板级与封装级电路系统电磁完整性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着板级与封装级电子系统向低电压、高功耗、高密度以及高速度的发展趋势,信号完整性、电源完整性和电磁兼容性已成为高速电路设计与系统级封装中的研究热点。一方面,电源需给状态切换时的芯片提供大量瞬时电流,会在供电网络上产生相应的电压波动,电压波动在电源分配网络上传播形成噪声或电磁干扰信号。另一方面,电磁干扰将通过电源分配网络耦合到相关的信号线上,从而引起眼图闭合、信号畸变等信号完整性问题。因此,高速电路中的信号完整性、电源完整性及其相互作用问题已经成为目前板级设计和封装级设计中热点与瓶颈。随着系统速率的提高,信号完整性与电源完整性之间的互相影响和制约关系表现得更加突出,有必要对其综合研究,在实际应用中协同考虑以提高系统性能。本文在国内外现有研究成果的基础上,系统地分析了板级与封装级电路中电磁完整性问题,研究了信号完整性与电源完整性的相互作用机理、信号完整性及电源完整性的分析方法、返回路径不连续对信号完整性的影响、通过改变电源分布网络实现滤波及转换结构的方法以及基于硅通孔的三维封装中信号完整性与电磁干扰问题等,取得了一定的研究成果。相关成果归纳如下:
     1.对应用于高速电路中的平面电磁带隙结构进行了研究。提出了一种新的可抑制超宽带同步切换噪声的电磁带隙结构,讨论了电磁带隙结构上方有电源或地平面覆盖时电源分布网络中噪声传播问题。针对相应问题,给出了具体的工程解决方案。
     2.深入研究了返回路径不连续对信号完整性的影响。对过孔和返回平面上开槽等两种不连续结构所引起的信号完整性问题进行了分析。使用微波网络分析方法结合实际三维结构,提出了基于模式分解的高速互连电路中串扰机制的快速求解方法。使用跨接于开槽两端的短路线来旁路槽线模式电磁场,从而改善传输特性,抑制串扰。针对具体的工程应用,研究了开槽下方有完整平面时,信号传输特性和串扰受电源分布网络谐振效应的影响情况及解决方案。
     3.通过改变信号返回路径的形状和特性,实现不同的滤波与转换结构。提出了一种适用于超宽带通信的基于过孔的微带垂直转换结构。通过在过孔附近的电源层上蚀刻平面电磁带隙单元来抑制电源分配网络谐振,降低其在过孔处的自阻抗,以改善垂直互连结构传输性能。将蘑菇型电磁带隙结构引入到差分电路中,用以滤除共模干扰,该方法具有占用面积小、带内抑制大、设计简单等优点。
     4.分析了基于硅通孔的三维集成电路中的相关问题。主要分析了硅通孔的电特性和RLGC参数提取方案,讨论了MOS效应对硅通孔寄生电容的影响。在基本硅通孔的电特性研究基础上分析了三维集成电路中的串扰问题,讨论了硅通孔结构和放置方法对串扰的影响,得出了一些可直接用于三维集成电路设计的方法和结论。
The trend in the electronic system to the high speed, high power, high density, lowvoltage and high current, high-speed interconnect effects such as signal integrity, powerintegrity, and electromagnetic compatibility become the dominant factor limiting overallperformance of high speed circuits and system on package. On the one hand, at the timeof the switching state the chip needs to draw a large number of transient current, whichresulting in fluctuations in the power supply, and the rail voltage fluctuations in thepower distribution network could form a distributed power supply noise. Meanwhile,power supply noise could be coupled through the power distribution network to thesignal line, causing signal distortion, eye closure and other signal integrity issues.Electromagnetic integrity has become one of the major issues in printed circuit boardand integrated circuit design. As the increasing of the data rate of the system, the restrictrelationship between signal integrity and power integrity has become more prominent.To improve the system performance in high-speed circuit, it is necessary to analysis thesignal integrity and power integrity simultaneously. Base on existing research results, asystematic analysis of the circuit board level and package level electromagneticintegrity were conducted in this dissertation. The interaction mechanism of signalintegrity and power integrity, the analysis method of signal integrity and power integrity,the effects of return path disconnect on signal integrity, the method of achieve usefulcircuits based on changing power distribution network and the issues of signal integrityand electromagnetic interference in three dimension integrated circuits based on throughsilicon vias are studied carefully. The main research achievements are as follows:
     1. The planar Electromagnetic Band-Gap structure used in high-speed circuits isanalyzed in this dissertation. A novel planar Electromagnetic Band-Gap structure withultra wideband simultaneous switch noise suppression is proposed. The design,simulation, analysis and application of embedded planar compact electromagneticband-gap structure for high-speed digital circuit or mixed circuit application areconducted. Some practical design tips are deduced in the paper.
     2. The effects of return current path disconnect on signal integrity are discussedcarefully. The effects of two main return paths disconnect structure, such as slots onpower plane and vias, are described. Based on microwave network methods combinedthe actual three-dimensional structure, a fast method for solving the crosstalk inhigh-speed circuits is proposed. The shorting lines which cross the slot in return path plane is used to bypass slot line mode in order to improve transfer performance andsuppress crosstalk. With comparison to traditional decouple capacitor method, themethod proposed in this dissertation has benefits of wide bandwidth, easy layout andlow cost. For practical engineering applications, a complete study of the slot in powerplane with a ground plane under it is done. The signal transmission characteristics andcrosstalk affected by the power ground plane pair resonance is given in the paper.
     3. The different useful circuits are accomplished through changing the structure ofcurrent return path. A new microstrip vertical transition based on via in multilayeredprinted circuit board is proposed for ultra wide-band (UWB) application. The planarelectromagnetic band-gap unit is etched on power plane around the vias to suppressresonance and reduce self-impedance of the power distribution network (PDN), andthen transmission performance is improved. By comparison with the method of addingshorting vias between PDN, the structure proposed in this dissertation benefits of lowcost, deeply noise suppression and small factor with considerable performance. Themushroom liked Electromagnetic Band-Gap is introduced in the differential circuits tosuppression the common-mode noise.
     4. The related problem in three-dimension integrated circuits based on throughsilicon via are discussed in the paper. The electrical property and the methods of extractthe RLGC parameters of the TSV are studied carefully. The crosstalk of the TSVs areanalyzed based the electrical property. Some factors affected the performance, such asthe TSV structure and the placement methods, are simulated with3-D full wavesimulator, and some useful design tips in the3-D integrated designs are introduced inthe paper.
引文
[1] Er-Ping Li, Xing-Chang Wei, Cangellaris, A.C, et al. Progress review ofelectromagnetic compatibility analysis technologies for packages, printed circuitboards, and novel interconnects[J]. IEEE Transactions on ElectromagneticCompatibility,2010,52(2):248-265.
    [2] D. G. Kam, M. B. Ritter, T. J. Beukema,et al. Is25Gb/s on-board signalingviable[J]. IEEE Transactions onAdvanced Packaging,2009,32(2):328-344.
    [3] Howard Johnson and Martin Graham. High speed digital design: a handbook ofblack magic[M]. Prentice Hall,1993.
    [4] Howard Johnson. High speed signal propagation: advanced black magic[M].Prentice Hall,2003.
    [5] Eric Bogatin. Signal and power integrity-simplified (2nd Edition)[M]. PrenticeHall,2009.
    [6] Mike PengLi. Jitter, noise, and signal integrity at high-speed[M]. Prentice Hall,2007.
    [7] Robert E Collin. Foundations for microwave engineering,2nd[M].Wiley-Interscience1992.
    [8] H. B. Bakoglu, Circuits interconnections and packaging for VLSI[M].Addison-Wesley,1990.
    [9] C. R. Paul. Analysis of multiconductor transmission line[M]. Wiley,1994.
    [10]G.Antonini,A.Orlandi, and C. R. Paul. Internal impedance of conductors ofrectangular cross section[J]. IEEE Trans. Microw. Theory Tech.,1999,47(7):979-985.
    [11]C. L. Holloway and E. F. Kuester. DC internal inductance for a conductor ofrectangular cross section[J]. IEEE Trans. Electronagn. Compat.,2009,51(2):338-334.
    [12]A. Koul, P. Anmula, M. Koledintseva, J. Drewniak, et al. Improved technique forextracting parameters of low-loss dielectrics on printed circuit boards[C]. IEEE Int.Symp. EMC,2009:191–196.
    [13]H. Braunisch, X. Gu, A. Camacho-Bragado, et al. Off-chip rough-metal-surfacepropagation loss modeling and correlation with measurements[J]. IEEE Electron.Compon. Technol. Conf.,2007:785–791.
    [14]X. Ye, K. Xiao, and C.-C. Huang. Building accurate Spice models for multi-Gbpsinterconnect in computer systems[C]. IEEE Int. Symp. EMC,2009:17–22.
    [15]J. Zhang, Q. B. Chen, Z. Qiu, et al. Using a single-ended TRL calibration pattern tode-embed coupled transmission lines[C]. IEEE Int. Symp. EMC2009:17–22.
    [16]A. G. Chiariello, A. Maffucci, G. Miano, et al. A transmission-line model forfull-wave analysis of mixed-mode propagation[J]. IEEE Trans. Adv. Packag.,2008,31(2):275-284.
    [17]S. Wu, C. Tsai, T. Wu, and T. Itoh. A novel wideband common-mode suppressionfilter for Gigahertz differential signals using coupled patterned ground structure[J].IEEE Trans. Microw. Theory Tech.,2009,57(4):848-855.
    [18]D. Oh, A. Abbasfar, L. Luo, J.-H. Kim,et al. Pseudo-differential vector signaling fornoise reduction in single-ended signaling systems[C]. DesignCon2009.
    [19]S. Smith, S. Agili, and V. Balasubramanian. Theory and measurementof unbalanceddifferential-mode transmission lines[C]. DesignCon2006.
    [20]J. L. Knighten, N. W. Smith, J. Fan, et al. Common-mode current harmonics ondifferential pair cable shields operating in a regime as high as2.125Gb/s[J]. IEEEInt. Symp.Electromagn. Compat.,2001:47-51.
    [21]J. L. Knighten, N. W. Smith, J. T. DiBeneII, et al. EMI common-mode currentdependence on delay skew imbalance in high speed differential transmission linesoperating at1Gigabit/second data rates[C]. IEEE Int. Symp. Quality Electron.Design,2000:309-313.
    [22]D. E. Bockelman and W. R. Eisenstadt. Combined differential and common-modeanalysis of power splitters and combiners[J]. IEEE Trans. Microw. Theory Tech.,1995,43(11):2627-2632.
    [23]C.-Y. Hsiao, C.-H. Tsai, C.-N. Chiu, et al. Radiation suppression for cable-attachedpackages utilizing a compact embedded common-mode filter[J]. IEEE Trans.Compon. Packag. Manuf. Technol.,2012,2(10):1696-1703.
    [24]F. de Paulis, L. Raimondo, S. Connor, et al. Compact configuration for commonmode filter design based on planar electromagnetic bandgap structures[J]. IEEETrans. Electromagn. Compat.,2012,54(3):646-654.
    [25]J. Naqui, A. Fernandez-Prieto, M. Duron-Sindreu,et al. Common-mode suppressionin microstrip differential lines by means of complementary split ring resonators:theory and applications[J]. IEEE Trans. Microw. Theory Tech.,2012,60(10):3023-3034.
    [26]申振宁,庄奕琪,曾志斌.使用模式分解方法的过孔串扰机制研究[J].西安电子科技大学学报,2012,39(1):49-55.
    [27]申振宁,庄奕琪,曾志斌.一种适用于超宽带通信的微带垂直转换结构[J].电子与信息学报.2012,34(6):1483-1488.
    [28]申振宁,庄奕琪,曾志斌.开槽结构中串扰的网络分析方法与低成本噪声抑制[J].西安电子科技大学学报,2013,40(1):37-43.
    [29]G. Shiue, W. Guo, C. Lin, and R. Wu. Noise reduction using compensationcapacitance for bend discontinuities of differential transmission lines[J]. IEEETrans. Adv. Packag.,2006,29(3):560-569.
    [30]J. Chyan and J. Yeh. Return loss reduction of molded bonding wires by combcapacitors[J]. IEEE Trans. Adv. Packag.,2006,29(1):98-101.
    [31]M. Mantysalo and E. O. Ristolainen. Modeling and analyzing verticalinterconnections[J]. IEEE Trans. Adv. Packag.,2006,29(2):335-342.
    [32]D. G. Kam and J. Kim.40-Gb/s package design using wire-bonded plastic ball gridarray[J]. IEEE Trans. Adv. Packag.,2008,31(2):258-266.
    [33]Z. Zhou and K. L. Melde. Development of a broadband coplanar waveguide tomicrostrip transition with vias[J]. IEEE Trans. Adv. Packag.,2008,31(4):861-871.
    [34]K. Yang and K.Wu. Generalized partial-element equivalent-circuit analysis forplanar circuits with slotted ground[J]. IEEE Trans.Microw. Theory Tech.,2009,57(7):1734-1742.
    [35]A. E. Ruehli. Inductance calculations in a complex integrated circuitenvironment[J]. IBM J. Res. Dev.,1972,16:470-481.
    [36]G. Shiue and R. Wu. Reduction in reflections and ground bounce for signal lineover slotted power plane using differential coupled microstrip lines[J]. IEEE Trans.Adv. Packag.,2009,32(3):581-588.
    [37]D. Kim and Y. Eo. S-parameter-measurement-based time-domain signal transientand crosstalk noise characterizations of coupled transmission lines[J]. IEEE Trans.Adv. Packag.,2009,32(1):152-163.
    [38]R. Torres-Torres, G. Hernandez-Sosa,G. Romo, et al. Characterization of electricaltransitions using transmission line measurements[J]. IEEE Trans. Adv. Packag.,2009,32(1):45-52.
    [39]M. Ferndahl, C. Fager, K. Andersson, P. Linner, H. Vickes, et al. A generalstatistical equivalent-circuit-based de-embedding procedure for high-frequencymeasurements[J]. IEEE Trans. Microw. Theory Tech.,2008,56(12):2692-2700.
    [40]K. Narita and T. Kushta. An accurate experimental method for characterizingtransmission lines embedded in multilayer printed circuit boards[J]. IEEE Trans.Adv. Packag.,2006,29(1):114-121.
    [41] H. Ning andB.Achkir. High-performance and cost effective time-domain TRLcalibration technique for high-speed PWC characterization and qualification[C].DesignCon2009.
    [42]C. Morgan. A signal integrity comparison of25Gbps backplane systems usingvarying high-density connector performance levels[C]. DesignCon2009.
    [43]P. Amleshi, D. Brunker, B. Hauge, J. Laurx, et al. Interconnect design optimizationand characterization for advanced high-speed backplane channel links[C].DesignCon2009.
    [44]G. Havermann and M. Witte. Artificial card-edge interfaces for10Gbps modulecards: How the high-speed propagation characteristics are affected by exchangingthe PCB-Edge with a connector[C]. DesignCon2007.
    [45]W. T. Beyene, C. Madden, J. Chun, et al. Advanced modeling and accuratecharacterization of a16Gb/s memory interface[J]. IEEE Trans. Adv. Packag.,2009,32(2):306-327.
    [46]J. Liu and X. Lin. Equalization in high-speed communication systems[J]. IEEECircuits Syst. Mag.,2004,4(2):4-17.
    [47]S. Gondi and B. Razavi. Equalization and clock and data recovery techniques for10-Gb/s CMOS serial-link receiver[J]. IEEE J. Solid-State Circuits,2007,42(9):1999-2011.
    [48]J. H. Sinsky, M. Duelk, and A. Adamiecki. High-speed electrical backplanetransmission using duobinary signaling[J]. IEEE Trans. Microw. Theory Tech.,2005,53(1):152-160.
    [49]M. Miller and M. Schnecker. Quantifying Crosstalk-induced jitter in multi-laneserial data system[C]. DesignCon2009.
    [50]K. S. Oh, F. Lambrecht, S. Chang, Q. Lin, et al. Accurate system voltage and timingmargin simulation in high-speed I/O system designs[J]. IEEE Trans. Adv. Packag.,2008,31(4):722-730.
    [51]Jun Fan, Xiaoning Ye, Jingook Kim, et al. Signal integrity design for high-speeddigital circuits: progress and directions[J]. IEEE Trans. Electromagn. Compat.,2010,52(2):392-400.
    [52]Tzong-Lin Wu, Hao-Hsiang Chuang and Ting-Kuang Wang. Overview of powerintegrity solution on package and PCB: decoupling and EBG isolation[J]. IEEETrans. Electromagn. Compat.,2010,52(2):346-210.
    [53]张木水.高速电路电源分配网络设计与电源完整性[D].西安电子科技大学博士论文,2009.
    [54]M. Swaminathan, K Joungho, I. Novak, et al. Power distribution networks forsystem-on-package: status and challenges[J]. IEEE Trans. Adv., Packag.,2004,27(2):286-300.
    [55]M. Swaminathan, A. E. Engin, Power integrity modeling and design forsemiconductors and systems[M]. Prentice Hall,2007.
    [56]李君.系统级封装的电源完整性和电磁干扰研究[D].西南交通大学博士论文,2010.
    [57]邹国平.高速电路的场路混合建模及电源完整性的研究[D].华北电路大学博士论文,2011.
    [58]M. Zhao, R. V. Panda, S. Sachin, et al. Hierarchical analysis of power distributionnetworks[J]. IEEE Transactions on Computer Aided Design,2002,21(2):159-168.
    [59]T. Wang, R. F. Harrington, and J.R. Mautz. Quasi-static analysis of a microstrip viathrough a hole in a ground plane[J]. IEEE Transactions on Microwave Theory andTechniques,1988,36(6):1008-1013.
    [60]C. Schuster and W. Fichtner. Parasitic modes on printed circuit boards and theireffects on EMC and signal integrity[J]. IEEE Transactions ElectromagneticCompatibility,2000,43(4):416-425.
    [61]A. Taflove, S. C. Hagness, Computational Electrodynamics-the Finite-DifferenceTime-Domain Method[M]. Artech House,2000.
    [62]J. Yook, N. I. Dibb, and L. P. B. Katehi. Characterization of high frequencyinterconnects using the finite difference time domain and finite element methods[J].IEEE Transactions on Microwave Theory and Techniques,1994,42(9):1727-1735.
    [63]H. Gajan, L. Pichon, and C. Marchand. Finite element method for radiatedemissions in EMC analysis[J]. IEEE Transactions on Magnetics,2000,36(4):964-967.
    [64]R. F. Harrington. Field Computation by Moment Methods[M]. Florida. Krieger,1968.
    [65]M. Stumpf and M. Leone. Efficient2-D integral equation approach for the analysisof power bus structures with arbitrary shape[J]. IEEE Transactions Electromagneticon Compatibility,2009,51(1):38-45.
    [66]X. Wei, E. Li, E. Liu, and X. Cui. Efficient modeling of rerouted return currents inmultilayered power-ground planes by using integral equation[J]. IEEE Transactionson Electromagnetic Compatibility,2008,50(3):740-743.
    [67]Jinwoo Choi, Sung-Hwan Min, Joong-Ho Kim, et al.Model and analysis of powerdistribution networks for Gigabit applications[J]. IEEE Transcations on MobileComputing,2003,2(4):299-313.
    [68]J. Kim, K Shringarpure, J. Fan, J. Kim, et al. Equivalent circuit model for powerbus design in multi-layer PCBs with via arrays[J]. IEEE Microwave and WirelessComponents Letters,2011,21(2):62-64.
    [69]N. Na, J. Jinseong, S. Chun, M. Swaminathan, et al. Modeling and transientsimulation of planes in electronic packages[J]. IEEE Transactions on AdvancedPackaging,2000,23(3):340-352.
    [70]R. Ito, R. W. Jackson, and T. Hongsmatip. Modelling of interconnections andisolation within a multilayered ball grid array package[J]. IEEE Transactions onMicrowave Theory and Techniques,1999,47(9):1819-1825.
    [71]R. Abhari, G. V. Eleftheriades, and E. van Deventer-Perkins. Physics-based CADmodels for the analysis of vias in parallel-plate environments[J]. IEEE Transactionson Microwave Theory and Techniques,2001,49(10):1697-1707.
    [72]G. Antonini. A low-frequency accurate cavity model for transient analysis of powerground structures[J]. IEEE Transactions on Electromagnetic Compatibility,2008,50(1):138-148.
    [73]Z. L. Wang, O. Wada, Y. Toyota, et al. Convergence acceleration and accuracyimprovement in power bus impedance calculation with a fast algorithm using cavitymodes[J]. IEEE Transactions on Electromagnetic Compatibility,2005:47(1):2-8.
    [74]R. Rimolo-Donadio, H.-D. Brüns, and C. Schuster. Hybrid approach for efficientcalculation of the parallel-plate impedance of lossy power/ground planes[J].Microwave and Optical Technology Letters,2009,51(9):2051-2056.
    [75]J. Trinkle and A. Cantoni. Impedance expressions for unloaded and loaded powerground planes[J]. IEEE Transactions on Electromagnetic Compatibility,2008,50(2):390-398.
    [76]M. Hampe, V. Palanisamy, and S. Dickmann. Single summation expression for theimpedance of rectangular PCB power-bus structures loaded with multiple lumpedelements[J]. IEEE Transactions on Electromagnetic Compatibility,2007,49(1):58-67.
    [77]G. T. Lei, R. W. Techentin, and B. K. Gilbert. High-frequency characterization ofpower/ground plane structures[J]. IEEE Transactions on Microwave Theory andTechniques,1999,47(5):562-569.
    [78]J. Knighten, and B. Archambeault. PDN Design Strategies: I Ceramic SMTDecoupling Capacitors–What Values Should I Choose[C]. IEEE EMC SocietyNewsletter,2005,203(1):34-41.
    [79]J. Knighten, and B. Archambeault. PDN Design Strategies: II Ceramic SMTDecoupling Capacitors–Does Location Matter[C]. IEEE EMC Society Newsletter,2006,208(1):56-67.
    [80]J. Knighten, and B. Archambeault. PDN Design Strategies: III Planes and Materials-Are They Important Factors in Power Bus Design[C]. IEEE EMC SocietyNewsletter,2006,210(1):56-69.
    [81]L. Smith, R. Anderson, D. Forehand, et al. Power distribution system designmethodology and capacitor selection for modern CMOS technology[J]. IEEE Trans.Adv. Packag.,1999,22(3):284-291.
    [82]J. Fan, J. L. Drewniak, J. L. Knighten, et al. Quantifying SMT decoupling capacitorplacement in DC power-bus design for multilayer PCBs[J]. IEEE Trans.Electromagn. Compat.,2001,43(4):588-599.
    [83]J. Fan, W. Cui, J. L. Drewniak, et al. Estimating the noise mitigation effect of localdecoupling in printed circuit boards[J]. IEEE Trans. Adv. Packag.,2002,25(2):154-165.
    [84]S. Kahng. GA-optimized decoupling capacitors damping the rectangular power-buscavity-mode resonances[J]. IEEE Microw. Wireless Compon. Lett.,2006,16(6):375-377.
    [85]T. H. Hubing, J. L. Drewniak, T. P. Van Doren, et al. Power bus decouplingonmultilayer printed circuit boards[J]. IEEE Trans. Electromagn. Compat.,1995,37(2):155-166.
    [86]K. Bharath, E. Engin, and M. Swaminathan. Automatic package and boarddecoupling capacitor placement using genetic algorithms and M-FDM[C]. IEEEDes. Autom. Conf.,2008:560–565.
    [87]K. J. Song, J. Kim, J. Yoo, et al. Low power noise multilayer PCB with discretedecoupling capacitors inside[C]. Electron. Packag. Technol. Conf.,2008,:1241–1246.
    [88]A. W. Topol, et al. Three-dimensional integrated circuits[J]. IBM J. Res.&Dev.,2006,50(4):491-506.
    [89]Antonis Papanikolaou, Dimitrios Soudris and Riko Radojcic. Three dimensionalsystem integration[M]. New York: Springer,2011.
    [90]I. Savidis and E. Friedman. Closed-form expression of3-D via resistance,inductance, and capacitance[J]. IEEE Transactions on Electron Devices,2009,56(9):1873-1881.
    [91]Zheng Xu, Jian-Qiang Lu. Through-strata-via (TSV) parasitics and widebandmodeling for three-dimensional integration packaging[J]. IEEE Electron DeviceLetters,2011,32(9):1278-1280.
    [92]Zheng Xu, Jian-Qiang Lu. Through-silicon-via fabrication technologies, passivesextraction, and electrical modeling for3-D integration/packaging[J]. IEEETransactions on Semiconductor Manufacturing,2013,26(1):23-34.
    [93]Guruprasad Katti, Michele Strucchi, Kristin De Meyer, et al. Electrical modelingand characterization of through silicon via for three-dimensional ICs[J]. IEEETransactions on Electron Devices,2010,57(1):256-262.
    [94]Tapobrata Bandyopadhyay, Ki Jin Han, Daehyun Chung, et al. Rigorous electricalmodeling of through silicon vias (TSVs) with MOS capacitance effects[J]. IEEETransactions on Components, Packaging and Manufacturing Technology,2011,1(6):893-903.
    [95]I Ndip, B Curran, K Lobbicke, et al. High-frequency modeling of TSVs for3-Dchip integration and silicon interposers considering skin-effect, dielectricquasi-TEM and slow-wave modes[J]. IEEE Transactions on Components,Packaging and Manufacturing,2011,1(10):1627-1641.
    [96]AE Engin and SR Narasimhan. Modeling of crosstalk in through silicon vias[J].IEEE Transactions on Electromagnetic Compatibility,2013,55(1):149-158.
    [97]T. L. Wu, Y. H. Lin, T. K. Wang, et al. Electromagnetic bandgap power/groundplanes for wideband suppression of ground bounce noise and radiated emission inhigh-speed circuits[J]. IEEE Trans. Microw. Theory Tech.,2005,53(9):2935-2942.
    [98]J. Park, A. Chee, W. Lu, K. M. Chua, et al. Double-stacked EBG structure forwideband suppression of simultaneous switching noise in LTCC-based SiPapplications[J]. IEEE Microw.Wireless Compon. Lett.,2006,16(9):481-483.
    [99]J. Qin and O. M. Ramahi. Ultra-wideband mitigation of simultaneous switchingnoise using novel planar electromagnetic bandgap structures[J]. IEEE Microw.Wireless Compon. Lett.,2006,16(9):487-489.
    [100]M. S. Zhang, Y. S. Li, C. Jia, et al. A power plane with wideband SSN suppressionusing a multi-via electromagnetic bandgap structure[J]. IEEE Microw. WirelessCompon. Lett.,2007,17(4):307-309.
    [101]Raimodo L, De Paulis F and Orlandi A. A simple and efficient design procedure forplanar electromagnetic bandgap structures on printed circuit boards[J]. IEEETransactions on Electromagnetic Compatibility,2011,53(2):482-490.
    [102]De paulis F, Raimodo I and Orlandi A. impact of shorting vias placement onembedded planar electromagnetic bandgap structures within mulayer printed circuitboards[J]. IEEE Transcations on Microwave Theory and Techniques,2010,58(7):1867-1876.
    [103]Jianjie Li, Junfa Mao, Siwei Ren, et al. Embedded planar EBG and shorting viaarrays for SSN suppression in multilayer PCBs[J]. IEEE Antennas and WirelessPropagation Letters,2012,11:1430-1433.
    [104]Rao P. H. and Swaminathan, M. A novel compact electromagnetic bandgapstructure in power plane for wideband noise suppression and low radiation[J]. IEEETranscations on Electromagnetic Compatibility,2011,53(4):996-1004.
    [105]Ling-Feng Shi, Hai-Peng Wang, Li-Ye Cheng, et al. Multilayer EBG structure forultra-wide band SSN mitigation using embedded spiral-shaped planes[J].International Journal of RF and Microwave Computer-Aided Engineering,2013,23(2):
    [106]C. R. Paul. Transmission line in digital and analog electronic system: signalintegrity and crosstalk[M]. Wiley,2010.
    [107]C. R. Paul. Transmission lines in digital systems for EMC practitioners[M]. Wiley,2010.
    [108]En-Xiao Liu, Er-Ping Li, Le-Wei Li, et al. Finite-Difference Time-DomainMacromodel for Simulation of Electromagnetic Interference at High-SpeedInterconnects[J]. IEEE Transactions on Magnetics,2005,41(1):65-71.
    [109]B. Gustavsen and A. Semlyen. Enforcing passivity for admittance matricesapproximated by rational functions[J]. IEEE Trans. Power Syst.,2001,16(1):97-104.
    [110]R. Achar, P. K. Gunupudi, M. Nakhla, et al. Passive nterconnect reductionalgorithm for distributed/measured networks[J]. IEEE Trans. Circuits Syst. II,2000,47(4):287-301.
    [111]D. Saraswat, R. Achar, and M. Nakhla. Global passivity enforcement algorithm formacromodels of interconnects subnetworks characterized by tabulated data[J].IEEE Trans. VLSI Syst.,2005,13(7):819-832.
    [112]S. Grivet-Talocia. Passivity enforcement via perturbation of Hamiltonianmatrices[J]. IEEE Trans. Circuits Syst. I,2004,51(9):1755-1769.
    [113]Gustavsen, B. Improving the pole relocating properties of vector fitting[J]. IEEETranscations on Power Delivery,2006,21(3):1587-1592.
    [114]S. Huh, M. Swaminathan and D. Keezer. Constant current power transmission linebased power delivery network for single-ended signaling[J]. IEEE Trans. onElectromagnetic Compatibility,2011,53(4):1050-1064.
    [115]S. Telikapalli, M. Swaminathan and D. Keezer. Minimizing simultaneous switchingnoise at reduced power with constant voltage power transmission lines for HighSpeed Signaling[C]. International Symposium on Quality Electronic Design,2013:714-718.
    [116]S. Huh, M. Swaminathan and D. Keezer. Pseudo-balanced Signaling using PowerTransmission Lines for Parallel I/O Links[J]. IEEE Transactions onElectromagnetic Compatibility,2013,55(2):315-327.
    [117]W.-D. Guo, G.–H. Shiue, C.–M. Lin, et al. An integrated signal and powerintegrity analysis for signal traces through the parallel plane using hybridfinite-element and finite-difference time-domain techniques[J]. IEEE Trans. Adv.Packag.,2007,30(3):558-565.
    [118]J. Park, H. Kim, Y. Jeong, J. Kim, J. S. Pak, et al. Modeling and measurement of thesimultaneous switching noise coupling through signal via transition. IEEE Trans.Adv. Packag[J].2006,29(3):548-559.
    [119]Stephen H. Hall, Garrett W. Hall, James A. McCall著,伍微译.高速数字系统设计[M].北京:机械工业出版社,2005:71-72.
    [120]R. Abhari, G. V. Eleftheriades, and E. V. Deventer-Perkins, Physics-based CADmodels for the analysis of vias in parallel-plate environments[J]. IEEE Trans.Microw. Theory Tech.,2001,49(10):1697-1707.
    [121]Yao-Jiang Zhang and Jun Fan, An intrinsic circuit model for multiple vias inanirregular plate pair through rigorous electromagnetic analysis[J]. IEEE Trans.Microw. Theory Tech.,2010,58(8):2251-2265.
    [122]波扎.微波工程(第三版)[M].北京:电子工业出版社,2010.
    [123]James C. Rautio and Veysel Demir, Microstrip conductor loss models forelectromagnetic analysis[J]. IEEE Trans. Microw. Theory Tech.,2003,51(3):915-921.
    [124]Joong-Ho Kim and Madhavan Swaminathan, Modeling of irregular shaped powerdistribution planes using transmission matrix method[J]. IEEE Trans. on AdvancedPackaging,2001,24(3):334-346.
    [125]Istvan Novak and Jason R. Miller, Frequency-domain characterization of powerdistribution networks[M]. Boston, United States: Artech House,2007.
    [126]D. A. Frickey. Conversion between S, Z, Y, h, ABCD, and T parameters which arevalid for complex source and load impedance[J]. IEEE Trans. Microw. TheoryTech.,1994,42(2):205-211.
    [127]Chen Wang, Jingkun Mao, Giuseppe Selli, et al. An efficent approach for powerdelivery network design with closed-form expressions for parasitic interconnectiductances[J]. IEEE Transcations on Advanced Packaging,2006,29(2):320-334.
    [128]Wang Z L, Wada O, Toyata Y, et al. An improved closed form expression foraccurate and rap id calculation of power/ground plane impedance of multilayerPCBs[C]. Proc Symp on Electromagnetic Theory, Toyama, Japan,2000
    [129]Rao R. Tummala and M. Swaminathan. Introduction to System-on-Package(SOP)[M]. Mc Graw Hill,2008.
    [130]M. Leone. The radiation of a rectangular power-bus structure at multiplecavity-mode resonances[J]. IEEE Trans. Electromagn. Compati.2003,45(3):486-492.
    [131]Hwan-Woo Shim and Todd H. Hubing. A closed-form expression for estimatingradiated emissions from the power plane in a populated printed circuit board[J].IEEE Trans. Electromagn. Compati.2006,48(1):74-81.
    [132]M. Xu, H. Wang and T. Hubing. Application of the cavity model to lossypower-return plane structures in printed circuit boards[J]. IEEE Trans. Adv. Packag.2003,26(1):73-80.
    [133]Xiaomin Duan, Rimolo-Donadio R, Bruns. H-D, et al. Circular ports in parallelplate waveguide analysis with isotropic excitations[J]. IEEE Transcations onElectromagnetic Compatibility,2011,54(3):603-612.
    [134]Xiaomin Duan, Rimolo-Donadio R, Bruns. H-D, et al. Extension of the contourintegral method to anisotropic modes on circular ports[J]. IEEE Transcations onComponents, Packaging and Manufacturing Technology,2011,2(2):321-331.
    [135]C. A. Balanis, Antenna Theory,2nd[M], Wiley,1997.
    [136]R. F. Harrington. Time-Harmonic Electromagnetic[M]. Wiley,1961.
    [137]T. H. Kim, J. Lee, H. Kim, et al.3G wide frequency model of ferrite bead forpower/ground noise simulation of high-speed PCB[C]. IEEE Electr. Perform.Electron. Packag. Proc.2002,217-220.
    [138]R. Abhari and G. V. Eleftheriades. Metallo-dielectric electromagnetic bandgapstructures for suppression and isolation of the parallel-plate noise in high-speedcircuits[J]. IEEE Trans. Microw. Theory Tech.2003,51(6):1629-1639.
    [139]J. Lee, M. D. Rotaru, M. K. Iyer, et al. Analysis and suppression of SSN noisecoupling between power/ground plane cavities through cutouts in multilayerpackages and PCBs[J]. IEEE Trans. Adv. Packag.2005,28(2):298-309.
    [140]Dan Sieverpiper, Lijun Zhang, Romulo F Jimenez Broas, et al. High impedanceelectromagnetic surfaces with a forbidden frequency band[J]. IEEE Trans. Microw.Theory Tech.,1999,47(11):2059-2074.
    [141]Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, el al. A uniplanar compactphoto-bandgap structure and its applications for microwave circuits[J]. IEEE Trans.Microw. Theory Tech.,47(8):1509-1514.
    [142]S. G. Kim, H. Kim, H. D. Kang, et al. Signal integrity enhanced EBG structure witha ground reanforced trace[J]. IEEE Trans. on Ele. Pacakg.,2010,33(4):284-288.
    [143]Hee-d Kang, Hyun Ki, Sang-Gyu Kim, et al. A localized enhanced power planetopology for wideband suppression of simultaneous switching noise[J]. IEEETranscations on Electromagnetic Compatibility.2010,52(2):373-380.
    [144]Payandehjoo, K. Tavallaee, A. Abhari. Analysis of shielded electromagneticbandgap structures using multiconductor transmission-line theory[J]. IEEE Trans.Adv. Package,2010,33(1):236-245.
    [145]丁同浩,李玉山,张伟,曲永哲,闫旭.非理想互连的传输线模型及串扰分析[J].西安电子科技大学学报,2010,37(4):694-699.
    [146]董刚,杨杨,柴常春,杨银堂.考虑工艺波动的两相邻耦合RC互连串扰噪声估计[J].西安电子科技大学学报,2010,37(6):1082-1087.
    [147]李丽平,李玉山,王崇剑.防护线减小微带线间串扰的FDTD分析[J].电子与信息学报,2006,28(3):574-576.
    [148]Felix D. Mbairi, W. Peter Siebert, and Hjalmar Hesselbom. High-frequencytransmission lines crosstalk reduction using spacing rules[J]. IEEE Transactions onComponents and Packaging Technologies,2008,31(3):601-610.
    [149]Kyoungho Lee, Hae-Kang Jung, Hyung-Joon Chi, et al. Serpentine microstrip lineswith zero far-end crosstalk for parallel high-speed DRAM interfaces[J]. IEEETransactions on Advanced Packaging,2010,33(2):552-558.
    [150]Q. Gu, A. Tassoudji, S. Y. Poh, et al. Coupled noise analysis for adjacent vias inmultilayered digital circuits[J]. IEEE Transactions on Circuits Systems Part I:Regular Papers,1994,41(12):796–804.
    [151]Shih-Hao Lee, and Jian-Ming Jin. Efficient full-wave analysis of multilayerinterconnection structures using a novel domain decomposition-model-orderreduction method[J]. IEEE Trans. on MTT.,2008,56(1):121-130.
    [152]Madhavan Swaminathan, Daehyun Chung, Stefano Grivet-Talocia, et al. Designingand modeling for power integrity[J]. IEEE Transactions on EMC.,2010,52(2):288-310.
    [153]Heinrich, and G., Dickmann, S. On the coupling between the signal layers and thepower-bus on multilayered PCBs[C]. EMC2009IEEE International Symposium on.New York: IEEE Service Center,2009:39-44.
    [154]Y. Zhang, J. Fan, G. Selli, et al. Analytical evaluation of via-plate capacitance formultilayer printed circuit boards and packages[J]. IEEE Trans. on MTT.,2008,56(9):2118-2128.
    [155]Ivan Ndip, Florian Ohnimus, Kai Lobbicke, et al. Modeling, quantification, andreduction of the impact of uncontrolled return currents of vias transitingmultilayered packages and boards[J]. IEEE Trans. on EMC.,2010,52(2):421-435.
    [156]杜小鸣,赵凤军,吴定允,张乐.互连线串扰耦合噪声的ABCD矩阵模型[J].电子与信息学报,2009,81(1):252-245.
    [157]李丽平,李玉山,贾琛,潘健,张木水.耦合微带线的散射参数特性分析[J].电子与信息学报,2008,80(11):2755-2758.
    [158]陈建华,牛中奇.保护带对不同参数微带线信号和噪声的影响[J].电波科学学报,2010,25(1):53-59.
    [159]张华,洪伟.不完整地参考面对高速互连耦合及串扰的影响分析[J].东南大学学报,2005,35(5):669-672.
    [160]陈建华,牛中奇.微带线返回路径非连续性对信号及噪声的影响[J].中北大学学报,2009,30(4):376-380.
    [161]M. Kazerooni, A. Cheldavi and M. Kamarei. Crosstalk and electromagneticinterference noise investigation for a coupled pair of microstrip lines with a break inground structure[J]. IET Microw. Antennas Propag.,2010,4(9):1136-1146.
    [162]Feng Chao-xiao, Yohei Nakada, Kimitoshi Murano and Yoshia Kami. Crosstalkanalysis model for traces crosstalk split ground plane and its reduction by stitchingcapacitor[J]. Electronics and Communications in Japan,2007,90(8):26-34.
    [163]Christian Schuster and Wolfgang Fichtner. Parasitic modes on printed circuit boardsand their effects on EMC and signal integrity[J]. IEEE Transactions onElectromagnetic Compatibility,2001,43(4):416-425.
    [164]R. Janaswamy and D. H. Schaubert. Characteristic impedance of a wide slotline onlow-permittivity substrates[J]. IEEE Transactions on microwave theory andtechniques,1986,34(8):900-902.
    [165]Christophe Caloz, Hiroshi Okabe, Taisuke Iwai and tatsuo Itoh. A simple andaccurate model for microstrip structures with slotted ground plane[J]. IEEEMicrowave and Wireless Components Letters,2004,14(3):127-129.
    [166]Jerzy Chramiec. Reactances of slotline short and open circuits on Aluminasubstrate[J]. IEEE Transactions on Microwave Theory and Techniques,1989,37(10):1638-1641.
    [167]梁昌洪,谢拥军,官伯然.简明微波[M].北京:高等教育出版社,2006:189-204.
    [168]李征帆,毛军发.微波与高速电路理论[M].上海:上海交通大学出版社,2004:271-278.
    [169]K.C. Gupta, Ramesh Garg, Inder Bahl and Prakash Bhartia. Microstrip lines andslotlines[M]. London: Artech House,1996:269-340.
    [170]Moe Z. Win, Davide Dardari, Andreas F. Molisch, Werner Wiesbeck, et al. Historyand applications of UWB[M]. Proceeding of the IEEE,2009,97(2):198-204.
    [171]Changwook Yoon, Young-Jin Park, Junwoo Lee, Hyunjeong Park, et al. Design of alow-noise UWB transceiver SIP[J]. IEEE Design&Test of Computer,2008,25(1):18-28.
    [172]A.M. Abbosh. Ultra wideband vertical microstrip-microstrip transition[J]. IETMicrow. Antennas Propag.,2007,1(5):968-972.
    [173]Francisco P. Casares-Miranda, Cornelius Viereck, Carlos Camacho-Pe alosa andChristophe Caloz. Vertical microstrip transition for multilayer microwave circuitswith decoupled passive and active layers[J]. IEEE Microwave and WirelessComponents Letters,2006,16(7):401-403.
    [174]Erisc S. Li, Jui-Ching Cheng, and Chih Che Lai. Design for broad-band microstripvertical transitions using cavity couplers[J]. IEEE Transactions on MicrowaveTheory and Techniques,2006,54(1):464-472.
    [175]Seungki Nam, Yonggyoo Kim, Yonghoon Kim, Hodeok Jang, et al. Performanceanalysis of signal vias using virtual islands with shorting vias in multilayer PCBs[J].IEEE Transactions on Microwave Theory and Techniques,2006,54(4):1315-1324.
    [176]Chih-Chun Tsai, Yung-Shou Cheng, Ting-Yi Huang, Yungping Alvin Hsu, et al.Design of microstrip to microstrip via transition in multilayered LTCC forfrequencies up to67GHz[J]. IEEE Transactions on Components, Packaging andManufacturing Technology,2011,1(4):595-601.
    [177]Ivan Ndip, Florian Ohnimus, Stephan Guttowski, et al. Minimizing electromagneticinterference in power ground cavities[J]. Advanced Packaging and SystemsSymposium,2008,128-131.
    [178]Yu Tian, Ling Tong and Hailiang Li. Novel hybrid analysis method for via structurein microwave multilayer circuits[J]. International journal of numerical modeling:electronic networks, devices and fields,2011,24(6):590-600.
    [179]Ki Hyuk Kim and Jose E. Schutt-Aine. Design of EBG power distribution networkswith VHF-band cutoff frequency and small unit cell size for mixed-signalsystems[J]. IEEE Microwave and Wireless Components Letters,2007,17(7):489-491.
    [180]Giulio Antonini, Antonio C. Scogna and Antonio Orlandi. S-parameterscharacterization of through, blind, and buried via holes[J]. IEEE Transactions onMobile Computing,2003,2(2):174-184.
    [181]B. R. Archambeault. PCB design for real-world EMI control[M]. Norwell, MA:Kluwer,2002.
    [182]W. T. Liu, C.-H. Tsai, T.-W. Han, et al. An embedded common-mode suppressionfilter for GHz differential signals using periodic defected ground plane[J]. IEEEMicrow. Wireless Compon. Lett.,2008,18(4):248-250.
    [183]S.-J. Wu, C.-H. Tsai, T.-L. Wu, and T. Itoh. A novel wideband common-modesuppression filter for gigahertz differential signals using coupled patterned groundstructure[J]. IEEE Trans. Microw. Theory Techn.,2009,57(4):848-855.
    [184]Pajovic M, Savic J, Bhobe A, et al. The gigahertz two-band common-mode filter for10-Gbit/s differential signal lines[J]. Electromagnetic Compatibility,2013IEEEInternational Symposium on,2013,472-477.
    [185]C.-H. Tsai and T.-L. Wu. A broadband and miniaturized commonmode filter forgigahertz differential signals based on negative-permittivity metamaterials[J]. IEEETrans. Microw. Theory Tech.,2010,58(1):195-202.
    [186]Velez P, Naqui J, Femandez-Prieto A, et al. Differential bandpass filter withcommon-mode suppression based on open split ring resonators and opencomplementary split ring resonators[J]. IEEE Microwave and Wireless ComponentsLetters.2013,23(1):22-24.
    [187]Scholar.google.com.hk.
    [188]Patti R S. Three-dimensional integrated circuits and the future of system-on-chipdesigns[J]. Proceedings of IEEE,2006,94(6):1214-1224.
    [189]Antonis Papanikolaou, Dimitrios Soudris and Riko Radojcic. Three dimensionalsystem integration[M]. New York: Springer,2011.
    [190]Zhenxian Liang, Van Wyk J. D, Lee, F. C. Embedded power: a3-D MCMintegration technology for IPEM packaging application[J]. IEEE Transcations onAdvanced Packaging.2006,29(3):504-512.
    [191]Yuan-Kai Ho, Hsu-Chieh Lee, Lee W, et al. Obstacle-avoiding free-assignmentrouting for flip-chip designs[J]. IEEE Transcations on Computer-Aided Design ofIntegrated Circuits and Systems,2014,33(2):224-236.
    [192]Koyanagi M, Fukushima T and Tanaka T. High-density through silicon vias for3-DLSIs[J]. Proceedings of the IEEE,2009,97(1):49-59.
    [193]J. Q. Lu.3-D hyperintegration and packaging technologies for micronano system[J].Proceedings of the IEEE,2009,97(1):18-30.
    [194]Z. Xu and J. Q Lu. High-speed design and broadband modeling ofthrough-strata-vias (TSVs) in3-D integration[J]. IEEE Transcations on Compon.Packag. Manuf. Technol.2011,1(2):154-162.
    [195]Xie J. and Swaminatha M. Electrical-thermal cosimulation with nonconformaldomain decomposition method for multiscale3-D integration systems[J]. IEEETranscations on Compon. Packag. Manuf. Technol.2014,4(4):588-601.
    [196]Lau J. H., and Yue T. G. Thermal management of3D IC integration with TSV[C].Electronic Components and Technology Conference,2009,635-640.
    [197]J. Kim, J. S. Pak, J. Cho, et al. High-frequency scalable electrical model andanalysis of a through silicon via[J]. IEEE Trans. Compon. Packag. Manuf. Technol.,2011,1(2):181-195.
    [198]R.–B. Sun, C.–Y. Wen and R.–B. Wu. Passive equalizer design for through siliconvias with perfect compensation[J]. IEEE Trans. Compon. Packag. Manuf. Technol.,2011,1(11):1815-1822.
    [199]Y. Liang and Y. Li. Closed-form expressions for the resistance and the inductanceof different profiles of through-silicon vias[J]. IEEE Electron Device Lett.,2011,32(3):393-395.
    [200]Todri, A. Kundu S, Girard P., et al. A study of tapered3-D TSVs for power andthermal integrity[J]. IEEE Transcations on VLSI Systems.2013,21(2):306-319.
    [201]Kiyeong Kim, Chulsoon Hwang, Kyoungvhoul Koo, et al. Modeling and analysisof a power distribution network in TSV-based3-D memory IC including P/G TSVs,on chip decoupling capacitors, and silicon substrate effects[J]. IEEE Trans. Compon.Packag. Manuf. Technol.,2012,2(12):2057-2070.
    [202]Jun So Pak, Joohee Kim, Jonghyun Cho, et al. PDN impedance modeling andanalysis on3D TSV IC by using proposed P/G TSV array model baded onseparated P/G TSV and chip-PDN models[J]. Trans. Compon. Packag. Manuf.Technol.,2011,1(2):208-219.
    [203]钱利波,朱樟明,杨银堂.一种考虑硅通孔电阻—电容效应的三维互连线模型[J].物理学报,2012,61(6):068001.
    [204]杨银堂,王凤娟,朱樟明,等.考虑MOS效应的锥形硅通孔寄生电容解析模型[J].电子与信息学报,2013,35(12):3011-3017.
    [205]Taigon Song, Chang Liu, Dae Hyun Kim, et al. Analysis of TSV-to-TSV couplingwith high-impedance termination in3D ICs[C].12'th Int'l Symposium on Quality
    Electronic Design,2011,122-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700