降低镍铜混合精矿氧化镁含量的新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨矿是入选前矿料准备的最后一道作业。矿料入选前的准备作业包括破碎及磨矿两个大的作业,这两个作业中磨矿更重要,它不仅能耗高及材料消耗高,而且产品质量直接影响后面选别作业的指标,加上磨矿的处理量实际上决定着选矿厂的处理量,因此磨矿作业是选矿前重中之重的作业。磨矿作为选矿作业中最重要的环节之一,在很大程度上决定了磨矿的后续作业——选别作业的效果。由于岩矿是一种结构力学性质极不均匀的材料,矿物晶体内部的结合力最强;晶面上的结合力次于晶体内部的结合力;而同种矿物晶体,晶面之间的结合力又大于不同矿物晶体晶面之间的结合力。由于解离性磨矿的目的是要造成不同矿物晶体聚合体之间的解离,因此,破碎力的大小应该精确到能使不同矿物晶体之间发生解离,过大过小均不利。破碎力过大,岩矿的破坏不只是沿晶体界面发生,甚至晶体也被断裂,发生“贯穿破碎”作用。贯穿破碎作用缺乏选择性,破碎行为不是沿不同矿物的晶面发生,而是沿破碎力的主应力方向进行,因此破碎产物往往不是不同种类矿物粒子的单体解离,而是岩矿材料粒子的机械变细,此外,破碎力过大还往往容易造成比较严重的过粉碎现象。反之,破碎力过小,则因达不到破碎应力的要求,不能产生一次性破碎,只有经反复作用后才能产生效率低的疲劳破碎。由上可见,只有当破碎力作用愈精确时,矿物解离的选择性才愈高。这就是说,精确地选择破碎力大小是磨矿方法选择中的一个重要问题。磨矿机的工作是靠磨内运动的介质来完成的,因此,磨矿介质的工作状态及参数决定着磨机的生产能力,也决定着磨矿产品的粒度特性。磨矿介质的尺寸和形状对磨矿产品的解理度、粒度组成起着决定性的作用。由此如何精确地确定磨矿介质的尺寸和选择适合矿石性质的磨矿介质形状就成为了研究磨矿作业的重要内容。
     对精矿的矿物存在状态分析表明,混入精矿的脉石矿物有55%以上是单体,精矿中—0.01mm级别镍品位最低,氧化镁最高,该级别中脉石矿物有90%以上是单体矿物,精矿中的氧化镁矿物主要为蛇纹石矿物。这就说明,精矿中氧化镁含量高主要是蛇纹石的大量混入,粒度较粗的单体蛇纹石可能由于可浮选性增强而混入精矿,细粒及微细粒单体蛇纹石则因表面能大而粘附气泡夹带入精矿,这两种情况下降MgO药物很难凑效。这说明,欲显著降低氧化镁含量不应只在浮选中作文章,应该在磨矿中尽量减少蛇纹石的泥化。
     对于镍精矿来说,降低冶炼能耗,首先必须降低镍精矿中MgO含量,如果镍精矿中MgO含量过高,使冶炼炉温升高,成本增加,炉渣粘度增大,使冶炼回收率降低;采用闪速炉时,会造成因炉渣相粘度过大而导致闪速炉结瘤,局部腐蚀炉体产生漏炉。镍精矿含镁高,冶炼时炉渣发粘不易排出,影响熔炼效果。目前开采的硫化镍矿床,其伴生的脉石矿物多为含钙、镁的硅酸盐矿物,易泥化、可浮性好,导致镍精矿中氧化镁含量高。在闪速炉熔炼工艺中,对精矿质量有严格的要求,精矿含镍须在7%以上、氧化镁须小于6%、硫须大于25%。因此,降低镍精矿中镁的含量、提高镍精矿品位,对提高熔炼生产效率及降低其单位成本是十分有益的。另外,现在镍精矿的熔炼渣大部分作为水泥的原料,含镁高时对水泥的质量有影响,故厂方要求精矿氧化镁含量低于7%时才能被利用。由于精矿中氧化镁对冶炼有着较大的影响,故着重研究了矿石性质对降镁的影响,矿石性质包括:MgO赋存矿物的自然可浮性、矿石硬度、矿物学因素等等。针对这些因素,本论文叙述了一些传统的降低精矿中氧化镁的途径,如:如何从混合精矿降MgO、从工艺矿物学角度研究、浮选新药剂研究、高效浮选剂的联合使用、阶段磨浮粗精矿再磨工艺流程、闪速浮选、两产品方案、酸法浮选、电化学浮选、降镁药剂等。
     本论文通过对金川二矿区富矿的工艺矿物学和矿石抗破碎力学性能的详细研究,得出一些结论:矿石性质是决定磨矿选别工艺的依据,金川二矿富矿矿石中的硫化镍等金属矿物性脆易碎,在磨矿中会形成选择性优先粉碎及过磨,在浮选中则因粒度过细而难于有效回收,二矿富矿中的脉石性质特殊,超基性矿体几经蚀变形成的脉石蛇纹石,其强度低,在磨矿中极易泥化,而泥化的蛇纹石不仅干扰镍矿物的浮选,而且大量混入精矿而使精矿氧化镁含量难于降低。针对金川镍矿石的浮选对磨矿提出了促进磨矿粒度均匀化,减少磨矿产品中粗粒级(+0.074mm)的含量,特别是减少过磨及过粉碎(-0.01mm)粒级的含量,增加中间易选粒级的含量及提高磨矿过程中解离的选择性,争取入选产品有更高的解离度的特定要求,只有精确地设计选择各段球磨机的介质尺寸,科学地设计选择各段球磨机的介质形状才能满足这些要求。
     由于矿石在磨碎过程中是一个比较复杂的过程,一般说来包括两个阶段:(1)矿石集合体的破碎及不同矿粒粒子的解离;(2)各种矿物粒子的进一步破碎,达到选矿要求的粒度。在混合矿物的矿粒群遭受磨碎作用时,各种矿物的磨碎行为呈现出差异:机械强度大的矿物破碎概率低,难破碎,磨碎速度慢;机械强度小的矿物破碎概率高,容易破碎,磨碎速度快。也就是说,矿物机械强度的差异导致了它们磨碎速度不同。各种矿物粒子磨碎速度的不同必然导致最终磨矿产品中各种矿物粒子粒度的差异:机械强度大的矿物粒子因磨碎速度慢粒度粗;机械强度小的矿物粒子因磨碎速度快粒度细。因此,混合矿物的磨矿产品是一种质量分布与粒度分布不成比例的不均匀粒群系统:机械强度大的矿物粒子在粗级别中分布较多,机械强度小的矿物粒子在细粒级中分布较多。因此在磨碎过程中存在一个选择性磨矿的现象。
     针对金川二矿富矿的磨矿及选别特性,本论文从昆明理工大学段希祥教授推导的球径半理论公式出发,通过实验的方法来确定磨矿介质的尺寸及形状,精确地确定了磨矿介质的尺寸和形状。在磨矿介质尺寸和形状更精确之后,能更有效的促进磨机内选择性磨矿现象的产生,使得矿物的解离更充分,粒度更均匀,过粉碎减少。实验室全流程包括抗破碎力学性能测定、磨矿、可磨度测定、选别等等研究。实验室大量的小型试验研究证实,磨矿新工艺的应用能有效提高回收率及降低精矿氧化镁的含量,能有效实现金川镍精矿浮选对磨矿的特定要求。
     把实验室的研究结果应用在金川二选4~#富矿系统上,进行一系列的工业试验以后,结果表明:磨矿新工艺的应用使4~#系统镍的回收率提高1.341个百分点,铜的回收率提高1.82个百分点,精矿氧化镁含量大幅度下降,达到5.294%。这也证明了本研究提出的优化磨矿产品粒度组成、提高镍铜回收率及降低精矿氧化镁的新工艺是可行的,效果是十分显著的。
     经过实验室试验和工业试验的全面研究以后,结果表明:针对金川二矿富矿,运用球径半理论公式和实验相结合的方法来确定磨矿介质的尺寸及形状以后,能有效提高回收率及降低精矿氧化镁的含量,这是与传统降低精矿氧化镁含量方法在理论和实践上都有较大的创新性和实用性。
As one of the most important parts of mineral processing, ore grinding determines the efficiency of mineral processing operation to a great extent. Among a great deal of factors that affect grinding efficiency, grinding medium is of most importance .The size and shape of grinding medium play a decisive role on mineral liberation degree of the grinding products and the composition of particle sizes. Therefore, how to determine grinding medium's size accurately and choose grinding medium's shape that can suit mineral nature becomes important content in grinding studies. The ore is one kind material, whose structural mechanical property is non-uniformity, the interior binding force of mineral crystal is the strongest; the exterior binding force of mineral crystal is less than that of the interior. The binding force between the homogeneous mineral crystal's surface is more than that between non-homogeneous. Because the goal of dissociative grinding is to make the dissociation of non-homogeneous mineral crystal polymer, the breaking force should be precise to cause the dissociation of non-homogeneous mineral crystal . If the breaking force is overbig, the destruction of ore occurred along crystal's contact surface, even in the crystal lattice. The penetrative function lacks selectivity and its breaking behavior is not along the non-homogeneous mineral crystal's surface, but along the breaking force's principal stress direction. So the broke product is often not of the monomer dissociation of non-homogeneous mineral granule, but of the mechanically becoming finess of ore material granule. In addition, the overbig breaking force is often easy to cause seriously smashing phenomenon. Otherwise, too small breaking force couldn't achieve the breaking stress's request and couldn't produce the disposable breaking, and only produce fatigue break in low effiniency. So we know, the more precise of breaking force, the higher of the mineral dissociation selectivity. That means, how to precisely choose the breaking force is an important question in grinding.
     The analysis for the concentrate's mineral existence state showed that the above 55% mineral is the monomer that mixed in the concentrate. The -0.01mm rank's particle's nickel status is the lowest and its magnesium oxcide content is the highest: above the 90% mineral is monomer mineral in this grade. The magnesia mineral is mainly serpentine mineral in the concentrate. This showed that the content of magnesium oxcide is high in concentrate because the serpentine is massively mixed. The thick monomer serpentine is mixed in concentrate because of the flotation, the thin monomer serpentine is mixed in concentrate because of the surface energy. The agentia reducing the MgO's content is difficultyly functioned in these two kinds of situations. This indicated that reducing the magnesia's content is not only to be done in the floating and also the serpentine's pelitization should be reduced as far as possible in the grinding.
     For the nickel concentrate, if the MgO's content is excessively high that would be elevate the smelting furnace's temperature, increase the slag's viscosity, reduce the smelt's recycled-ratio. Using the fast stove would be caused the fast stove bunched because the slag's viscosity is oversized. When the content of magnesium is high in the nickel concentrate, the slag is not easy to discharge because it's viscosity. At present, the mined deposit of nickel sulfide magnesium's silicate mineral. The content of MgO is high in the nickel concentrate because the silicate mineral is easy to be mudded and its flotation is great. In the fast stove's smelting craft, there is a strict request for the concentrate quality. The request is that the nickel's content is above7%, the MgO's content is lower 7%, and the sulfur's content is above 25% in concentrate. Therefore, reducing the MgO's content and enhancing the nickel concentrate's content is extremely efficiency for increasing the smelting efficiency and reducing the unit cost. In addition, now the smelting slag of the nickel concentrate mainly is as the cement's raw material, and if the MgO's content is oversized would be influential to the cement quality. So the factory requested: when the MgO's content in concentrate is lower than 7%, the slag can be only used. Because the content of MgO is a important reasons for metallurgical, so we study the effect of properties of the ore for reducing the content of magnesia. Including: natural floatability of MgO、hardness of ore、mineralogy and so on. Considering those reasons, we introduce some traditional technology of reducing the content of magnesia. for example: reducing the content of magnesia from mixed concentrate、studying of process mineralogy、studying of new pharmacy for floating、the joint use of efficient flotation agent、quick flotation、program of two products、acid flotation、electrochemical flotation、pharmacy of reducing magnesia.
     Properties of the ore are the basis to determine the grinding and separation. The character of nickel sulfide and other brittle metallic minerals that is easy to break, which will result in preferential comminution and over-grinding by selection, and it is difficult to be covered in the flotation system because of the existence of fine particles. Being the special properties of the gangue in the said rich ore, the ore can convert to the gangue serpentine with low intension by erosion, which is easy to form the so-called sliminess upon the grinding. The slimy serpentine interferes the floating of nickel mineral and it is difficult to reduce the content of magnesia in the concentrate. The demand of the grinding of the floating of nickel ore is to reduce deficient-grinding, over-grinding and increase the liberation degree of minerals to a specific demand, which will satisfy the demands for choice the new-style medium that can protect the fine particles with the precise new grinding medium powerfully. According to results of many experiments in the lab, the application of this new technology in grinding shows that the recovery can get improved and the content of magnesia in the concentrate can get reduced effectively, which realize the specific demand for flotation operation.
     Because the grinding is a quite complex process, in general it included two stages: (1) ore aggregate's breaking and different ore particle's dissociation; (2) the further breaking of each kind of mineral granule. When mixed ore's particles suffered the grinding, each kind of mineral's grinding behavior presented the difference: the mineral of mechanical strength is high that it's breaking probability is low, it is difficulty to be broke and it's grinding speed is slow; the mineral of mechanical strength is low that it's breaking probability is high, it is easy to be broke and it's grinding speed is fast. In other words, the different mineral's mechanical strength caused the different grinding speed. The difference of each kind of mineral particles' grinding speed caused the difference of each kind of mineral particles' size in the final grinding product: the mineral particle of mechanical strength is high that it's size is big because it's grinding speed is slow, the mineral particle of mechanical strength is low that it's size is small because it's grinding speed is fast. Therefore, the grinding product of mixed mineral is the non-uniform grain system that the quantity distribution and the size distribution is to beyond comparison: the mineral particle of mechanical strength is high that it's distribution is much more in the thick rank, the mineral particle of mechanical strength is low that it's distribution is much more in the thin rank. We called the phenomenon is the selective grinding.
     This thesis sets out from Professor Duan Xixiang's half-theory formula to determine the size and shape of grinding medium through experiment. Using its conclusion on the grinding system of the concentrator of JinChuan Group Co., Ltd. Study in the whole procedure laboratory (including grinding, and separation etc.) indicates that: combining the half-theory formula with the law of experiment to determine medium size's is innovative and practical in theory and practice to some extend.
     With consideration of the characteristic of grinding and separation for the rich ore in the No.2 mining area in the company, following conclusions have been obtained by the study in laboratory and industrial application:
     According to the commercial experiment of No.4 system of the rich ore in the No.2 concentrator, results indicate that: the rate of recovery of nickel is raised by a percentage point of 1.341,the rate of recovery of copper by a percentage of 1.82;and the content of magnesia of concentrate decreases remarkably to 5.294%.And the new technology has been proved to be feasible in optimization of constitution of particle sizes in the ground products, making the rate of recovery for copper and nickel improved, and reducing the content of MgO of concentrate remarkablely.
引文
[1]李启衡主编,碎矿与磨矿,冶金工业出版社.1980年7月第一版,P.1.
    [2]李启衡主编,碎矿与磨矿,冶金工业出版社.1995.
    [3]段希祥,曹亦俊,球磨机介质工作理论与实践.冶金工业出版社,1999年8月第一版.
    [4]A.F.塔加尔特主编,冶金部选矿研究院等译,选矿手册第二卷第二分册。冶金工业出版社,1959年9月第一版,P.2.
    [5]#12
    [6]段希祥,球磨机的优选法装球与最大磨碎功的探讨,云南冶金,1979,NO.3.
    [7]刘全军,攀枝花钒钛磁铁矿碎磨力学特性研究(博士论文),昆明理工大学,1998年.
    [8]李启衡,粉碎工程,昆明理工大学,1981年印刷.
    [9]Rickard Klimpel,Can.Min.J.,100(1979),NO.3,41.
    [10]刘升明,磁铁矿-石英体系选择性磨碎研究报告,1988年.
    [11]Fuerstenau,D.W.,Inter.Min.process,15(1985),NO.4,251.
    [12]Hartly,J.N.,Eng.Min.J.,(1978),NO.10,105.
    [13]Narayanan,S.,Inter.Min.process,10(1983),NO.4,309.
    [14]Tuker,P.,Inter.Min.process,12(1984),NO.4,273.
    [15]#12
    [16]李启衡,关于磨矿节能的几个问题,昆明工学院,1982年印制.
    [17]Cohen,H.E.,Transactions,Institution of Mining & Metallurgy,SectionC Vol.92,1983,160-164.
    [18]肖玉屏,凹山选矿厂生产现状剖析与建议,金属矿山,1989,NO.9,41-47.
    [19]李国安,缩小入磨粒度是选厂增产节约的有效途径,矿山技术,1988,NO.4,27-31.
    [20]李炳秋,选矿厂磨矿过程分析,有色矿山,1986,NO.4,25-30.
    [21]杨忠高,降低球磨机能耗及钢耗的研究,矿山机械,1989,NO.12,49-53.
    [22]李启衡主编,碎矿与磨矿,冶金工业出版社,1980年7月第一版,P.1.
    [23]李云,提高球磨转速的效果,有色金属(选矿部分),1993,NO.6,44.
    [24]刘清祚,弓长岭选厂磨机不同转速状态的考查分析,金属矿山,1988,NO.2, 59-61.
    [25]卜惠萍,鞍山选厂磨机转速现状及不同转速状态的分析,金属矿山,1986,NO.11,39-42.
    [26]P.A.Korp,et al,Angula spiral Lining system in wet grinding grate discharge ball mill,Mining Engineering 1982(7),57.
    [27]Dopson,W,Mining Engineering,Vol 66,NO.10,1980,17-20.
    [28]Themels,N.E.,Mining Engineering,Vol 32,NO.6,1980.
    [29]Edner,J.E.,Australian Mining,1982,NO.1,9-12.
    [30]Korpi,P.A.,Dopson,d.w.,Mining Engineering1982,NO.1,57-60.
    [31]王绍兴,角螺旋旋衬板原理结构设计,天津水泥工业设计院,1983,9.
    [32]R.J.Hakki.An analysis of mill and classifier performance in classed grinding circuit,Trans.ALME,Vol.238,NO.6,1967.9,233.
    [33]《Rud-Metal Zb》,1982,29(2-3),155-165.
    [34]段希祥,我国粗磨机钢球尺寸状况分析,矿冶工程,1998,NO.1。
    [35]段希祥,降低粗磨机钢球尺寸的研究,矿山机械,1998,NO.1.
    [36]段希祥,有色金属(选矿部分),1983,NO.5,52.
    [37]段希祥,球磨机钢球尺寸理论计算研究,中国科学A辑,1989,NO.8.
    [38]段希祥,球磨机钢球直径半理论公式的修正研究,中国科学E辑,1997,NO.2.
    [39]段希祥,球磨机的钢球尺寸研究,有色金属(选矿部分),1983,NO.5.
    [40]段希祥,矿石细磨下的钢球尺寸研究,云南冶金,1986,NO.5.
    [41]段希祥,改进云南铜选厂第二段磨矿介质的研究,云南冶金》,1992,NO.6.
    [42]段希祥,新型细磨介质应用研究,昆明理工大学学报,1998,NO.6.
    [43]段希祥,曹亦俊,球磨机介质工作理论与实践,冶金工业出版社,1999年8月第一版.
    [44]A.F.塔加尔特主编,选矿手册(湿式磨碎)第二卷第二分册,冶金部选矿研究院译,冶金工业出版社,1959年9月第一版,63-93.
    [45]中南矿冶学院,东北工学院合编,破碎筛分,中国工业出版社,1961年出版.
    [46]C.E安德烈耶夫等三人著,北京矿业学院译,有用矿物的破碎磨碎及筛分,中国工业出版社,1963年11月出版.
    [47]潘新潮,段希祥,精确化装补球制度在金平镍矿磨矿中的应用,有色金属 (选矿部分),2003,NO.5.
    [48]段希祥,选择性磨碎现象及对选矿的意义,金属矿山,1986,NO.4.
    [49]段希祥,锡矿石的选择性磨碎现象研究,云南冶金,1981,NO.2.
    [50]段希祥,选择性磨矿的应用研究,云南冶金自然科学版,1990,NO.3.
    [51]《Ind.Mier.Tech.》,1981,NO.1,80-101.
    [52]段希祥,云南冶金,1979,NO.6,51.
    [53]Bergmann,A.,Heid,B.,Mining.Engineering.,25(1973),NO.6,43.
    [54]段希祥,钢段在金属矿细磨中的应用研究,云南冶金,1984,NO.6.
    [55]段希祥,降低牟定铜矿磨矿成本的试验研究报告(实验室研究),1989年.
    [56]段希祥,降低大姚铜矿三段磨的试验研究报告(实验室研究),1989年.
    [57]段希祥,降低牟定铜矿二段磨磨矿成本的工业试验报告,1990年.
    [58]段希祥,降低大姚铜矿三段磨磨矿成本的工业试验报告,1992年.
    [59]段希祥,降低大姚铜矿二段磨磨矿成本的试验报告(实验室研究),1990年.
    [60]段希祥,降低大姚铜矿二段磨磨矿的工业试验报告,1992年.
    [61]段希祥,车河选厂Ⅰ系列中矿磨新型细磨介质试验报告,1992年.
    [62]段希祥,车河选厂Ⅰ系列硫化矿磨新型细磨介质试验报告,1992年.
    [63]段希祥,新型细磨介质扩展到中粗粒级应用的工业试验报告,1994年.
    [64]段希祥,金川公司二选厂应用新型细磨介质进行细磨的研究,1993年.
    [65]段希祥,选择性磨矿及其应用,冶金工业出版社,1991年8月第一版.
    [66]#12
    [67]#12
    [68]#12
    [69]#12
    [70]#12
    [71]B.K.Porekh,Min.Eng.,36(1984),NO.9,1305.
    [72]#12
    [73]#12
    [74]J.N.哈特莱等,美国工业导报(采矿专利),1979.
    [75]#12
    [76]H.Santonwsky,Aecfbereitungs-Technik,32(1991),NO.12,680-687.
    [77]J.G.Mieczaniec,CIM.Bull.,78(1985),NO.882,43-47.
    [78]北京矿冶研究总院,金川集团有限公司二矿区富矿工艺矿物学研究,2005,6,10-13.
    [79]重金属-镍,金属世界,(2004),NO.6,47-49.
    [80]阴宪卿等,降低镍精矿中氧化镁含量的试验研究,矿冶,(2001),Vol.10,NO.2,42-54.
    [81]R.P.金,国外金属矿选矿,1995,NO.7,1-8.
    [82]高喜潮,降低镍精矿中氧化镁含量的探讨,中国矿山工程,(2006),Vol.35,NO.1,25-28.
    [83]北京矿冶研究总院,金川集团有限公司二矿区富矿工艺矿物学研究,2005,6,32-37。
    [84]王景旭等,降低镍精矿中氧化镁含量的研究与应用,有色矿山,(2001),Vol.30,NO.5,28-30.
    [85]胡显志等,金川镍铜矿精矿降镁研究与实践进展,矿产保护与利用,(2003),NO.1,34-37.
    [86]欧晓玲,金川二选厂降镁工艺的生产实践及研究,金川科技,(2002),NO.1,12-15.
    [87]曾新民,金川硫化铜镍矿矿石特性与可浮性关系,矿冶,(2005),Vol.14,NO.3,16-19.
    [88]张秀品等,某镍矿选矿降镁研究探讨,云南冶金,(2006),Vol.35,NO.3,12-17.
    [89]高玉德等,降低镍精矿中氧化镁含量的研究,广东有色金属学报,(2000),Vol.10,NO.2,96-99.
    [90]李启衡主编,碎矿与磨矿,冶金工业出版社,1980年7月第一版,P.185.
    [91]段希祥,球磨机钢球尺寸理论计算研究,《中国科学》A辑,1989,NO.8。
    [92]《选矿设计参考资料》编写组,选矿设计参考资料。北京:冶金工业出版社,1972.
    [93]《选矿设计手册》编委会,选矿设计手册第二卷第一、二分册,北京:冶金工业出版社,1993.
    [94]BELA BEKE,D.S.C.,The Process of Fine Grinding,Akademiai Kiado,Budquest,1981.
    [95]Pit and Quarry Handbook Purceasing Guide for the Nonmetallic Minerals Industriess,sixty-second edition 1969.
    [96]石贵明等,提高镍铜回收率及降低精矿氧化镁含量的实验室研究,矿山机械,(2007),NO.10.
    [97]石贵明等,磨选结合提高镍铜回收率及降低精矿氧化镁含量的工艺应用,矿山机械,(2007),NO.7.
    [98]段希祥,攀矿公司选矿厂提高球磨机生产率及改善磨矿产品质量研究(1996),未发表著作.
    [99]段希祥,提高球磨机生产率及改善产品质量的研究报告(实验室阶段报告)(1996),未发表著作.
    [100]H.Santonwsy,Aedfbereritungs-Technik,32(1991),No.12,680-687.
    [101]李启衡编著,粉碎理论慨要,北京:冶金工业出版社,1993.
    [102]陆金才,有色金属(选矿部分),(1992),No.6,49-52.
    [103]覃照成,金属矿山,(1994),No.4,41-42.
    [104]王世标等,金属矿山,(1992),No.6,53-55.
    [105]王文采等,金属矿山,(1994),No.4,43-47.
    [106]卫生明,金属矿山,(1994),No.12,45-47.
    [107]崔巍,钢铁材料及有色金属材料,北京:机械工业出版社,1981:38.
    [108]BELA BEKE,D.S.C.,The Process of Fine Grinding,Akademiai Kiado,Budquest,1981,26.
    [109]M.K.Yelloji,Miner.Process.Extr.Metall Rev.,1991,7(3/4),137-174.
    [110]R.L.Pozzo,Miner.Metall Process,7(1990),No.1,16-21.
    [111]H.W.Xiang,Miner.Process Extr.Metal,7(1990),No.1,49-79.
    [112]R.H.Sailors,Miner.Metall Process,6(1989),No.4,172-178.
    [113]J.W.Jang,Miner.Metall Process,6(1989),No.4,161-166.
    [114]V.Rajagopal,Miner.Process Extr.Metall Revia,1992,11(1/4),79-106.
    [115]#12
    [116]Eng.Min.J.,187(1986),No.6,79.
    [117]#12
    [118]#12
    [119]段希祥,有色金属(选矿部分),1985,No.5,27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700