Guang-xia Wu, Yao-bo Fan, et al. Performances of biological aerated flteremploying hollow fber membrane segments of surface-improved poly (sulfone) as bioflmcarriers. Journal of Environmental Sciences2007,19:811–817
    [99] Limpiyakorn T., Shinohara Y., Kurisu F., et al. Communities of ammonia-oxidizing bacteriain activated sludge of various sewage treatment plants in Tokyo. FEMS MicrobiologyEcology,2005,54(2):205-217.
    [100] Rittmann BE., Hausner M., Loffler F., et al. A vista for microbial ecology and environmentalbiotechnology. Environmental Science and Technology,2006,40(4):1096-1103.
    [101] Gilbride K.A, Lee D.Y, and Beaudette L.A. Molecular`techniques in wastewater:Understanding microbial communities, detecting pathogens, and real-time process control.Journal of Microbiological Methods,2006,66(1):1-20.
    [102] Eschenhagen M., Schuppler M. and Roske I.. Molecular characterization of the microbialcommunity structure in two activated sludge systems for the advanced treatment ofdomestic effluents. Water Research,2003,37(13):3224-3232.
    [103]王晓慧.城市污水处理厂中氨氧化菌及细菌群落结构与功能研究.博士学位论文.清华大学,2010,7
    [104] Boyer SI, Flechten VR, Johansen JR. Is the16S-23S rRNA intenal trancribed spacer region agood tool for use in molecular systematics and population genetics a case study inCyanobacteria. Mol Boil Evol,2001,18:1057-1069
    [105] H.Y. Sun, S.P. Deng and W.R. Raun. Bacterial communities structure and diversity in acentury-old manure-treated agroecosystem. APPI. Environ. Microbiol,2004,70:5868-5874.
    [106]王晓慧.城市污水处理厂中氨氧化菌及细菌群落结构与功能研究.[博士学位论文].北京:清华大学.2010
    [107] Limpiyakorn T, Shinohara Y, Kurisu F et al. Communities of ammonia-oxidizing bacteria inactivated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol.2005,54:205-217
    [108] Kindaichi T, Kawano Y, Ito T et al. Population dynamics and in situ kinetics of nitrifyingbacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR.Biotechnol. Bioeng.2006,94(6):1111-1121
    [109] Muyzer G., Dewaal E.C. and Uitterlinden A.G.. Profiling of complex microbial populationsby denaturing gradient gel-electrophoresis analysis of polymerase chain reaction amplifiedgenescoding for16S ribosomal-RNA. Applied and Environmental Microbiology,1993,59(3):695-700.
    [110] Higuchi R., Dollinger G., Walsh, P.S., et al. Simultaneous amplification and detection ofspecific DNA sequences. Bio-Technology,1992,10(4):413-417.
    [111] Park HD, Noguera DR. Evaluating the effect of dissolved oxygen on ammonia-oxidizingbacterial communities in activated sludge. Water Res.2004,38:3275-3286
    [112] Heid C.A., Stevens J., Livak K.J. et al. Real time quantitative PCR. GenomeResearch,1996,6(10):986-994.
    [113] Eschenhagen M., Schuppler M., Roske I. Molecular characterization of the microbialcommunity structure in two activated sludge systems for the advanced treatment ofdomestic effluents. Water Research,2003,37(13):3224-3232.
    [114] Hoshino T., Terahara T., Tsuneda S., et al. Molecular analysis of microbial populationtransition associated with the start of denitrification in a wastewater treatment process.Journal of Applied Microbiology,2005,99(5):1165-1175.
    [115]马春玲.海洋酵母普鲁兰类酵母碱性蛋白酶生产、特性研究及基因克隆.[博士学位论文].青岛:中国海洋大学:2007
    [116]龚芳.海洋季也蒙毕赤酵母菌的发酵生产、纯化、特性、基因克隆与表达的研究.[博士学位论文].青岛:中国海洋大学:2008
    [117]苏俊峰,马放,侯宁等.活性污泥总DNA不同提取方法的比较.生态环境,2007,16(1):47-49
    [118] Roose-amsaleg C L, Gamier-sillam E, Harry M. Extraction and pureification of microbialDNA from soil and sediment samples. Applied Soil Ecology,2011,18:47-60
    [119]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究.生态学报,2002,22(11):2015-2019
    [120]余素林.石油污染土壤修复中的微生物群落结构解析.[博士学位论文].北京:清华大学:2008
    [121]盛军.海洋金黄色隐球酵母菊粉酶的发酵生产、酶的分离纯化以及基因克隆的研究.[博士学位论文].青岛:中国海洋大学:2008
    [122]邵军,孙海美,孙卫玲等.垃圾渗滤液处理系统中微生物群落结构变化.北京大学学报,2010,46(3):435-441
    [123] Hermansson A, Lindgren P E. Quantification of ammonia oxidizing bacteria in arable soil byreal-time PCR. Appl Environ Microbiol,2001,67(2):972-976
    [124] Freitag T E, Chang L, Clegg C D, et al. Influence of inorganic nitrogen management regimeon the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl EnvironMicrobiol,2005,71(12):8323-8334
    [125] Dionisi H M, Layton A C, Harms G, et al. Quantification of Nitrosomonas oligotropha-likeammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatmentplants by competitive PCR. Appl Environ Microbiol,2002,68(1):245-253
    [126]黄绪达,王琳.麦岛污水处理厂Biostyr高效生物滤池设计.中国给水排水,2008,24(4):17~19
    [127]窦娜莎.曝气生物滤池处理城市污水的主要影响因素及细菌多样性.[硕士学位论文].青岛:中国海洋大学:2010
    [128]付丹,刘柳.填料对曝气生物滤池影响的概述.环境科学与管理,2008,33(3):101-103
    [129]罗舒君,周培国,张齐生,俞芳芳.竹炭曝气生物滤池去除水中有机物的研究.水处理技术,2009,35(3):86-98
    [130]贾亚梅,徐哲明,许明.曝气生物滤池中COD去除影响因素试验分析.环境科技,2009,2(22):13-16
    [131]郝晓地,魏丽,仇付国.内循环强化曝气生物滤池脱氮性能的研究.中国给水排水,2008,24(19):20-24
    [132]张自杰,林沈忱,金儒霖.排水工程(下册)(第四版).北京:中国建筑工业出版社,2000,143~145
    [133]杨文澜.升流式曝气生物滤池处理农村生活污水性能参数的研究.安徽农业科学,2008,36(25):11047-11048,11059
    [134]孙颖,王红芳,门贵斌.轻质陶粒曝气生物滤池处理城市污水厂二级出水的试验研究.中国环境管理干部学院学报,2009,19(1):83-87
    [135]吴守中,陈立伟,钱丽花等.影响添加反硝化聚磷菌的SBR脱氮除磷主要因素.水处理技术,2010,36(6):108-110,135.
    [136]温成林,宋武昌.反硝化除磷工艺影响因素研究进展.水科学与工程技术,2008(6):44-45
    [137] M. Payraudeau, C. Paffoni and M. Gousailles. Tertiary Nitrification in an up Flow Biofilteron Floating Media: Influence of Temperature and COD Load. Wat. Sci. and Tech.,2000,41(4-5):21~27
    [138]严煦世.水和废水技术研究.北京:中国建筑工业出版社,1991,56~123
    [139]熊集兵,高冲,白向玉,丁杰.低温条件下组合式人工生态系统对二级出水中氮磷的去除效应研究.农业环境科学学报,2009,28(3):575-580
    [140] A.T.Mann and T.Stephenson.. Modelling Biological Aerated Filters for WastewaterTreatment. Wat. Res.,1999,31(10):2443~2448
    [141] Pirt S. J. The maintenance energy of bacteria in growing culture, Proc. R. Soc. London.SerB,1965,163:224-231
    [142]杨跃,张金松,黄文章,等.复合式曝气生物滤池中污染物浓度沿程变化规律.中国给水排水,2009,25(9):49-52.
    [143]严子春,何强,龙腾锐,等.折流曝气生物滤池的特征与处理效能试验研究.环境工程学报,2008,2(10):1327-1331
    [144] De-lin Su, Jian-long Wang, Kai-wen Liu, et al. Kinetic performance of oil-field producedwater treatment by biological aerated filter. Chinese Journal of Chemical Engineering,2007,15(5):591-594.
    [145] Madony P.,et al, Comparative analysis of the activated sludge microfauna in several sewagetreatment works. Wat.Res.,1993,27:1485-1491
    [146]中国科学院微生物研究所细菌分类组.一般常见细菌鉴定手册.北京:科学出版社,1978:101~200
    [147]武汉大学,复旦大学.微生物学(第二版).北京:高等教育出版社,1980:428~442
    [148]沈锰芬等编著,微生物监测新技术.北京:中国建筑工业出版社,1990
    [149] Li-ping Qiu, Shou-bin Zhang, Guang-wei Wang, et al. Performances and nitrificationproperties of biological aerated filters with zeolite, ceramic particle and carbonate media.Bioresource Technology,2010,101(19):7245-7251.
    [150] Poole J.E.P. A study of the relationship between the mixed liquor fauna and plantperformance for avariety of activated sludge sewage treatment.Wat.Res.,1984,18:281-287
    [151]严子春,何强,龙腾跃,等.折流曝气生物滤池中污染物与微生物沿程变化规律.微生物学通报,2010,37(9):1278-1282
    [152] Kowalchuk GA, Naoumenko ZS, Derikx PJL et al. Molecular analysis ofammonia-oxidising bacteria of the β subdivision of the class Proteobacteria in compost andcomposting materials. Appl. Environ. Microbiol.1999,65(2):396-405
    [153]马放,任南骐,杨基先,等.污染控制微生物学试验.哈尔滨:哈尔滨工业大学出版社,2002:32-40.
    [154] Kowalchuk GA, Stienstra AW, Heilig GHJ et al. Changes in the community structure ofammonia-oxidising bacteria during secondary succession of calcareous grasslands. Environ.Microbiol,2000,2(1):99-110
    [155] T. Knin, A. P. Annachhatre. Novel Microbial Nitrogen Removal Processes. BiotechnologyAdvances.2004,22(7):519~532
    [156]杨朝晖.基于分子生态学技术的环境微生物群落结构与功能研究.[博士学位论文],长沙:湖南大学.2007
    [157]张少辉,郑平.厌氧氨氧化反应器启动方法的研究.中国环境科学,2004,24(4):496-500
    [158] Verstraete W, Philips S. Nitrification-denitrification processes and technologies in newcontexts. Environmental pollution,1998,102(51):717-726
    [159] Hill VR, Kahler AM, Jothikumar N, et al. Multi-State evaluation of an ultrafihration-basedprocedure for simultaneous recovery of enteric microbes in100-L tap water samples. ApplEnviron Microbiol.2007,73(13):4218~4225
    [160]窦娜莎,王琳.16S rDNA克隆文库法分析Biostyr曝气生物滤池处理城市污水的细菌多样性研究.环境科学学报,2011
    [161] Snaidr J, Amann R,Huber I, et al.Phylogenetic analysis and in situ identificat ion of bacteriain activated sludge. Appl Environ Microbiol,1997,63(7):2884-2896.
    [162] YUN H K, MICHAEL B, GAVIN N R, et al. Functional analysis of microbial communitiesin aerobic anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C)ratios.Microbiology,2002,148(8):2299-2307.
    [163] WAGNER M, AMANN R, LEMMER H, et al. Probing act ivated sludge with ol igonucleotides specif ic for Proteobacteria: inadequacy of culture-dependent methods for describingmicrobial community structure.Appl Environ Microbiol,1993,59(5):1520-1525.
    [164]王海燕,周岳溪,戴欣,等.16S rDNA克隆文库方法分析MDAT-IAT同步脱氮除磷系统细菌多样性研究.环境科学学报,2006,26(6):903-911.
    [165] Horz H-P, Barbrook A, Field CB et al. Ammonia-oxidizing bacteria respond to multifactorialglobal change. PNAS.2004,101(42):15136-15141
    [166] Limpiyakorn T, Kurisu F, Yagi O. Development and application of real-time PCR forquantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatmentsystems. Appl. Microbiol. Biotechnol.2006,72:1004-1013
    [167]田春杰,陈家宽,钟扬.微生物系统发育多样性及其保护生物学意义.应用生态学报,2003,14(4):609-612
    [168] Thompson J D, Gibson T J, Plewni F. The Clustal X windows interface: Flexiblestrategiesfor multiple sequence alignment aided by quality analysis tools. Nucleic AcidsResearch,1997,24(4):876-488.
    [169] Kimura M. A simple method for estimating evolutionary rates of base substitutions throughcomparative studies of nucletide sequences. Journal of Molecular evolution,1980,16:111-120.
    [170] Saitou N, Nei M. The neighbor joining method:a new method for reconstructingphylogenetic tree. Molecular Biology and Evolution,1987,4:406-425.
    [171] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis(MEGA) software version4.0. Molecular Biology and Evolution,2007,24:1596-1599.
    [172]黄绪达.高密度沉淀池与BAF组合工艺处理城市生活污水的研究:[博士学位论文].青岛:中国海洋大学:2010
    [173]石芳永,宋奔奔,傅松哲.竹子填料海水曝气生物滤器除氮性能和硝化细菌群落变化研究.渔业科学进展,2009,30(1):92-96
    [174] Adler M. Immuno-PCR a clinical laboratory tool. Adv Clin Chem.2006,39:239~292
    [175] Li A J, Yang S F, Li X Y, et al. Microbial population dynamics during aerobic sludgegranulat ion at diff erent organic loading rates[J]. Water Res,2008,42:3552-3560.
    [176] Jiang H L, Tay J, Abdul M M, et al. Diversit y and function of aerobic granules engineeredin a sequencing batch reactor for phenol degradation. Appl EnvironMicrobiol,2004,70:6767-6775.
    [177] He J Z, Xu Z H, Jane H. Prelysis washing improves DNA extraction from a forest soil. SoliBiology Biochemistry.2005,37:2337~2341
    [178]陈接锋,许旭萍,李惠珍.球衣菌属的研究概况.环境科学与技术.2002,25(6):43~46
    [179] Koizumi Yoshikacu, Kojima Hisaya, Fukui Manabu. Characterization of depth-relatedmicrobial community structure in lake sediment by denaturing gradient gel electrophoresis ofamplified16S rDNA and reversely transcribed16S rRNA fragments. FEMS MicrobiologyEcology.2003,46:147~157
    [180] Limpiyakorn T., Kurisu F., Sakamoto Y., et al. Effects of ammonium and nitrite oncommunities and populations of ammonia-oxidizing bacteria in laboratory-scalecontinuous-flow reactors. FEMS Microbiology Ecology,2007,60(3):501-512
    [181] LaPara T.M. and Ghosh S. Population dynamics of the ammonia-oxidizing bacteria in afull-scale municipal wastewater treatment facility. Environmental Engineering Science,2006,23(2):309-319.
    [182] Limpiyakorn T., Shinohara Y., Kurisu F., et al. Communities of ammonia-oxidizing bacteriain activated sludge of various sewage treatment plants in Tokyo. FEMS MicrobiologyEcology,2005,54(2):205-217.
    [183] Kelly J.J., Siripong S., McCormack J., et al. DNA microarray detection of nitrifyingbacterial16S rRNA in wastewater treatment plant samples. Water Research,2005,39(14):3229-3238
    [184] Hallin S., Lydmark P., Kokalj S., et al.Community survey of ammonia-oxidizing bacteria infull-scale activated sludge processes with different solids retention time. Journal of AppliedMicrobiology,2005,99(3):629-640.
    [185] Park H.D. and Noguera D.R. Evaluating the effect of dissolved oxygen onammonia-oxidizing bacterial communities in activated sludge. Water Research,2004,38(14-15):3275-3286.
    [186] Egli K., Langer C., Siegrist H.R., et al. Community analysis of ammonia and nitriteoxidizers during start-up of nitritation reactors. Applied and Environmental Microbiology,2003,69(6):3213-3222.
    [187] Rowan A.K., Moser G., Gray N., et al. A comparitive study of ammonia-oxidizing bacteriain lab-scale industrial wastewater treatment reactors. Water Science and Technology,2003,48(3):17-24.
    [188] Schramm A., de Beer D., Wagner M., et al. Identification and activities in situ ofNitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor.Applied and Environmental Microbiology,1998,64(9):3480-3485.
    [189] Siripong S. and Rittmann B.E. Diversity study of nitrifying bacteria in full-scale municipalwastewater treatment plants. Water Research,2007,41(5):1110-1120.
    [190] Fernández A, Huang S, Seston S et al. How stable is stable? Function versus communitycomposition. Appl. Environ. Microbiol.1999,65(8):3697-3704
    [191]钦颖英.给水生物预处理系统中微生物的群落结构分析.[博士学位论文].上海:上海交通大学.2008
    [192]叶姜瑜.SUFR系统中微生物多样性及稳定性的试验研究.[博士学位论文].重庆:重庆大学,2007
    [193]王建芳.剩余污泥减量化污水处理工艺及微生物群落特征研究.[博士学位论文].哈尔滨:哈尔滨工业大学,2008
    [194] Songming zhu, Shulin Chen. The impact of temperature on nitrification rate in fixed filmbiofilters. Aquacultural Engineering,2002,26(10):221-237.
    [195]叶宇,刘高焕,黄翀等.若尔盖高原湿地景观与环境要素的DCCA多元相关性分析.地球信息科学,2011,3:
    [196] Marzorati M., Wittebolle L., Boon N., et al. How to get more out of molecular fingerprints:practical tools for microbial ecology. Environmental Microbiology,2008,10(6):1571-1581.
    [197] Wittebolle L., Vervaeren H., Verstraete W., et al. Quantifying community dynamics ofnitrifiers in functionally stable reactors. Applied and Environmental Microbiology,2008,74(1):286-293.
    [198] Moles AT, Warton DI, Warman L,et al. Global patterns in plant height. Journal of Ecology,2009,97,923–932.
    [199] Ordo ez JC, van Bodegom PM, Witte JPM, et al. A global study of relationships betweenleaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography,2009,18,137–149.
    [200] Ozkan K. Environmental factors as influencing vegetation communities in Acipayam districtof Turkey. Journal of Environmental Biology,2009,30,741–746.
    [201]张金屯.数量生态学(第2版).北京:科学出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700