层状类钙钛矿结构有机—无机杂合物电子结构的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状类钙钛矿杂合物是有机、无机组分在分子尺度上复合而成的一类天然量子阱材料。通过在分子尺度上对其进行结构剪裁,可以实现性能的精确设计和控制,因而具有巨大的应用潜力。系统地研究层状类钙钛矿杂合物的组成-结构-能带-性能之间的内在关系,对精确设计及控制这类材料的微观结构、能带结构和电子学性能具有重要理论意义与实际应用价值。
     本文对结构式为(C4H9NH3)2MI4(M=Ge,Sn,Pb)、(NH3C6H12NH3)MI4(M=Ge,Sn,Pb)、(RNH3)2(CH3NH3)n-1MnI3n+1(M=Sn,Pb; n=1,2,3)、(C6H5C2H4NH3)2-MI4(M=Ge,Sn,Pb)、(CnH2n+1NH3)2PbI4(n=4~10,12,14,16,18)、(NH3C8H14NH3)PbI4(CH3C6H4CH2NH3)2PbI4、(CnH2n-1NH3)2PbI4(n=3,4,5)和(C6H5CH(CH3)NH3)2PbI4等一系列具有层状结构的有机-无机类钙钛矿杂合物晶体进行第一性原理计算,系统研究金属种类、无机层数目及有机元对杂合物材料电子学性能的影响,在电子结构的层面上寻找该系列材料组成和微观结构对电子学性能的影响及规律。
     本文的研究工作包括:(1)建立不同系列的结构模型,采用第一性原理计算方法,获得各杂合物材料体系的电子态密度、Mulliken电荷、能带结构、键级及费米能级;(2)利用半导体能带模型计算不同系列杂合体系的载流子浓度;(3)系统分析各杂合物材料体系在电子态密度、Mulliken电荷、能带结构及载流子浓度等方面的差异,对差异产生的组成和结构原因进行详细分析,系统研究杂合物的组成-结构-能带-性能之间的内在关系。
     研究发现:费米面附近的能带均来自无机元的原子轨道,无机元中金属的种类和无机元层数对材料的带隙有着直接影响。当含有相同的有机元时,锗、锡、铅的碘化物基杂合物体系中碘化亚锡基杂合物的带隙最小,为1.080eV;载流子浓度最大,为4.389×109cm-3;同时,随无机层数目增加,带隙减小,碘化亚锡基杂合物电性能由半导性向金属性转变,载流子浓度也随之提高,当无机层数为3时,载流子浓度可达3.479x1015cm-3。
     费米面附近的价带顶和导带底由无机元的原子轨道构成,有机元的原子轨道对带隙附近的能带没有贡献,有机元并不直接对带隙产生影响。但是,有机元对无机层的结构有模板作用,有机元与无机元之间的氢键强弱影响了无机层金属离子和碘离子之间的键长键角,对带隙具有间接微调作用,从而影响了体系的载流子浓度。关于无机层微观结构与能带结构及带隙之间的关系的研究结果表明,对二维方向上共顶连接的八面体[M16]2-无机层来说,由于与有机元的氢键作用,M-I-M键的键角会产生面内和面外弯曲,桥位和端位碘离子与金属离子之间的键长也会发生变化。一个普遍的规律是:M-I-M键角偏离180°越大,M-I键长越短,八面体发生的畸变越大,带隙越大。对于以饱和脂肪胺为有机元的Pbca碘化铅杂合体系,碳链长度增加,有机链之间的叠置程度变大,相互作用增强,胺基头与无机层间氢键作用强度发生变化。当碳原子数大于10时,氢键作用较碳原子小于10时更强,导致无机层八面体畸变增大,因而带隙增大。对于含芳环的杂合物,芳环上支链数目、位置及支链上碳原子数的不同会引起芳环空间排列变化,同时胺基头接近无机层的角度和深度也发生改变,引起带隙变化。对于含环烷基的体系,由于环间存在较大的作用力,其推动环烷基胺向无机层方向移动,环上碳原子数越多,胺基头伸入无机层越深,引起无机层形变越少,从而导致带隙变小,载流子浓度变大。
     改变无机元的种类、无机元层数、有机元的结构,可以调控有机-无机钙钛矿杂合体系的带隙和载流子浓度,可望设计一类具有低带隙、高载流子浓度,同时兼具优异成膜性能的层状类钙钛矿有机-无机杂合材料。
Layered perovskite-type hybrids, assembling with organic and inorganic components at the molecular scale, are a family of natural quantum well materials. Due to their unique tunable structure and controlled property, such materials have a great potential in many practical applications. By building the related structural models, detailed and systematic electronic property of the resulting structures has been carried out to gain fundamental insight into key relations between component-structure-bands-properties.
     Based on the ab inito concentration functional theory, a serial of hybrid perovskite structures, such as (C4H9NH3)2MI4(M=Ge,Sn,Pb),(NH3C6H12NH3)MI4(M=Ge,Sn,Pb),(RNH3)2(CH3NH3)n.1MnI3n+1(M=Sn,Pb;n=1,2,3),(CnH2n-1NH3)2PbI4(n=3,4,5),(C6H5C2H4NH3)2MI4(M=Ge,Sn,Pb),(CnH2n+iNH3)2PbI4(n=4-10,12,14,16,18),(CH3C6H4CH2NH3)2PbI4,(C6H5CH(CH3)NH3)2Pbl4,(NH3C6H12-NH3)PbI4and (NH3CgH14NH3)PbI4were built, and the relationship among electronic properties, organic and inorganic layers, metallic elements were systematically investigated.
     Our work mainly focus on:(1) the electronic concentration of states, Mulliken charge, energy band structure, bond energy of organic-inorganic layered perovskite-type hybrids were calculated based on first principles calculation method;(2) the carrier concentration of layered perovskite-type hybrids was calculated by energy band of semiconductor model;(3) the difference of the physical properties (e.g. DOS, Mulliken charge, the carrier concentration, band structure) of the organic-inorganic hybrids and the physics origin of them were analyzed. The influencing factors on the carrier concentration with the sort of the inorganic and organic layers have been established.
     In this paper, it can be found that the band gap nearby Fermi surface comes from inorganic types and layers. Comparing with germanium iodide and lead iodide system, the tin iodide was found that it can increase the carrier concentration of the metal into semiconductor. Based on the same organic unit, the band gap of tin iodide-based hybrids is the lowest than those of lead-based and germanium-based hybrids. In this case, the band gap is up to1.080eV while their carrier concentration reach4.389x109cm-3. Increasing the number of inorganic layers, the hybrids transition from semiconductor to metal. When the inorganic layers are up to3, the carrier concentration of layered perovskite-type hybrids can reach3.479×1015cm-3.
     The organic species have no the direct influence to the band gap of any hybrids. However, the organic units play a key role owing to the interaction between inorganic metal and organic unites. The hydrogen bond between organic and inorganic components have an effect on the inorganic layer to deviate from the ideal cubic perovskite framework, leading to the inorganic layer in the M-I bond lengths and M-I-M bond angle changes, causing the octahedral structure distorted, and increasing the inorganic layer band gap, and changing carrier concentration. Generally, layered perovskite-type hybrids, integrated inorganic metal and organic unites would be exhibit desirable physics properties by tuning their components and structure which aim to develop an effective approach towards excellent and flexible semiconductor materials.
引文
[1]刘多敏,周邵康.材料家族新谱[M].北京;中国青年出版社.1984:52-68
    [2]功能材料及应用手册编写组.功能材料及应用手册[M].北京;机械工业出版社.1991:1-3
    [3]王汝成.钙钛矿族矿物的晶体化学分类和地球化学演化[J].地学前缘,2000,7(2):457-465
    [4]郭丽玲.层状类钙钛矿结构有机-无机杂合物(CnH2n+1NH3)2MCl4系列晶体的合成与结构研究[D];武汉理工大学,2006
    [5]师昌绪.材料大辞典[M].北京:化学工业出版社,1994
    [6]R E Schaak, T E Mallouk. Perovskite by Design:a Toolbox of Solid-state Reactions [J], Chem Mater,2002,14:1455-1471
    [7]M Era, S Morimoto, T Tsutsui, S Saito. Organic-inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4 [J]. Appl. Phys. Lett.,1994,65(6):676-678
    [8]Z Xu, D B Mitzi. [CH3(CH2)11NH3]SnI3:A Hybrid Semiconductor with MoO3-type Tin(II) Iodide Layers [J]. Inorg. Chem,2003,42:6589-6591
    [9]D B Mitzi. Templating and Structural Engineering in Organic-inorganic Perovskites [J]. J. Chem. Soc, Dalton Transactions,2001,1:1-12
    [10]Billing, David, G.Lemmerer, Andreas. Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+iNH3)2PbI4] (n=12,14,16 and 18) [J]. New J Chem,2008,32(10):1736-1746
    [11]S Wang, D B Mitzi, C A Feild, A Guloy. Synthesis and Characterization of [NH2C(I) NH2]3MI5 (M=Sn, Pb) Stereochemical Activity in Divalent Tin and Lead Halides Containing Single.ltbbrac.11O.rtbbrac. Perovskite Sheets [J]. J Am Chem Soc,1995,117:5297-302.
    [12]D B Mitzi, S Wang, C A Feild. Conducting Layered Organic-Inorganic Halides Containing <110>-Oriented Perovskite Sheets [J].1995,Science,267:1473-1476
    [13]A Nazzal, H Fu. Organic-inorganic hybrid semiconductor ZnSe(C2H8N2)1/2 under hydrostatic pressure [J]. Phys Rev B,2005,72(7):075202-1-6
    [14]Y Li, C Lin, G Zheng, Z Cheng, H You, W Wang, J Lin. Novel 110-Oriented Organic-Inorganic Perovskite Compound Stabilized by N-(3-Aminopropyl) imidazole with Improved Optical Properties [J]. Chem Mater,2006,18:3463-3469
    [15]Y Li, G Zheng, J Lin. Synthesis, Structure, and Optical Properties of a Contorted <110>-Oriented Layered Hybrid Perovskite:C3H11SN3PbBr4 [J]. Euro J Inorg Chem,2008, 2008(10):1689-1692
    [16]J Zhang, K Yao, Z Liu, G Gao, X Wang, Y Li. First principles study on the electronic structure of the two chain compounds of [M(N3)2(HCOO)][(CH3)2NH2] (M=Fe and Co) [J]. Solid State Commun,2008,145(1-2):43-47
    [17]K Pradeesh, J Baumberg, G Prakash. Temperature-induced exciton switching in long alkyl chain based inorganic-organic hybrids [J]. J Appl Phys,2012,111(1):013511
    [18][18] X Zhu. N Mercier, M Allain, P Frere, P Blanchard, J Roncali, A Riou. Crystal structure of (NH3-R-NH3) (NH3-R-NH2)PbI5 (R=5,5'-bis(ethylsulfanyl)-2,2'-bithiophene): NH3+…NH2 interaction as a tool to reach densely packed organic layers in organic-inorganic perovskites [J]. J Solid State Chem,2004,177(4-5):1067-1071
    [19]Y Chang, H.Park, C. H.Matsuishi, K. First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X=Cl, Br, I) [J]. J Korean Phys Soc,2004,44(4):889-893
    [20]Tanaka, K.Ozawa, R.Umebayashi, T.Asai, K.Ema, K.Kondo, T. One-dimensional excitons in inorganic-organic self-organized quantum-wire crystals NH2C(I)=NH2(3)PbI5 and CH3SC(= NH2)NH2(3)PbI5 [J]. Physica E,2005,25(4):378-383
    [21]Chiarella, F.Ferro, P.Licci, F.Barra, M.Biasiucci, M.Cassinese, A.Vaglio, R. Preparation and transport properties of hybrid organic-inorganic CH3NH3SnBr3 films [J]. Appl. Phys. A, 2006,86(1):89-93
    [22]Z Peng, Xing, Xiao, Chen, Xinbin. Preparation and structure of a new layered organic-inorganic hybrid between the protonated form of a perovskite Bi2SrTa209 and tetraphenylporphyrin by the intercalation behavior [J]. Journal of Alloys and Compounds, 2006,425(1-2):323-328
    [23]Li Yinyan, Lin Cuikun, Zheng Guoli, Lin Jun.. Synthesis, structure and optical properties of new organic-inorganic haloplumbates complexes (C5H10N3)PbX4 (X=Br, Cl), (C2H2N4)PbBr3 [J]. Journal of Solid State Chemistry,2007,180(1):173-179
    [24]Elleuch S, Abid Y, Mlayah A, Boughzala H. Vibrational and optical properties of a one-dimensional organic-inorganic crystal [C6H14N]PbI3 [J]. Journal of Raman Spectroscopy, 2008,39(7):786-792
    [25]Hu, K. L.Kurmoo, M.Wang, Z.Gao, S. Metal-organic perovskites:synthesis, structures, and magnetic properties of [C(NH2)3][M(Ⅱ)(HCOO)3] (M=Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3=guanidinium) [J]. Chemistry,2009,15(44):12050-12064
    [26]Elleuch, S.Dammak, T.Abid, Y.Mlayah, A.Boughzala, H. Synthesis, structural and optical properties of a novel bilayered organic-inorganic perovskite C5Pb2I5 [J]. Journal of Luminescence,2010,130(4):531-535
    [27]Hai-Rong Zhao, Dong-Ping Li, Xiao-Ming Ren, You Song, and Wan-Qin Jin. Larger Spontaneous Polarization Ferroelectric Inorganic Organic Hybrids [PbI3] Chains Directed Organic Cations Aggregation to Kagom-Shaped Tubular Architecture [J]. J Am Chem Soc, 2010,132:18-19
    [28]Venkataraman, N. V.Bhagyalakshmi, S.Vasudevan, S.Seshadri, Ram. Conformation and orientation of alkyl chains in the layered organic-inorganic hybrids:(CnH2n+1NH3)2PbI4 (n =12,16,18) [J]. Phys. Chem. Chem. Phys.,2002,4(18):4533-4538
    [29]Zhengtao Xu, D.B. Mitzi, Christos D. Dimitrakopoulos, and Karen R. Maxcy. Semiconducting Perovskites(2-XC6H4C2H4NH3)2SnI4 (X=F, Cl, Br) Steric Interaction between the Organic and Inorganic Layers [J]. Inorg. Chem.,2003,42:2031-2039
    [30]Mercier N., Riou A. An organic-inorganic hybrid perovskite containing copper paddle-wheel clusters linking perovskite layers:[Cu(O2C-(CH2)3-NH3)2]PbBr4 [J]. Chem. Commun. (Camb),2004,7:844-845
    [31]Aruta, C.Licci, F.Zappettini, A.Bolzoni, F.Rastelli, F.Ferro, P.Besagni, T. Growth and optical, magnetic and transport properties of (C4H9NH3)2MC14 organic-inorganic hybrid films (M=Cu, Sn) [J]. Appl. Phys. A,2004,81(5):963-968
    [32]Nicolas Mercier, Sylvain Poiroux, Amedee Riou, Patrick Batail. Unique Hydrogen Bonding Correlating with a Reduced Band Gap and Phase Transition in the Hybrid Perovskites (HO(CH2)2NH3)2PbX4 (X=I, Br) [J]. Inorg. Chem.,2004,43(26):8361-8366
    [33]Xiao, Ze-Long, Chen, Hong-Zheng, Shi, Min-Min, Wu, Gang,Zhou, Ren-Jia, Yang, Zhi-Sheng,Wang, Mang, Tang, Ben-Zhong. Preparation and characterization of organic-inorganic hybrid perovskite (C4H9NH3)2CuCl4 [J]. Materials Science and Engineering:B,2005,117(3):313-316
    [34]Zheng, Ying-Ying,Wu, Gang,Deng, Meng,Chen, Hong-Zheng,Wang, Mang,Tang, Ben-Zhong. Preparation and characterization of a layered perovskite-type organic-inorganic hybrid compound (C8NH6-CH2CH2NH3)2Cul4 [J]. Thin Solid Films,2006,514(1-2): 127-131
    [35]Huh Young-Duk, Kim Ji-Hyun, Kweon Seok-Soon,Kuk Won-Kwen, Hwang Cheong-Soo, Hyun June-Won, Kim Yeong-Joon, Park Younbong. Structure of the organic-inorganic hybrid (C6H5C2H4NH3)2ZnBr4 [J]. Current Applied Physics,2006,6(2):219-223
    [36]Sebastien Sourisseau, Nicolas Louvain, Wenhua Bi, Nicolas Mercier, David Rondeau, Jean-Yves Buzare, and Christophe Legein. Hybrid Perovskite Resulting from the Solid-State Reaction between the Organic Cations and Perovskite Layers of al-(Br-(CH2)2-NH3)2PbI4 [J]. Inorg. Chem.,2007,46:6148-6154
    [37]Billing, D. G.Lemmerer, A. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n= 4,5 and 6 [J]. Acta crystallographica Section B, Structural science,2007,63(Pt 5):735-747
    [38]Bourne, Susan A.Moitsheki, Lesego J. Hybrid inorganic-organic layered structures of [AuC14]-and protonated bipyridyl derivatives [J]. Polyhedron,2008,27(1):263-267
    [39]Ghalsasi Prasanna S, Inoue Katsuya. Distorted perovskite structured organic-inorganic hybrid compounds for possible multiferroic behavior:[n-alkyl]2FeCl4 [J]. Polyhedron,2009, 28(9-10):1864-1867
    [40]T. Dammak, M. Koubaa,K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid. Two-Dimensional Excitons and Photoluminescence Properties of the Organiclnorganic (4-FC6H4C2H4NH3)2[Pbl4] Nanomateria14 [J]. J Phys. Chem. C,2009,113:19305-19309
    [41]Kitazawa Nobuaki, Aono Masami, Watanabe Yoshihisa. Excitons in organic-inorganic hybrid compounds (CnH2n+1NH3)2PbBr4 (n=4,5,7 and 12) [J]. Thin Solid Films,2010, 518(12):3199-3203
    [42]Pradeesh K, Yadav G Sharachandar, Singh Monika, Vijaya Prakash G. Synthesis, structure and optical studies of inorganic-organic hybrid semiconductor, NH3(CH2)12NH3PbI4 [J]. Mater. Chem. Phys.,2010,124(1):44-47
    [43]Abid, H.,Samet, A.,Dammak, T.,Mlayah, A.Hlil, E., K.Abid, Y. Electronic structure calculations and optical properties of a new organic-inorganic luminescent perovskite: (C9H19NH3)2PbI2Br2 [J]. Journal of Luminescence,2011,131(8):1753-1757
    [44]Liu Yao, Yang Peipei, Meng Jian. Synthesis, crystal structure and optical properties of a novel organic-inorganic hybrid materials (C9H14N)2PbCl4 [J]. Solid State Sciences,2011, 13(5):1036-1040
    [45]Lemmerer, A.Billing, D. G. Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(C(n)H(2n+1)NH3)2PbI4], n=7,8,9 and 10 [J]. Dalton Trans,2012,41(4):1146-1157
    [46]Louvain Nicolas, Mercier Nicolas. A 3D metal halide framework in the organic-inorganic compound (H3N(CH1)SS(CH2)NH3)Pb5I16 [J]. Solid State Sciences,2008,10(10): 1269-1275
    [47]S. Barman, S. Vasudevan. Melting of an Anchored Bilayer Phase Transitions in the Organic Inorganic Hybrid Pervoskite (CH3NH3)(CH3(CH2)nNH3)2Pb2I7 (n=11,13,15,17) [J]. J Phys. Chem. C,2009,113:15698-15706
    [48]Dammak, T.,Elleuch, S.,Bougzhala, H.,Mlayah, A.,Chtourou, R.,Abid, Y. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3l4Br6 [J]. Journal of Luminescence,2009,129(9):893-897
    [49]Li C. R., Deng H. T., Wan J.Zheng, Y. Y., Dong W. J. Photoconductive properties of organic-inorganic hybrid perovskite (C6H13NH3)2(CH3NH3)m-1PbmI3m+1:TiO2 nanocomposites device structure [J]. Mater. Lett.,2010,64(24):2735-2737
    [50]王中林,康振川.功能与智能材料结构演化与结构分析[M].北京:科学出版社,2002.
    [51]陈荣.无机-有机杂化材料控制合成、结构调控和性能研究[J].2006,5:297-299
    [52]Jingyang Niu, Xiao Fu, Junwei Zhao, Suzhi Li, Pengtao Ma and Jingping Wang. Two-Dimensional Polyoxoniobates Constructed from Lindqvist-Type Hexaniobates Functionalized by Mixed Ligands [J]. Crystal Growth & Design,2010,10(7):3110-3119
    [53]Cheng Z. Y., Wang Z. Xing R. B., Han Y. C., Lin J. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography [J]. Chem. Phys. Lett.,2003,376(3-4):481-486
    [54]C.R.Kagan, D.B.Mitzi, C.D.Dimitrakopoulos. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors [J]. Science 1999, 286:945-947
    [55]D.B. Mitzi. Organic-Inorganic Perovskites Containing Trivalent Metal Halide Layers The Templating Influence of the Organic Cation Layer [J]. Inorg. Chem.,2000,39:6107-6113
    [56]D.B.Mitzi, C.A.Feild, W.T.A.Harrison, A.M.Guloy. Structrally Tailored Organic-Inorganic Perovskites Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors [J]. Nature,1994,369(9):467-469
    [57]杨志胜,杨立功,吴刚.一种基于碘化铅的有机/无机杂化钙钛矿材料传输性能的研究[J].化学学报,2008,66(14):1611-1614
    [58]D.B.Mitzi. Solution-processed inorganic semiconductors [J]. J Mater. Chem.,2004,14(15): 2355-2365
    [59]Knutson, J. L.Martin, J. D. D.B. Mitzi. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating [J]. Inorg. Chem.,2005,44(13):4699-4705
    [60]Zhengtao Xu, D.B. Mitzi. SnI42--Based Hybrid Perovskites Templated by Multiple Organic Cations Combining Organic Functionalities through Noncovalent Interactions [J]. Chem Mater,2003,15:3632-3637
    [61]Zhengtao Xu, D.B. Mitzi, David R. Medeiros. [(CH3)3NCH2CH2NH3]SnI4 A Layered Perovskite with Quaternary Primary Ammonium Dications and Short Interlayer Iodine-Iodine Contacts [J]. Inorg Chem,2003,42:1400-1402
    [62]D.B. Mitzi, Cristos D.Dimitrakopoulos, Joanna Rosner et al. Hybrid Field-Transistor Based on a Low Temperature Melt-Processed Channel Layer [J]. Adv. Mater.,2002,14:1772-1775
    [63]Yukari Takahashi, Rena Obara, Kohei Nakagawa et.al. Tunable charge transport in soluble organic-inorganic hybrid semiconductors [J]. Chem. Mater.,2007,19:6312-6316
    [64]Sebastien Sourisseau, Nicolas Louvain, Wenhua Bi, Nicolas Mercier, David Rondeau,Florent Boucher, Jean-Yves Buzare, and Christophe Legein. Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic-Inorganic Interface [J]. Chem Mater,2007,19:600-607
    [65]刘崭,石高全,陈凤恩.正十二烷基胺支撑的四碘化锡层状半导体材料的研究[J].无机化学学报,2003,19(11):1185-1890
    [66]黄昆.固体物理学[M].北京大学出版社,2009
    [67]冯端,金国钧.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003
    [68]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002
    [69]陈敏伯.计算化学:从理论化学到分子模拟[M].科学出版社,2009
    [70]Dominik Marx, Jiirg Hutter. Ab initio molecular dynamics:basic theory and advanced methods [M]. Cambridge University Press,2009
    [71]Borriello Ivo, Cantele Giovanni, Ninno Domenico. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides [J]. Phys Rev B,2008,77(23):235214
    [72]R. Dovesi, B. Civalleri, R. Orlando, C. Roetti, V. R. Saunders. Ab Initio Quantum Simulation in Solid State Chemistry [J]. Rev Comput Chem,2005,21:1-125
    [73]Jurg Hutter. Introduction to Ab Initio Molecular Dynamics [C]. Modern Methods and Algorithms of Quantum Chemistry(Second Edition).3:329-477,2000.
    [74]Mattsson, Ann E.,Schultz, Peter A.,Desjarlais, Michael P.,Mattsson, Thomas R.,Leung, Kevin. Designing meaningful concentration functional theory calculations in materials science—a primer [J]. Modelling and Simulation in Materials Science and Engineering,2005, 13(1):R1-R31
    [75]Robert G. Parr, Weitao Yang. Concentration functional theory of atoms and molecules [M]. Oxford University Press,1994
    [76]E. Engel, R. M. Dreizler. Concentration Functional Theory, An Advanced Course [M]. Springer,2011
    [77](美)Ira N.赖文.量子化学[M].人民教育出版社,1980
    [78]徐光宪.量子化学:基本原理和从头计算法(第2版)(上册)[M].科学出版社有限责任公司,2011
    [79]谢希德,陆栋.固体能带理论[M].复旦大学出版社,2007
    [80]J.Singleton.固体能带理论和电子性质[M].科学出版社,2009
    [81]卡拉威.固体量子理论[M].科学出版社,1984
    [82](美)B.霍夫曼.量子史话[M].科学出版社,1979
    [83]S. Cottenier. Concentration Functional Theory and the Family of (L)APW-methods:a step-by-step introduction [M].2004
    [84]Dabo Ismaila, Ferretti Andrea, Poilvert Nicolas, Li Yanli, Marzari Nicola, Cococcioni, Matteo. Koopmans'condition for concentration-functional theory [J]. Phys Rev B,2010, 82(11):115121
    [85]Wolfram Koch, Max C. Holthausen. A Chemist's Guide to Concentration Functional Theory(Second Edition) [M]. Wiley,2001
    [86]Miguel Marques. Time Dependent Concentration Functional Theory [M]. Springer,2006
    [87]Kitazawa Nobuaki, Yaemponga Dhebbajaji, Aono Masami, Watanabe Yoshihisa. Optical properties of organic-inorganic hybrid films prepared by the two-step growth process [J]. Journal of Luminescence,2009,129(9):1036-1041
    [88]Chiarella Fabio, Zappettini Andrea, Licci Francesca, Borriello Ivo, Cantele Giovanni, Ninno Domenico, Cassinese Antonio, Vaglio Ruggero. Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br) [J]. Phys Rev B,2008,77(4):045129
    [89]Cambridge Structural Database(CSD) [M]. Cambridge Crystallographic Data Centre(CCDC). 2012
    [90]Inorganic Crystal Structure Database (ICSD) [M]. National Institute of Standards and Technology.2009
    [91]吴代鸣.固体物理学[M].长春:吉林大学出版社,1996
    [92]R. S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions:I. Electronic population analysis on LCAO-MO molecular wave functions; II. Overlap populations, bond orders, and covalent bond energies. [J]. J Chem Phys,1955,23(5): 1833-1846
    [93]Robert F. Pierret著,黄如,王漪,王金延,金海岩等译.半导体器件基础[M].北京:电子工业出版社,2010
    [94](加)卡萨普,汪宏译.电子材料与器件原理[M].西安交通大学出版社,2009
    [95]王翔,刘韩星,欧阳世翕等.(C4H9NH3)2PbI4有机-无机材料的制备工艺研究[J].武汉理工大学学报,2004,26(9):18-19
    [96]D.B. Mitzi. Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M= Ge, Sn, Pb) [J]. Chem Mater,1996,8:791-800
    [97]Shigeki Kashiwamura, Nobuaki Kitazawa. Thin films of microcrystalline (CH3NH3)(C6H5C2H4NH3)2Pb2Br7 and related compounds fabrication and optical properties [J]. Synthetic Metals,1998,96:133-136
    [98]Christine Lode, Harald Krautscheid. Iodostannates with Polymeric Anions: (Me3PhN)4[Sn3I10], [Me2HN-(CH2)2-NMe2H]2[Sn3I10], and [Me2HN-(CH2)2-NMe2H] [Sn3I8] [J]. Z. anorg. allg. Chem.,2001,627(7):1454-1458
    [99]Vikrant V. Naik, S. Vasudevan. Melting of an Anchored Bilayer Molecular Dynamics Simulations of the Structural Transition in (CnH2n+1NH3)2PbI4 (n) 12,14,16,18) [J]. J Phys Chem C,2010,114:4536-4543
    [100]D.B. Mitzi, C.A.Felld, W.T.A.Harrison, A.M.Guloy. Conducting tin halides with a layered organic-based perovski.1994,369(9):467-469
    [101]郑莹莹,邓海涛,万静,李超荣.有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究.2011,物理学报,60(6):067306
    [102]G.C. Papavassiliou. Three and Low-Dimensional Inorganic Semiconductors. Prog. Solid St. Chem.1997(25):125-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700