微细电解铣削加工技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术以及微机电系统的发展,零件尺寸越来越趋于微小型化。从产品尺度特征来划分,通常将1-1000μm的系统称为微系统,其相对应的微细加工技术已成为各工业发达国家广泛关注和重点投入的研究热点。
     微结构中的重要一类是金属微结构,产品微型化、精密化和高新技术产品的研制生产对微尺度金属复杂结构件加工技术有着迫切的需求。因此,发展针对微尺度的,具有三维加工能力、能够加工金属及其合金材料的微细加工方法已经成为当前微细制造领域迫在眉睫的研究课题。
     本文结合微细电解加工技术和微机械铣削的基本思想,提出一种新的微细加工方法:微细电解铣削加工。原理上阴极电极不会损耗,采用微米级直径的柱状电极,可加工出数微米至数十微米尺度的复杂微结构件。提出的技术主要面向航空航天、精密仪器、生物医疗等领域。本文的主要内容包括以下几个方面:
     (1)建立了微细电解铣削加工的理论模型。在分析了纳秒脉冲电流微细电解加工基本原理的基础上,基于界面双电层理论,建立了微细电解铣削加工分步控制数学模型,为后续的加工试验提供了重要的理论指导,并对影响加工性能的因素进行了分析。
     (2)搭建了一套三维微细电解铣削加工系统。该加工系统具备高分辨率低速微进给、三轴联动、高回转精度、短路检测与保护和绝缘抗振等功能,并基于Labwindows/CVI虚拟仪器平台开发了一套与机床硬件配套的三维微细电解铣削加工控制与检测软件系统。
     (3)提出了在线制备两种微电极的新工艺。一是基于电化学刻蚀技术,提出了多阶柱状电极的制备方法,建立了多阶柱状电极的数学控制与预测模型,制备出一系列不同阶数的末段直径为10μm的柱状电极;二是利用单脉冲火花放电技术,通过控制放电能量,成功加工出了一系列微球头柱状电极,末端球形圆度好,并具有镜面级的表面粗糙度。最后,基于有限元电场仿真,分析了不同形状微电极的多种应用场合。
     (4)进行了微细复杂结构的电解铣削加工工艺试验。在以高温合金GH3030为主的多种材料上进行了微细电解铣削加工工艺试验,分析了加工电压、脉冲宽度、脉冲周期、电极直径、电解液参数等对加工的影响规律。根据理论模型,应用了薄分层铣削策略,研究了铣削层厚度对起始点形状精度、加工稳定性及加工效率的影响。应用优化的参数成功加工出特征尺寸为5μm,形状精度高、表面质量好的微细三维微阶梯型腔和高精度的凹半球结构。
     (5)利用旋转的微螺旋电极在高温合金GH3030上进行了微小结构的高速电解铣削加工工艺试验。重点研究了电极转速对加工精度、加工稳定性和表面粗糙度的影响。另外,分析了加工电压、脉冲宽度、电解液参数等对加工的影响规律。应用优化的参数成功加工出特征尺寸为40μm,形状精度高、表面质量好的典型微小结构。
With the development of science and technology and Micro-Electro-Mechanical System (MEMS), parts and components become more and more miniaturized size. The system dimension, which is between 1 and 1000μm, is usually called micro system according to the scale features of the products. The corresponding micro machining technology has become a research hotspot in the industrially developed countries.
     The metal micro-structure is an important class of micro structures. Product miniaturization, precision and development of high-tech product have the urgent demand to the micro metal processing technology of micro scale complex structures. Therefore, the development for a micromachining technology, which has the capability to machining three-dimensional structures on metals and alloy materials, has become a hot issue in the micro-manufacturing field.
     Micro electrochemical milling (MECM), which is a combination of micro milling and electrochemical micro machining, is proposed as a new method of micro machining technology in this paper. Because of no electrode wear, the micrometer scale cylindrical electrode can be used as the tool in MECM, and the complex structures of micrometer or tens micrometer can be fabricated. The new technology can be used in the field of aerospace industry, precise instrument, biomedical devices and so on. The doctoral dissertation consists of five sections, including:
     (1) The fundamental theory of MECM is investigated. The theoretical model of MECM is founded, which is an important theoretical guidance for the following experiments, based on the charging process of interfacial electric double layer. In addition, the effects of various parameters on machining quality are analyzed, and then the correlative technical solutions are proposed.
     (2) A set of 3D machining system of MECM is established. The machining system has the following characteristics, such as micro-feeding with high-resolution and low speed, triaxiality linkage, high rotational accuracy, short-circuit detection and protection, vibration insulation and so on. The real-time control and data acquisition system for 3D micro electrochemical milling is founded using devices of virtual instruments, and the software of the system is designed based on Labwindows/CVI.
     (3) Two new methods of fabricating the micrometer scale electrodes used in MECM are investigated. First, the fabricated method of the micro multi-stepped cylindrical electrode is analyzed. Then, a mathematical control model for fabricating the micro multi-stepped cylindrical electrode is set up. It is proved that the experimental and theoretical values have a good agreement by the experiment of a third-stepped microelectrode. After that, based on the above multi-stepped cylindrical electrode, the type of micro cylindrical electrode with a spherical end, which has good roundness and mirror-class surface quality, is fabricated by using single electric discharge technology and through controlling the discharge parameters. Finally, based on electric field analysis, various applications are analyzed by using different micro electrodes.
     (4) Sets of experiments are carried out to fabricate micro complex structures on various metals, such as, nickelbase superalloys GH3030, nikel and stainless steel. The impacts of applied voltage, pulse on time, pulse period, electrode diameter, electrolyte parameters on the machining process are experimentally investigated. According to the theoretical model, strategy of milling by thin layer is applied. The impacts of layer thickness on the shape accuracy, machining stability and machining efficiency are experimentally investigated. Finally, using the optimized parameters, some high-precision micro 3-D staircase structures with minimum feature size of 5μm and hemispherical cavities are fabricated successfully.
     (5) A series of experiments are carried out to fabricate small structures on nickelbase superalloys GH3030. The effects of rotation rate on machining quality are experimentally investigated emphatically. In addition, the impacts of applied voltage, pulse on time, electrolyte concentration on the machining accuracy are experimentally investigated. Finally, using the optimized parameters, some small structures with high shape accuracy, good surface quality and minimum feature size of 40μm are fabricated successfully.
引文
[1]王科平,葛峻,秦明. MEMS静电执行光开关的设计与试验.电子器件, 2003,26(3): 240-252.
    [2]白兰,吴一辉,张平.基于MEMS的微流体混合器的研究与进展,哈尔滨工业大学学报, 2004, 36(4): 543-545.
    [3] Qu W, Wenzel C, Drescher K. A vertically sensitive accelerometer and its realization by depth UV lithography supported electroplating. Microelectronics Journal, 2000, (31): 569-575.
    [4] Deng K, Dewa A S, Ritter D C, et al. Characterization of gear pumps fabricated by LIGA. Microsystem Technologies, 1998 (4): 163-167.
    [5] Seidemann V, Butefisch S, Buttgenbach S. Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sensors and Actuators A, 2002, (97-98): 457-461.
    [6] Qu W, Wenzel C, Gerlach G. Fabrication of a 3D differential-capacitive acceleration sensor by UV-LIGA. Sensors and Actuators, 1999, (77): 14-20.
    [7]王沫然,李志信.基于MEMS的微泵研究进展.传感器技术, 2002, 21(6): 59-61.
    [8]石晶,于建群.基于MEMS技术的毛细管电泳芯片.中国生物工程杂志. 2003, 23(10): 89-92.
    [9] Mohr J, Last A, Wallrabe U. Free Space Optical Components Based on LIGA Technology. In: 8th Microoptics Conference (MOC’01). Tokyo: Optical Soc.of Japan, Japan Soc.of Applied Physics, The Group of Microoptics, 2001: 106-111.
    [10] Ansel Y, Gindele F, Scheurer J, et al. Optical Waveguide device realized using two SU-8 Layer. In: 2002 IEEE/LEOS International Conference on Optical MEMS. Lugano: IEEE, 2002: 123-124.
    [11] Lafontan X, Pressecq F, Beaudoin F, et al. The advent of MEMS in Space. Microelectronics Reliability, 2003, (43): 1061-1083.
    [12] George T. MEMS/NEMS development for Space Application at NASA/JPL. In: Design, Test, Integration, and Packaging of MEMS/MOEMS 2002, Cannes: SPIE-Int. Soc. Opt. Eng, 2002: 556-567.
    [13] Khanna R. MEMS fabrication perspectives from the MIT Microengine Project. Surface and Coatings Technology, 2003, (163-164): 273-280.
    [14]陈伟平,虞敦,王东红,等. MEMS在军事领域中的应用前景.遥测遥控, 1998, 19(1): 14-19.
    [15]黄良甫,贾付云.空间微机电系统的研究与进展.真空与低温, 2002, 8(4): 187-196.
    [16]朱荻,云乃彰,汪炜,曲宁松.微机电系统与微细加工技术.哈尔滨:哈尔滨工程大学出版社, 2008.
    [17] Hsu T R.王晓浩,蓝金辉,杨兴,等译. MEMS和微系统—设计与制造.北京:机械工业出版社, 2004.
    [18]苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社, 2002.
    [19]石庚辰.微机电系统技术.北京:国防工业出版社, 2002.
    [20]姚劲松,王志勤,王飞,等.准LIGA工艺技术在加工微金属齿轮中的应用.光学精密工程, 1995, 3(2): 64-66.
    [21] Garino T, Morales A, Buchheit T, et al. The Fabrication of Stainless Steel Parts for MEMS. SAND REPORT, 2002: 1-20.
    [22] Watanabe Y, Edo M, Nakazawa H, et al. A new fabrication process of a planar coil using photosensitive polyimide and electroplating. Sensors and Actuators A, 1996, (54): 733-738.
    [23] Kataoka K, Kawamura S, Itoh T. Electroplating Ni micro-cantilevers for low contact-force IC probing. Sensors and Actuators A, 2003, (103): 116-121.
    [24] Chung S W, Shin J W, Kim Y K, et al. Design and fabrication of micromirror supported by electroplated nickel posts. Sensors and Actuators A, 1996, (54): 464-467.
    [25] Cho H S, Hemker K J, Lian K, et al. Measured mechanical properties of LIGA Ni structures. Sensors and Actuators A, 2003, (103): 59-63.
    [26] Hirata T, Guenat O T, Akashi T, et al. A numerical simulation on a pneumatic air table realize by Micro-EDM. Journal of Microelectromechanical systems, 1999, 8(4): 523-528.
    [27] Chung S J, Hein H, Hirata T, et al. A micro cycloid-gear system fabricated by multi-exposure LIGA technique. Microsystem Technologies, 2000, (6): 149-153.
    [28] Chung C K, Lin C J, Chen C C, et al Combination of thick resist and electroforming technologies for monolithic inkjet application. Microsystem Technologies, 2004, (10): 462-466.
    [29] Kuo C L, Huang J D, Liang H Y. Fabrication of 3D Metal Microstructures Using a Hybrid Process of Micro-EDM and Laser Assembly. Int J Adv Manuf Technol, 2003, (21): 796-800.
    [30] Peirs J, Reynaerts D, Verplaetsen F, et al. A Microturbine Made by Micro-Electro-Discharge Machining. The 16th European Conference on Solid-State Transducers, September 15-18, 2002, Prague, Czech Republic: 790-793.
    [31]梁静秋,姚劲松. LIGA技术基础研究.光学精密工程, 2000, 8(1): 38-41.
    [32] Cheng C M, Chen R H. Key issues in fabricating microstructures with high aspect ratios by using deep X-ray lithography. Microelectronic Engineering, 2004, (71): 335-342.
    [33] Cheng Y, Shew B Y, Chyu M K, et al. Ultra-deep LIGA process and its application. Nuclearinstruments and methods in physics research A, 2001, (464-468): 1192-1197.
    [34] Kupk R K, Bouamrane F, Cremers C, et al. Microfabrication: LIGA-X and applications. Applied Surface Science, 2000, (164): 97-110.
    [35] Ehrfeld W. Electrochemistry and Microsystems. Electrochimica Acta, 2003, (48): 2857-2868.
    [36] Yi F, Zhang J, Xie C. Activities of LIGE and Nano LIGA Technologies at BSRF. Journal of Physics: Conference Series 34. 2006: 865-869.
    [37] Lorenz H, Despont M, Fahrni N, et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators A, 1998, (64): 33-39.
    [38] Sato H, Houshi Y, Shoji S. Three-dimensional micro-structures consisting of high aspect ratio inclined micro-pillars fabricated by simple photolithography. Microsystem Technologies, 2004, (10): 440-443.
    [39] Cheng C H, Chen S C, Chen Z S. Multilevel electroforming for the components of a microdroplet ejector by UV LIGA technology. Journal of Micromechanics and Microengineering, 2005, (15): 843-848.
    [40]明平美. UV-LIGA与微细电火花加工组合制造技术基础研究.南京航空航天大学博士学位论文, 2006.
    [41]明平美,朱荻,胡洋洋,等.基于UV-LIGA技术制造微结构器件试验研究.中国机械工程,2006, 17(21): 2216-2220.
    [42] Hu Y Y, Zhu D, Qu N S, et al.. Fabrication of high-aspect-ratio electrode array by combining UV-LIGA with micro electro-discharge machining. Microsystem technologies, 2009, 15(4): 519-525.
    [43]胡洋洋,朱荻,李寒松,等. UV-LIA制作超高微细阵列电极技术研究.光学精密工程, 2010, 18(3): 670-676.
    [44] Pan E Y, Pu N W, Tong Y P, et al. Fabrication of high-aspect-ratio sub-diffraction-limit microstructures by two-photon absorption photopolymerization. Appl. Phys. B, 2003, 77(5): 485-488.
    [45]孔祥东,张玉林,尹明.电子束三维光刻技术的研究.微细加工技术, 2003, (4): 9-13.
    [46]赵玉清.电子束离子束技术.西安:西安交通大学出版社, 2002.
    [47] Hung N P, Fu Y Q, Ali M Y. Focused ion beam machining of silicon. Journal of Materials Processing Technology, 2002, 127(2): 256-260.
    [48] Meijer J. Laser beam machining (LBM), state of the art and new opportunities.Journal of Materials Processing Technology, 2004, 149(1-3): 2-17.
    [49] Nakata Y, Okada T, Maeda M. Lithographical laser ablation using femtosecond laser. Applied physics A, 2004, 79(4-6): 1481-1483.
    [50] Tu Y L, Xia M. MICROMACHINING WITH FEMTOSECOND LASER. Proceedings of the 7th ICFDM2006, June 19-22, 2006, Guangzhou, China, Page 245-250.
    [51]黄春峰,赖传兴,陈树全.现代特种加工技术的发展.航空精密制造技术, 2001, 37(6): 14~20.
    [52]潘开林,陈子辰,傅建中.激光微细加工技术及其在MEMS微制造中的应用.制造技术与机床, 2002, (3): 5-7.
    [53]俞君,曾智江,朱三根,等.紫外激光在微细加工技术中的优势研究.红外, 2008, 29(6): 9-13.
    [54]陈立德.先进制造技术.北京:国防工业出版社, 2009.
    [55] Gower M. Excimer laser microfabrication and micromachining. Precision Engineering, 1999, (23): 229-235.
    [56]顾兴中,倪中华.微孔结构血管支架的激光切割工艺.华中科技大学学报, 2007, 35(3): 143-146.
    [57] Bang Y B, Lee K M, Oh S. 5-axis micro milling machine for machining micro parts. Advanced Manufacturing Technology 2005, (25): 888-894.
    [58] Challer T, Bohn L, Mayer J, et al.. Microstructure grooves with a width of less than 50μm cut with ground hard metal micro end mills. Precision Engineering, 1999, (23): 229-235.
    [59]刘晋春,赵家齐,赵万生.特种加工(第3版) .北京:机械工业出版社, 1999.
    [60]唐勇军,胡富强,王振龙.微细电火花加工技术的最新进展.电加工与模具, 2005,增刊: 36-39.
    [61]王振龙,赵万生,狄士春,等.微细电火花加工技术的研究进展.中国机械工程, 2002, 13(10): 894-899.
    [62]余祖元,郭东明,贾振元.微细电火花加工技术.中国科技论文在线, 2007, 2(3): 214-220.
    [63]赵万生,李志勇,王振龙,等.微三维结构电火花铣削关键技术研究.微细加工技术, 2003, (3): 49-55.
    [64]张勇,王振龙,李志勇,等.微细电火花加工装置关键技术研究.机械工程学报, 2004, 40(9):175-179.
    [65]李文卓,刘加光,于云霞.微细电火加工机床关键技术.机械工程学报, 2007, 43(1): 170-175.
    [66]张勇,王振龙,胡富强,等.微细电火花加工装置的设计与应用.微细加工技术, 2004, (2): 55-60.
    [67]霍孟友,张建华,艾兴.电火花放电加工间隙状态检测方法综述.电加工与模具, 2003, (3): 17-20.
    [68]狄士春,于滨,迟关心,等.基于异形孔等效放电面积的微细电火花加工技术.中国机械工程, 2003, 14(22): 1970-1973.
    [69]李刚.基于直线电机的微细电火花加工系统及其关键技术研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2007.
    [70] Liu Kun, Lauwers B, Reynaerts D. Process capabilities of Micro-EDM and its applications. Int. J. Adv. Manuf. Technol. , 2009, (170): 796-800.
    [71] Saldana C, Yang P. Micro-scale components from high-strength nanostructured alloys. Materials Science and Engineering A, 503(2009):172-175.
    [72] Rajurkar K P, Zhu D, McGeough J A, New Developments in Electrochemical Machining, Annals of the CIRP, 1999, 48(2): 567-580.
    [73] Silva D, McGeough J A. Hybrid Electrodischarge-Electrochemical Process for Roughing and Finishing Dies and Moulds, Proceedings of the ISEM-12, 1998:397-406.
    [74]张欣耀,朱荻,曾永彬,刘勇.精密微小孔的电解-磨削复合扩孔加工技术研究.中国机械工程, 2010, 21(8): 973-977.
    [75] Phillips R E. Combining Electrochemical Attack and Abrasion, Manufacturing Engineering, 1986: 46-48.
    [76] Tehrani F A, Atkinson J. A Study of Pulsed Electrochemical Grinding, Proceedings of the ISEM-11, 1995: 543-552.
    [77] Cao X D, Kim B H, Chu C N. Micro-structuring of glass with features less than 100μm by electrochemical discharge machining, 2009, (33): 459-465.
    [78] Schuster R, Kirchner V, Allongue P, et al.. Electro-chemical micromachining. Science 2000, 289: 98-101.
    [79] H. T.库特利雅夫采夫等著,陈国亮等译.应用电化学.上海:复旦大学出版社, 1992.
    [80] Madden J D, Hunter I W. Three-Dimensional Microfabrication by Localized Electrochemical Deposition. Journal of Microelectro mechnaical systems, 1996, 5(1): 24-32.
    [81] Li Yong, Zheng Yunfei, Yang Guang, et al. Localized electrochemical micromachining with gap control.Sensors and Actuators, 2003, 108(1-3): 144-148.
    [82] Mineta T. Electrochemical etching of a shape memory alloy using new electrolyte solutions. Journal of micromechanics and microengineering, 2004(14): 76-80.
    [83] Zinger O, Chauvy P F, Landolt D. Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications. Journal of The Electrochemical Society, 2003, 150(11): 495-503.
    [84] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining process, Transactions of the ASME, 1996,118:490-499.
    [85]施文轩,张明歧,殷旻等.电射流加工工艺研究和发展.电加工与模具, 2001, 1: 36-39.
    [86] Johns B A, Advanced M achining Techniques for Turbine Blades, Industrial Lubrication and Tribology, 1984, 36(1): 4-9.
    [87] Ahmed M S, Duffield A, Deep hole drilling using ECM, SME Technical Paper (Series) MS, 1989:809-816.
    [88]施文轩,张明歧,殷旻.电液束加工工艺的研究及其发展,航空制造技术, 2001, 6: 25-27.
    [89] Sridhar S D. Electro-Stream Drilling of High Speed Steel, M. Tech. Theses in Indian Institute of Technology Kanpur, July 1999.
    [90] Shenoy R V, Datta M. Effect of Mask Wall Angle on Shape Evolution during Through-Mask Electrochemical Micromachining. Journal of Electrochemical Society, 1996(143): 544-549.
    [91] Xiong Lu, Yang Leng, Li Minjiang, et al. Novel Techniques of Titanium Surface Patterning. Key Engineering Materials, 2005, Vol.288-289: 619-624.
    [92] Sun J J, Huang H G, Tian Z Q, et al. Three-dimensional micromachining for microsystems by confined etchant layer technique.Electrochimica Acta, 2001(47): 95-101.
    [93] Xin Zhouma, Li Zhang, Guo Huicao, et al. Electrochemical micromachining of nitinol by confined-etchant-layer technique.Electrochimica Acta , 52(2007) : 4191-4196.
    [94] Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses-a versatile method with lithographical precision.Electrochimica Acta, 2003, 48(20-22): 3213-3219.
    [95] Trimmer A L, Hudson J L, Kock M, et al. Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Applied Physics Letters, 2003, 82(19): 3327-3329.
    [96] Kim B H, Na C W, Lee Y S, et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid. CIRP Annals Manufacturing Technology, 2005, 54(1): 191-194.
    [97] Chan H Jo, Kim B H, Chu C N. Micro electrochemical machining for complex internal micro features. CIRP Annals-Manufacturing Technology, 58 (2009): 181-184.
    [98]李小海,王振龙,赵万生.微细电化学加工研究新进展.电加工与模具. 2004(2): 1-5.
    [99]张朝阳.纳秒脉冲电流微细电解加工技术研究.南京航空航天大学博士学位论文, 2007.
    [100]王昆,朱荻,王明环.微米尺度线电极的电化学腐蚀法制备.机械科学与技术, 2006, 25(9): 1073-1075.
    [101]王昆,张朝阳.微细电解线切割加工控制系统.机械科学与技术, 2007, 26(7): 845-849.
    [102]王少华,朱荻.微尺度线电极电解加工研究.航空学报, 2009, 30(9): 1788-794.
    [103]朱荻,王明环,明平美,等.微细电化学加工技术.纳米技术与精密工程, 2005, 3(2): 151-155.
    [104]电解加工编译组.电解加工.北京:国防工业出版社, 1977.
    [105]王建业,徐家文.电解加工原理及应用.北京:国防工业出版社, 2001.
    [106]朱荻.国外电解加工的研究进展.电加工与模具, 2000(1): 11-16.
    [107] Kozak J, Rajurkar K P, Makkar Y. Selected problems of micro-electrochemical machining. Journal of Materials Processing Technology, 2004, 149(1-3): 426-431.
    [108] Bhattacharyya B, Munda J, Malapati M. Advancement in electrochemical micro-machining. International Journal of Machine Tools & Manufacture, 2004, 44(15): 1577-1589.
    [109]李荻.电化学原理.北京:北京航空航天大学出版社, 1999.
    [110]张祖训,汪尔康.电化学原理和方法.北京:科学出版社, 2000.
    [111]高颖,邬冰.电化学基础.北京:化学工业出版社, 2004.
    [112]阿伦·J·巴德,拉里·R·福克纳.电化学方法:原理与应用.北京:化学工业出版社,2005.
    [113]顾惕人.表面化学.北京:科学出版社, 1994.
    [114]Б.Б.达马斯金,О.А.佩特里.电化学动力学导论.北京:科学出版社, 1989.
    [115]陆兆锷.电极过程原理和应用.北京:高等教育出版社,1992.
    [116]查全性.电极过程动力学导论.北京:科学出版社,2002.
    [117]赵葛霄,吕文阁.特种加工技术在精密微细加工中的应用.工具技术.2001, 35(8): 5-8.
    [118]清水贤资,鸿田五郎(彭斌译).脉冲电路.北京:科学出版社, 2000.
    [119] Kenney J A, Hwanga G S. Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses.Applied Physics Letters, 2004, 84(19): 3774-3776.
    [120] Kenney J A, Hwanga G S. Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution. Nanotechnology, 2005, 16(7): 309-313.
    [121] Datta M, Landolt D. Fundamental aspects and applications of electrochemical microfabrication.Electrochimics Acta, 2000, (45): 2535-2558.
    [122]王明环,朱荻,徐惠宇.微螺旋电极在改善微细电解加工性能中的应用.机械科学与技术, 2006, 25(3): 348-351.
    [123]李小海.微细电解加工系统及其工艺技术研究.哈尔滨工业大学博士学位论文, 2006.
    [124]史先传.三面进给叶片电解加工系统的研制及其关键技术的研究.南京航空航天大学博士学位论文, 2004.
    [125] Rosenkranz C, Lohrengel M M, Schultze J W. The surface structure during pulsed ECM of iron in NaNO3. Electrochimica Acta, 2005, 50(10): 2009-2016.
    [126]曾佳赟.基于CVI的微细电火花加工数控系统设计与试验研究.南京航空航天大学硕士学位论文, 2007.
    [127]宋馨来.微细电火花加工中的CAD/CAM技术研究.南京航空航天大学硕士学位论文, 2005.
    [128]王昆.微细电解线切割加工技术的基础研究.南京航空航天大学博士学位论文,2007.
    [129]刘子建,黄红武.宗子安CAD原理与应用技术.长沙:湖南大学出版社, 1997
    [130]美国国家仪器(NI)有限公司,虚拟仪器(白皮书),2003.
    [131]周箭,虚拟仪器及其技术研究,浙江大学学报,2000,34(6): 686-689.
    [132] Ciancarlo F, Libero N, Development of virtual data acquisition systems based on multimedia internet working, Computer Standards & Interfaces, 1999, 21:224-228.
    [133]王建新,杨世凤,隋美丽. Labwindows/CVI测试技术及工程应用.北京:化学工业出版社, 2006.
    [134]罗运和,戴青.计算机图形学基础.北京:中国计量出版社, 2003.
    [135]杜晓增.计算机图形学基础.北京:机械工业出版社, 2004.
    [136]伏玉琛.计算机图形学?原理、方法与应用.武汉:华中科技大学出版社, 2003.
    [137]王明环,朱荻,张朝阳.电化学腐蚀法加工微圆柱体.机械工程学报, 2006, 6(42): 128-132.
    [138]王明环,朱荻,徐惠宇.电化学腐蚀法制备针尖的试验研究.传感器技术.2005, 24(3):24-26.
    [139]王明环.微细电解加工试验研究.南京航空航天大学博士学位论文, 2007.
    [140] Lim Y M, Kim S H. An electrochemical fabrication method for extremely thin cylindrical micropin. International Journal of Machine Tools & Manufacture.2001, 41:2287-2296.
    [141] Lim Y M, Lim H J. Fabrication of cylindrical micropins with various diameters using DC current density control . Journal of Materials Processing Technology.2003, 141:251-255.
    [142] Lim H J, Lim Y M, Kim S H. Fabrication of arbitrarily shaped microelectrodes by electrochemical etching. Jpn. J. Appl. Phys. 2003, 42: 1479–1485.
    [143]鄭圳明.微細加工單發放電能量對微球形探針之探討.國立台北科技大學碩士學位論文, 2009.
    [144] Sheu D Y. Mciro-spherical probes machining by EDM. Journal of Micromechanics and Micriengineering, 15(2005): 185-189.
    [145] Sheu D Y. Muti-spherical probe machining by EDM combining WEDG technology with one-pulse electro-discharge. Journal of Materials Processing Technology, 149(2004): 597-603.
    [146]洪榮洲.微放電複合製程之微型工具製作技術及其精微加工研究.國立中央大學博士學位論文, 2007.
    [147]崔景芝.微细电火花加工的基本规律及其仿真研究.哈尔滨工业大学博士学位论文, 2007.
    [148]杨慕升,熊秋菊.基于数字图形处理的微内孔质量检测技术.制造技术与机床, 2009 (1): 112-115.
    [149]休斯W F,布赖顿J A.流体动力学.北京:科学出版社,2002.
    [150] Karniadakis G E, Beskok A.微波动:基础与模拟.北京:化学工业出版社,2006.
    [151]冯炭颖,周兆英,叶雄英.微流体驱动与控制技术研究进展.力学进展, 2002, 32: 1-3.
    [152]仲武.电渗流泵的流体动力学分析.东南大学硕士学位论文, 2003.
    [153]仲武,陈云飞.毛细管电渗流微泵的流体动力学的数值仿真.机械工程学报, 2004, 40 (2): 73-77.
    [154]葛忠年.微通道内电渗流有限元数值模拟.南昌大学硕士学位论文,2009.
    [155]冀封.微流控多尺度现象研究.吉林大学博士学位论文, 2008.
    [156]张玉宝,李强.基于COMSOL Multiphysics的MEMS建模及应用.北京:冶金工业出版社, 2007.
    [157] Zimmerman W B J. COMSOL Multiphysics有限元法多物理场建模与分析.北京:人民交通出版社, 2007.
    [158]朱保国.脉冲电化学微细加工关键技术研究.哈尔滨工业大学博士学位论文, 2007.
    [159]孙立忠.脉冲电流电解加工微细结构的试验研究.哈尔滨工业大学硕士学位论文, 2007.
    [160]叶茂,伍超,陈云良,等.立轴漩涡试验与数值模拟研究.水力发电学报.2007, 26(1): 33-36.
    [161]陈云良,伍超,叶茂,等.立轴旋涡多圈螺旋流场特性研究.四川大学学报(工程科学版). 2007, 39(1):13-17.
    [162]叶茂,伍超,胡耀华,等.立柱旋涡三维数值模拟.西南民族大学学报(自然科学版), 2004, 30(1): 105-108.
    [163]王福军.计算流体动力学分析?CFD软件原理与应用.北京:清华大学出版社, 2004.
    [164] Yakhot V, Orszag S A. Development of turbulence model for shear flows by a double expansion technique. Physics of Fluids, A, 1992, 4(7): 1510-1520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700